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Abstract

Compound Poisson population models are particular conditional branching process models.
A formula for the transition probabilities of the backward process for general compound Poisson
models is verified. Symmetric compound Poisson models are defined in terms of a parameter
θ ∈ (0,∞) and a power series φ with positive radius r of convergence. It is shown that the
asymptotic behavior of symmetric compound Poisson models is mainly determined by the
characteristic value θrφ′(r−). If θrφ′(r−) ≥ 1, then the model is in the domain of attraction of
the Kingman coalescent. If θrφ′(r−) < 1, then under mild regularity conditions a condensation
phenomenon occurs which forces the model to be in the domain of attraction of a discrete-time
Λ-coalescent. The proofs are partly based on the analytic saddle point method. They draw
heavily from local limit theorems and from results of S. Janson on simply generated trees,
conditioned Galton–Watson trees, random allocations and condensation. Several examples of
compound Poisson models are provided and analyzed.

Keywords: Bell polynomials; coalescent with multiple collisions; compound Poisson model; con-
densation; Dirichlet model; Kingman coalescent; saddle point method; Wright–Fisher model
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1 Introduction

Conditional branching process models, introduced by Karlin and McGregor [14, 15], are population
models with fixed population size N ∈ N := {1, 2, . . .} and non-overlapping generations. They are
defined in terms of a sequence (ξn)n∈N of independent non-negative integer-valued random variables
satisfying P(ξ1 + · · · + ξN = N) > 0. If, for i ∈ {1, . . . , N}, µN,i denotes the number of offspring
of the ith individual alive in some fixed generation, then the random variables µN,1, . . . , µN,N have
(by definition) joint distribution

P(µN,1 = j1, . . . , µN,N = jN ) =
P(ξ1 = j1) · · ·P(ξN = jN )

P(ξ1 + · · · + ξN = N)
,

j1, . . . , jN ∈ N0 := {0, 1, . . .} with j1 + · · · + jN = N . For convenience we will often drop the index
N and simply write µi instead of µN,i. For some more information on conditional branching process
models we refer the reader to [9, Section 3] and [10].
We now turn to the definition of compound Poisson population models. Let θ1, θ2, . . . be strictly
positive real numbers and let φ(z) =

∑∞
m=1 φmz

m/m!, |z| < r, be a power series with radius
r ∈ (0,∞] of convergence and with non-negative coefficients φm ≥ 0, m ∈ N. It is also assumed
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that φ1 > 0. Compound Poisson models are particular conditional branching process models where
each random variable ξn has probability generating function (pgf)

fn(x) := E(xξn) = exp(−θn(φ(z) − φ(zx))), |x| ≤ 1. (1)

In (1), z is viewed as a fixed parameter satisfying 0 < z < r. If Mn is a random variable having
a Poisson distribution with parameter θnφ(z) and if X1, X2, . . . are independent random variables

and independent of Mn each with pgf x 7→ φ(zx)/φ(z), |x| ≤ 1, then
∑Mn

j=1Xj has pgf (1). This
subclass of conditional branching process models is therefore called the compound Poisson class.
In order to analyze compound Poisson models it is useful to view z as a variable and to introduce,
for θ ∈ [0,∞), the Taylor expansion exp(θφ(z)) =

∑∞
k=0 σk(θ)zk/k!, |z| < r. The coefficients σk(θ)

depend on (φm)m∈N and they satisfy the recursion

σ0(θ) = 1 and σk+1(θ) = θ
k∑

l=0

(
k

l

)
φk−l+1σl(θ), k ∈ N0, θ ∈ [0,∞). (2)

The coefficients σk(θ) are mainly introduced, since, by (1), the distribution of ξn, n ∈ N, satisfies

P(ξn = k) =
σk(θn)

k!
zk exp(−θnφ(z)), k ∈ N0. (3)

Note furthermore that ξ1 + · · · + ξn, n ∈ N, has distribution

P(ξ1 + · · · + ξn = k) =
σk(Θn)

k!
zk exp(−Θnφ(z)), k ∈ N0,

where Θn := θ1 + · · · + θn. From (2) it follows by induction on k ∈ N that φk = limθ→0 σk(θ)/θ
for all k ∈ N, so the coefficients φk, k ∈ N, of the power series φ can be recovered from the
coefficients σk(θ), k ∈ N0, θ ∈ (0,∞). From φ1 > 0 it follows that σk(θ) is a polynomial in θ
of degree k. In the literature (see, for example, [1] or [4]) the σk(θ) are called the exponential
or Bell polynomials. We have σ1(θ) = θφ1, σ2(θ) = θφ2 + θ2φ2

1, σ3(θ) = θφ3 + 3θ2φ1φ2 + θ3φ3
1,

σ4(θ) = θφ4 +θ2(4φ1φ3 +3φ2
2)+6θ3φ2

1φ2 +θ4φ4
1, and so on. The coefficients Bkl(φ1, φ2, . . .), k ∈ N0,

l ∈ {0, . . . , k}, of the polynomials σk(θ) =
∑k

l=0Bkl(φ1, φ2, . . .) θ
l, k ∈ N0, are called the Bell

coefficients.
In the following, for x ∈ R and k ∈ N0, the notation (x)k := x(x − 1) · · · (x − k + 1) and [x]k :=
x(x + 1) · · · (x + k − 1) is used for the descending and ascending factorials respectively, with the
convention that (x)0 := 1 and [x]0 := 1. It is readily checked that ξn has descending factorial
moments

E((ξn)k) = f (k)
n (1) = zk

k∑

l=0

Bkl(φ
′(z), φ′′(z), . . .) θl

n, n ∈ N, k ∈ N0,

i.e. E(ξn) = θnzφ
′(z), E((ξn)2) = θnz

2φ′′(z) + θ2nz
2(φ′(z))2 and so on. The descending factorial

moments therefore satisfy the recursion

E((ξn)k+1) = θn

k∑

l=0

(
k

l

)
zk−l+1φ(k−l+1)(z)E((ξn)l), n ∈ N, k ∈ N0.
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It is known (see, for example, [9, p. 535]) that µ = (µ1, . . . , µN ) has distribution

P(µ = j) =
N !

σN (ΘN )

N∏

n=1

σjn
(θn)

jn!
, j = (j1, . . . , jN ) ∈ ∆(N), (4)

where ΘN := θ1 + · · · + θN and ∆(N) denotes the discrete N -simplex consisting of all j =
(j1, . . . , jN ) ∈ N

N
0 satisfying j1 + · · · + jN = N . Note that the distribution of µ is not necessarily

exchangeable. Moreover (see, for example, [10, Eq. (4)]), µ has joint factorial moments

E((µ1)k1
· · · (µN )kN

) =
N !

σN (ΘN )

∑

j1≥k1,...,jN ≥kN
j1+···+jN =N

σj1(θ1) · · ·σjN
(θN )

(j1 − k1)! · · · (jN − kN )!
, (5)

N ∈ N, k1, . . . , kN ∈ N0, θ1, . . . , θN ∈ (0,∞). For some compound Poisson models, namely for
skewed Wright–Fisher models and for skewed Dirichlet models, the alternative and simpler formula
(see, for example, [10, Lemma 2.1] and the remarks thereafter)

E((µ1)k1
· · · (µN )kN

) = (N)k
σk1

(θ1) · · ·σkN
(θN )

σk(θ1 + · · · + θN )
(6)

holds for all k1, . . . , kN ∈ N0 and all θ1, . . . , θN ∈ (0,∞), where k := k1 + · · · + kN . For some more
information on compound Poisson models we refer the reader to [17].
The article is organized as follows. The main results are presented in the following Section 2. Proofs
are provided in Section 3. Examples of compound Poisson models are studied in Section 4. One
purpose of this article is to provide proofs of the results stated without proof in [10].

2 Results

The following Proposition 2.1, stated without proof in [10, Proposition 2.2], provides expressions

for the transition probabilities P̂i,j of the backward process X̂ for an arbitrary compound Poisson
model. The proof of Proposition 2.1 is provided in Section 3.

Proposition 2.1 If, for each n ∈ N, the random variable ξn has a pgf of the form (1), then the

backward process X̂ of the associated compound Poisson model has transition probabilities

P̂i,j =
1(
N
i

)
∑

1≤n1<···<nj≤N

∑

k1,...,kj∈N0

k:=k1+···+kj≤N

(N)k

k1! · · · kj !
·

· (
∏j

i=1 σki
(θni

))σN−k(ΘN − ∑j
i=1 θni

)

σN (ΘN )

∑

l1,...,lj∈N

l1+···+lj=i

(
k1

l1

)
· · ·

(
kj

lj

)
, i, j ∈ S, (7)

with the convention that P̂i,0 = δi0, i ∈ S. Here ΘN := θ1 + · · · + θN , S := {0, . . . , N}, and the
coefficients σk(θ), k ∈ N0, θ ∈ [0,∞), are recursively defined via (2). In particular,

P̂i,1 =
N∑

n=1

N∑

k=i

(
N − i

k − i

)
σk(θn)σN−k(ΘN − θn)

σN (ΘN )
, i ∈ {1, . . . , N}. (8)
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Remark. Proposition 2.1 in particular yields the coalescence probability

cN := P̂2,1 =
N∑

n=1

N∑

k=2

(
N − 2

k − 2

)
σk(θn)σN−k(ΘN − θn)

σN (ΘN )
, N ≥ 2, (9)

and the probability

dN := P̂3,1 =
N∑

n=1

N∑

k=3

(
N − 3

k − 3

)
σk(θn)σN−k(ΘN − θn)

σN (ΘN )
, N ≥ 3, (10)

that three individuals, picked at random and without replacement from some arbitrary but fixed
generation of the population, share a common parent.
In the following we focus on the unbiased (symmetric) case, when all the parameters θn = θ are
equal to some constant θ ∈ (0,∞). In this case the distribution (4) of µ is exchangeable and (7)
reduces to

P̂i,j =

(
N
j

)
(
N
i

)
∑

k1,...,kj∈N0

k:=k1+···+kj≤N

(N)k

k1! · · · kj !

(
∏j

i=1 σki
(θ))σN−k((N − j)θ)

σN (Nθ)

∑

l1,...,lj∈N

l1+···+lj=i

(
k1

l1

)
· · ·

(
kj

lj

)
, (11)

i, j ∈ S, with the convention that P̂i,0 = δi0, i ∈ S. In particular,

P̂i,1 = N
N∑

k=i

(
N − i

k − i

)
σk(θ)σN−k((N − 1)θ)

σN (Nθ)
, i ∈ {1, . . . , N}, (12)

cN = N
N∑

k=2

(
N − 2

k − 2

)
σk(θ)σN−k((N − 1)θ)

σN (Nθ)
, N ≥ 2, (13)

and

dN = N
N∑

k=3

(
N − 3

k − 3

)
σk(θ)σN−k((N − 1)θ)

σN (Nθ)
, N ≥ 3, (14)

in agreement with (8), (9), and (10).

We are interested in the asymptotic behavior of symmetric compound Poisson models as N → ∞.
The following results show that the characteristic value θrφ′(r−) ∈ (0,∞] is of fundamental interest
in this context, where r ∈ (0,∞] denotes the radius of convergence of φ. Theorem 2.2 below, stated
in slightly different form and without proof in [10, Theorem 2.3], clarifies that many symmetric
compound Poisson models are in the domain of attraction of the Kingman coalescent.

Theorem 2.2 (supercritical case) Suppose that θrφ′(r−) ∈ (1,∞] such that the equation
θzφ′(z) = 1 has a unique real solution z(θ) ∈ (0, r). Then, µN,1 → X in distribution as N → ∞ with
convergence E(µp

N,1) → E(Xp) as N → ∞, p ∈ (0,∞), of all moments, where X is a non-negative
integer-valued random variable with distribution

P(X = k) =
σk(θ)

k!
(z(θ))k exp(−θφ(z(θ))), k ∈ N0, (15)
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and mean E(X) = 1. Moreover, in the sense of [9, Definition 2.1 (a)], the associated symmetric
compound Poisson population model is in the domain of attraction of the Kingman coalescent.
The effective population size Ne := 1/cN satisfies Ne ∼ ̺N as N → ∞ with ̺ := 1/Var(X) =
1/(1 + θ(z(θ))2φ′′(z(θ))) ∈ (0, 1].

Remarks.

1. Two independent proofs of Theorem 2.2 are provided in Section 3. The first proof involves the
saddle point method and the second proof is based on the local limit theorem. Both proofs
differ significantly from the erroneous proof in [9]. To the best of the authors knowledge
these proofs are the first approaches where saddle point methods or, alternatively, local limit
theorems are used to establish convergence to the Kingman coalescent. The distribution of
the limiting variable X coincides with the distribution (3) of ξ1 with the parameter z in (3)
replaced by z(θ). Note that X has mean E(X) = θz(θ)φ′(z(θ)) = 1. Thus, conditioning ξ1 on
the event that ξ1 + · · · + ξN = N and afterwards taking N → ∞, has altogether the effect
that the distribution of ξ1 is ‘nearly’ recovered. Only the information about the mean of ξ1 is
lost.

2. If φ′(r−) = ∞, then for all θ ∈ (0,∞) the equation θzφ′(z) = 1 has a solution z(θ) ∈ (0, r).
If φ′(r−) < ∞, then a solution z(θ) ∈ (0, r) of the equation θzφ′(z) = 1 exists if and only
if θrφ′(r−) > 1. Examples satisfying φ′(r−) < ∞ are provided in Section 4. The solution
z(θ) (if it exists) is unique since the map z 7→ zφ′(z) is strictly increasing on (0, r). Closed
expressions for the solution z = z(θ) of the equation u(z) := zφ′(z) = 1/θ seem to be not
available in general. By the inversion formula of Lagrange (see, for example, [5, Section 3.8]),
for k ∈ N and x ∈ (0,∞),

[xk]u−1(x) =
[zk−1](z/u(z))k

k
=

[zk−1](1/φ′(z))k

k
= Bk−1,k(ψ0, ψ1, . . .),

where ψn := ψ(n)(0), n ∈ N0, with ψ(z) := 1/φ′(z). Choosing x := 1/θ and noting that
z(θ) = u−1(x) yields the formal expansion

z(θ) =
∞∑

k=1

[zk−1](ψ(z))k

k
θ−k =

∞∑

k=1

Bk−1,k(ψ0, ψ1, . . .)θ
−k.

Note however that, depending on φ and θ, this series may not converge, so we can only speak
about a formal series here. Alternatively one may approximate the root z(θ) of the map
z 7→ θzφ′(z) − 1 numerically.

Theorem 2.2 is not applicable if θrφ′(r−) ≤ 1. In this case we have φ′(r−) < ∞, which implies
that φ(r−) <∞, since zφ′(z) =

∑∞
m=1 φmz

m/(m− 1)! ≥ ∑∞
m=1 φmz

m/m! = φ(z) for all z ∈ [0, r).
Moreover, from φ(r−) < ∞ it follows that r < ∞. Assume from now on that θrφ′(r−) ≤ 1 and
introduce a non-negative integer-valued random variable X with distribution

P(X = k) =
σk(θ)

k!
rk exp(−θφ(r−)), k ∈ N0. (16)

Note that X has pgf s 7→ E(sX) = exp(−θ(φ(r−)− φ((rs)−))), |s| ≤ 1, and characteristic function
t 7→ E(exp(itX)) = exp(−θ(φ(r−) − φ((reit)−))), t ∈ R. In particular, E(X) = θrφ′(r−) ≤ 1.
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Moreover, E(Xk) <∞ if and only if φ(k)(r−) <∞, k ∈ N. Our second asymptotic result, Theorem
2.3 below, addresses the critical case E(X) = θrφ′(r−) = 1. The subcritical case E(X) < 1 is
considered at the end of this section.

Theorem 2.3 (critical case, convergence) If θrφ′(r−) = 1, then limN→∞ cN → 0 and, in the
sense of [9, Definition 2.1 (a)], the associated symmetric compound Poisson population model is in
the domain of attraction of the Kingman coalescent.

In general cN can tend to zero very slowly. The proof of Theorem 2.3, provided in Section 3, does
not provide direct information on the speed of convergence. Under additional assumptions more
can be said about the asymptotics of cN . The proof of the following Theorem 2.4 draws solely but
heavily from local limit theorems. For examples we refer the reader to Section 4 from Example 4.6
on.

Theorem 2.4 (critical case, speed of convergence) Assume that θrφ′(r−) = 1.

a) If the random variable X with distribution (16) satisfies E(X2) < ∞ or, equivalently, if
φ′′(r−) <∞, then µN,1 → X in distribution as N → ∞. Moreover, the coalescence probability
cN satisfies cN ∼ Var(X)/N as N → ∞, where Var(X) = 1 + θr2φ′′(r−).

b) If there exists a constant c = c(θ) > 0 such that the distribution (16) of the random variable X
satisfies P(X = k) ∼ ck−3 as k → ∞, then µN,1 → X in distribution as N → ∞. Moreover,
the coalescence probability cN satisfies

cN ∼ c

2

logN

N
, N → ∞. (17)

c) If there exist constants α ∈ (1, 2) and κ = κ(α) ∈ (0,∞) such that the power series φ of the
compound Poisson model satisfies

φ(z) = φ(r−) + φ′(r−)(z − r) + κ(r − z)α +O((r − z)2), z → r, (18)

then the distribution (16) of the random variable X satisfies P(X = k) ∼ ck−α−1 as k → ∞
with c := θκrα/Γ(−α). Moreover, µN,1 → X in distribution as N → ∞ and the coalescence
probability cN satisfies

cN ∼ c

∫ ∞
0
x1−αg(−x) dx
g(0)

N2(1−α)/α, N → ∞. (19)

Here g denotes the density of an α-stable random variable with characteristic function t 7→
exp(d(−it)α), t ∈ R, where d := cΓ(−α) = θκrα.

Remarks.

1. Assume that α ∈ (1, 2). Lemma 5.2, applied with β := 1 − α ∈ (−1, 0), shows that∫ ∞
0
x1−αg(−x) dx = d(1−α)/αΓ(1 − α)/Γ((1 − α)/α) and g(0) = d−1/α|Γ(−1/α)|−1. Thus,

the fraction in (19) can be expressed in terms of the gamma function via

∫ ∞
0
x1−αg(−x) dx
g(0)

= d(2−α)/α Γ(1 − α)|Γ(−1/α)|
Γ((1 − α)/α)

, α ∈ (1, 2).
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2. Theorem 2.4 b) can be viewed as the boundary case α = 2 of Theorem 2.4 c). Note that,
under the assumptions of Theorem 2.4 b) or c) respectively,

E(X21{X≤N})

N
=

1

N

N∑

k=1

k2
P(X = k) ∼ c

N

N∑

k=1

k1−α ∼
{ c

2−αN
1−α for α ∈ (1, 2),

c log N
N for α = 2.

(20)
The naive prospect, based on the equation (N − 1)cN = E((µN,1)2), that the coalescence
probability cN could be asymptotically equal to (20), is wrong due to Theorem 2.4 b) and c).

Theorems 2.2, 2.3, and 2.4 are not applicable if E(X) < 1. In this subcritical case it seems to be not
straightforward to derive asymptotic results without further regularity assumptions on the weights
wk := σk(θ)/k!, k ∈ N0. Our last asymptotic result below essentially states that a ‘condensation
phenomenon’ occurs which forces the model to be in the domain of attraction of a discrete-time
Λ-coalescent with Λ(dt)/t2 being a Dirac measure (Dirac coalescent). The result in particular shows
that, under certain circumstances, Dirac coalescents arise naturally in the limit as the total popula-
tion size N tends to infinity and indicates that Dirac coalescents are more important in the context
of ancestral population genetics as it seems to be at a first glance.

Theorem 2.5 (subcritical case) Fix θ ∈ (0,∞) and assume that there exist constants c > 0
and β > 2 such that wk := σk(θ)/k! ∼ ck−β/rk as k → ∞. If θrφ′(r−) < 1, then µN,1 → X in
distribution as N → ∞, where X is a non-negative integer-valued random variable with distribution
(16). Moreover, limN→∞ cN = u2, where u := 1 − E(X) = 1 − θrφ′(r−) ∈ (0, 1) and, in the sense
of [9, Definition 2.1 (b)], the associated symmetric compound Poisson population model is in the
domain of attraction of a discrete-time Λ-coalescent with Λ := u2δu.

Remarks.

1. Note that limN→∞ P̂i,j =
(

i
j−1

)
ui−j+1(1 − u)j−1 for all i, j ∈ N with i > j.

2. The physical image is the one of a very prolific individual giving birth to a fixed fraction
u of the total population, the others adjusting their random offspring to ensure a constant
population size N in each generation. This ‘condensation phenomenon’ is reminiscent of the
one observed by Eldon and Wakeley [6] (see also [11, Proposition 4]) in the context of extended
Moran models. However, as observed in [9, Proposition 3.1], compound Poisson models and
extended Moran models constitute disjoint reproduction laws.

3. It remains unclear whether Theorem 2.5 holds without any regularity condition on the weight
sequence (wk)k∈N0

. Note that, for arbitrary weights (not necessarily coming from a compound
Poisson model), theorems of this form do not hold without any regularity condition on the
weight sequence (wk)k∈N0

. We refer the reader to the remark before Example 19.33 and to
the Examples 19.37 and 19.38 of [13] for analog comments and more details. In our situation
however, the weights are coming from a compound Poisson model and have the particular
structure ωk = σk(θ)/k!. Thus, our weights cannot be arbitrarily irregular and hence, there is
some chance that Theorem 2.5 could hold without any conditions on (wk)k∈N0

. We leave this
problem open for future work.
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3 Proofs

Proof. (of Proposition 2.1) For j ∈ {1, . . . , N}, pairwise distinct n1, . . . , nj ∈ {1, . . . , N}, and
k1, . . . , kj ∈ N0 with k := k1 + · · · + kj ≤ N we have

P(µn1
= k1, . . . , µnj = kj) =

(
∏j

i=1 P(ξni = ki)) P(
∑

m∈[N ]\{n1,...,nj} ξm = N − k)

P(ξ1 + · · · + ξN = N)

=
(N)k

k1! · · · kj !

σk1
(θn1

) · · ·σkj
(θnj

)σN−k(ΘN − ∑j
i=1 θni

)

σN (ΘN )

and, therefore, for l1, . . . , lj ∈ N0,

E

( j∏

i=1

(
µni

li

))
=

∑

k1,...,kj

( j∏

i=1

(
ki

li

))
(N)k

k1! · · · kj !

σk1
(θn1

) · · ·σkj
(θnj

)σN−k(ΘN − ∑j
i=1 θni

)

σN (ΘN )
,

where the sum
∑

k1,...,kj
extends over all k1, . . . , kj ∈ N0 satisfying k := k1 + · · · + kj ≤ N . Thus

(7) follows from [9, Eq. (4)]. For j = 1, (7) reduces to (8). Alternatively, (8) follows as well via

P̂i,1 =
N∑

n=1

E((µn)i)

(N)i
=

N∑

n=1

N∑

k=i

(k)i

(N)i
P(µn = k)

=
N∑

n=1

N∑

k=i

(k)i

(N)i

(
N

k

)
σk(θn)σN−k(ΘN − θn)

σN (ΘN )

=
N∑

n=1

N∑

k=i

(
N − i

k − i

)
σk(θn)σN−k(ΘN − θn)

σN (ΘN )
.

2

Proof. (of Theorem 2.2) Two independent proofs are provided. The first proof exploits the analytic
saddle point method. The second proof is based on the standard local limit theorem for sequences
of independent and identically distributed random variables with finite and non-vanishing variance.
We think that both proofs are worthwhile, since they demonstrate the intertwining of analysis and
probability.

Proof 1. Fix k, l ∈ N0 and θ ∈ (0,∞). Let us verify that

σn−k((n− l)θ)

(n− k)!
∼ (a(θ))n

√
2πn

bkl(θ), n→ ∞, (21)

where

a(θ) :=
eθφ(z(θ))

z(θ)
and bkl(θ) :=

(z(θ))ke−lθφ(z(θ))

√
1 + θ(z(θ))2φ′′(z(θ))

. (22)

We proceed similarly as in the proof of [4, Theorem 2.1]. However, note that in [4] asymptotic
expansions for σn(θ) are provided whereas we are essentially interested in the asymptotics of σn(nθ).
By Cauchy’s integral formula, σn(θ)/n! = (2πi)−1

∫
C
z−(n+1)eθφ(z) dz, n ∈ N0, where C is some

contour around the origin. Replacing n by n− k and θ by (n− l)θ it follows that

σn−k((n− l)θ)

(n− k)!
=

1

2πi

∫

C

e(n−l)θφ(z)

zn−k+1
dz =

1

2πi

∫

C

h(z)eng(z) dz,

8



where h(z) := zk−1e−lθφ(z) and g(z) := θφ(z) − log z. Note that g′(z) = θφ′(z) − 1/z and that
g′′(z) = θφ′′(z) + 1/z2. In particular, g′ has a single real zero in the interval (0, r) at the point z(θ)
solving the equation θz(θ)φ′(z(θ)) = 1. Note that g′′(z) > 0 for all z ∈ (0, r). In order to derive
the asymptotics of the integral

∫
C
h(z)eng(z) dz we use the saddle point method (see, for example,

[3] or [7] for general references) and choose the contour C to be the circle around the origin with
radius z(θ) such that it passes through the zero z(θ) of g′. Note that g′(z(θ)) = 0, so g(z(θ)eit) has
Taylor expansion

g(z(θ)eit) =
∞∑

j=0

g(j)(z(θ))

j!
(z(θ))j(eit − 1)j

= g(z(θ)) +
g′′(z(θ))

2
(z(θ))2(eit − 1)2 +

g′′′(z(θ))

3!
(z(θ))3(eit − 1)3 +O(t4)

leading to the Taylor expansions Re(g(z(θ)eit)) = g(z(θ)) − (z(θ))2g′′(z(θ))t2/2 + O(t4) and
Im(g(z(θ)eit)) = O(t3). The saddle point method yields the asymptotics

∫

C

h(z)eng(z) dz ∼ i

√
2π

ng′′(z(θ))
eng(z(θ))h(z(θ)).

Dividing this expression by 2πi and writing z instead of z(θ) for convenience yields

σn−k((n− l)θ)

(n− k)!
∼ eng(z)h(z)√

2πng′′(z)
=

1√
2πn

(a(θ))nbkl(θ)

with a(θ) := eg(z) = eθφ(z)/z and bkl(θ) := h(z)/
√
g′′(z) = zk−1e−lθφ(z)/

√
z−2 + θφ′′(z) =

zke−lθφ(z)/
√

1 + θz2φ′′(z). Thus, (21) is established. Note that for k = l = 0 we have

σn(nθ)

n!
=

1

2πi

∫

C

eng(z)

z
dz =

1

2πi

∫ π

−π

eng(z(θ)eit)

z(θ)eit
iz(θ)eit dt =

1

2π

∫ π

−π

eng(z(θ)eit) dt.

Taking the real part yields

σn(nθ)

n!
=

1

2π

∫ π

−π

Re(eng(z(θ)eit)) dt ∼ 1

2π

∫ π

−π

enRe(g(z(θ)eit)) dt, (23)

where the last asymptotics is based on the Laplace method as follows. Choose a sequence (δn)n∈N

of positive real numbers satisfying nδ2n → ∞ and nδ3n → 0, for example, δn := n−α for some fixed
α ∈ (1/3, 1/2). Decomposing the first integral in (23) into the two parts

I1 :=

∫ δn

−δn

Re(eng(z(θ)eit)) dt and I2 :=

∫

{δn<|t|≤π}
Re(eng(z(θ)eit)) dt

we can approximate I1 and show that I2 is negligible (in comparison to I1) for large n. Obviously,
1−x2/2 ≤ cosx ≤ 1 for all x ∈ R. Choosing x := nIm(g(z(θ)eit)) and using Im(g(z(θ)eit)) = O(t3)
and nt3 → 0 as n→ ∞ uniformly for all |t| ≤ δn it follows that

lim
n→∞

sup
|t|≤δn

| cos(nIm(g(z(θ)eit))) − 1| = 0.

9



Thus, as n→ ∞, the map t 7→ cos(nIm(g(z(θ)eit))) converges uniformly on [−δn, δn] to the constant
map t 7→ 1, which implies that

I1 =

∫ δn

−δn

cos(nIm(g(z(θ)eit)))enRe(g(z(θ)eit)) dt ∼
∫ δn

−δn

enRe(g(z(θ)eit)) dt.

Let us now turn to the second integral I2. Define the two functions f : R → R and m : R → R

via f(t) := Re(φ(z(θ)eit)) =
∑∞

m=1(φm/m!)(z(θ))m cos(mt) and m(t) := Re(g(z(θ)eit)) =
Re(θφ(z(θ)eit) − log(z(θ)eit)) = θf(t) − log(z(θ)) for all t ∈ R. Note that f is 2π-periodic and
that f(t) = f(−t) for all t ∈ R. The same holds for the function m since it is a linear trans-
formation of f . For m ∈ N define am := φm(z(θ))m/m! and choose some q ∈ (1, r/z(θ)). Then,∑∞

m=1 amq
m = φ(z(θ)q) <∞, since z(θ)q < r. By Lemma 5.1 (applied for the function f and with

ε := δn) it follows that there exists a constant n0 ∈ N (which may depend on θ and φ) such that
supδn<|t|≤π m(t) ≤ m(δn) for all n ∈ N with n > n0. Therefore

|I2| ≤
∫

{δn<|t|≤π}
enRe(g(z(θ)eit)) dt =

∫

{δn<|t|≤π}
enm(t) dt ≤ 2πenm(δn).

The expansion m(t) = g(z(θ)) − (z(θ))2g′′(z(θ))t2/2 + O(t4) applied for t = δn yields enm(δn) ∼
eng(z(θ))e−(z(θ))2g′′(z(θ))nδ2

n/2. Thus, |I2|/I1 = O(
√
n/ecnδ2

n) with c := (z(θ))2g′′(z(θ))/2 > 0. Since
nδ2n = n1−2α → ∞ it follows that |I2|/I1 → 0 as n → ∞. Thus, the integral I2 is negligible in
comparison to I1 and (23) is established.
For k ∈ N0 and N ∈ N with N ≥ k it follows from (21) that

P(µN,1 = k) =

(
N

k

)
σk(θ)σN−k((N − 1)θ)

σN (Nθ)
=

σk(θ)

k!

σN−k((N−l)θ)
(N−k)!

σN (Nθ)
N !

∼ σk(θ)

k!

(a(θ))Nbk1(θ)/
√

2πN

(a(θ))Nb00(θ)/
√

2πN
=

σk(θ)

k!

bk1(θ)

b00(θ)
= σk(θ)

(z(θ))k

k!
e−θφ(z(θ)).

Thus, µN,1 → X in distribution as N → ∞, where X has distribution (15).
In the following, for fixed p ∈ (0,∞), the convergence E(µp

N,1) → E(Xp) as N → ∞ of the p-th
moments is established. For all N ∈ N and all k, l ∈ {0, . . . , N} we have

σN−k((N − l)θ)

(N − k)!
≤ σN−k(Nθ)

(N − k)!
=

1

2πi

∫

C

zk−1eNg(z) dz

=
1

2πi

∫ π

−π

(z(θ)eit)k−1eNg(z(θ)eit) iz(θ)eit dt =
(z(θ))k

2π

∫ π

−π

eikteNg(z(θ)eit) dt.

Taking the complex absolute value it follows for all N ∈ N and all k, l ∈ {0, . . . , N} that

σN−k((N − l)θ)

(N − k)!
≤ (z(θ))k

2π

∫ π

−π

|eNg(z(θ)eit)| dt =
(z(θ))k

2π

∫ π

−π

eNRe(g(z(θ)eit)) dt.

Since, by (23), (2π)−1
∫ π

−π
eNRe(g(z(θ)eit)) dt ∼ σN (Nθ)/N !, it follows that there exists a constant

N0 ∈ N (which may depend on θ and φ but not on k and l) such that

σN−k((N − l)θ)

(N − k)!
≤ 2(z(θ))k σN (Nθ)

N !
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for all N ≥ N0 and all k, l ∈ {0, . . . , N}. In particular, for all N ≥ N0 and all k ∈ {0, . . . , N},

P(µN,1 = k) =
σk(θ)

k!

σN−k((N−1)θ)
(N−k)!

σN (Nθ)
N !

≤ σk(θ)

k!
2(z(θ))k = κ(θ)P(X = k),

where κ(θ) := 2eθφ(z(θ)) ∈ (0,∞). For all p ∈ (0,∞) the map k 7→ kp
P(X = k), k ∈ N0, is integrable

with respect to the counting measure εN0
on N0, since

∫
kp

P(X = k)εN0
(dk) =

∑∞
k=0 k

p
P(X = k) =

E(Xp) < ∞. Dominated convergence yields the convergence E(µp
N,1) → E(Xp) as N → ∞ of all

moments.
In particular, (N − 1)cN = E((µN,1)2) → E((X)2) > 0 and (N − 1)(N − 2)dN = E((µN,1)3) →
E((X)3) as N → ∞. Thus, dN/cN = O(1/N) → 0 as N → ∞, which ensures (see [18] or [16,
Theorem 4 (b)]) that the considered symmetric compound Poisson model is in the domain of
attraction of the Kingman coalescent. The proof is complete.

Proof 2. Let X1, X2, . . . be independent copies of the random variable X with distribution (15).
For N ∈ N define SN := X1 + · · · + XN . Since 0 < Var(X) < ∞, the local limit theorem
limN→∞ supk∈Z |dN (k)| = 0 holds, where dN (k) :=

√
NP(SN = k)− g((k−N)/

√
N) and g denotes

the density of the normal distribution N(0,Var(X)). We have

P(µN,1 = k) =

(
N

k

)
σk(θ)σN−k((N − 1)θ)

σN (Nθ)
= P(X = k)

P(SN−1 = N − k)

P(SN = N)
.

Since P(SN = N) = (g(0) + dN (N))/
√
N ∼ g(0)/

√
N as N → ∞ and, for arbitrary but fixed k,

P(SN−1 = N − k) = (g((1 − k)/
√
N) + dN−1(N − k))/

√
N − 1 ∼ g(0)/

√
N as N → ∞ thanks to

the fact that the convergence in the local limit theorem holds uniformly for all k, it follows that
P(SN−1 = N −k)/P(SN = N) → 1 as N → ∞ and, therefore, P(µN,1 = k) → P(X = k) as N → ∞
for all k ∈ N0. Thus, µN,1 → X in distribution as N → ∞. Fix p ∈ (0,∞). For all N ∈ N,

E(µp
N,1) =

N∑

k=1

kp
P(X = k)

P(SN−1 = N − k)

P(SN = N)
.

Applying the local limit theorem to both probabilities P(SN−1 = N − k) and P(SN = N) it follows
for arbitrary but fixed p ∈ (0,∞) that

E(µp
N,1) ∼

N∑

k=1

kp
P(X = k)

g((1 − k)/
√
N − 1) + dN−1(N − k)

g(0)

≤
N∑

k=1

kp
P(X = k)

g(0) + dN−1(N − k)

g(0)

∼
N∑

k=1

kp
P(X = k) →

∞∑

k=1

kp
P(X = k) = E(Xp),

where we have used that the density g is non-decreasing on (−∞, 0] and that dN−1(N − k) → 0 as
N → ∞ uniformly for all k by the local limit theorem. Similarly,

E(µp
N,1) ≥

⌊N1/4⌋∑

k=1

kp
P(X = k)

P(SN−1 = N − k)

P(SN = N)
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∼
⌊N1/4⌋∑

k=1

kp
P(X = k)

g((1 − k)/
√
N − 1) + dN−1(N − k)

g(0)

≥
⌊N1/4⌋∑

k=1

kp
P(X = k)

g((1 −N1/4)/
√
N − 1) + dN−1(N − k)

g(0)

∼
⌊N1/4⌋∑

k=1

kp
P(X = k) →

∞∑

k=1

kp
P(X = k) = E(Xp),

where we used again that g is non-decreasing on (−∞, 0] and that the convergence in the local limit
theorem holds uniformly for all k. Thus, the convergence E(µp

N,1) → E(Xp) as N → ∞, p ∈ (0,∞),
is established. The rest of the proof is identical to the last four lines of Proof 1. 2

Proof. (of Theorem 2.3) We verify that limN→∞ cN = 0. Fix ε ∈ (0, 1) and define Ai := {µi ≤ Nε}
and Bi := {µi > Nε}, i ∈ {1, . . . , N}. As in the proof of [13, Theorem 19.2], applied to the weights
wk := e−θφ(r−)σk(θ)/k! and with n := m := N , it follows that there exists a constant cε ∈ (−∞, 0)
such that P(µ1 > Nε) ≤ exp(cεN + o(N)). In particular, limN→∞NP(µ1 > Nε) = 0 and

cN =
1

(N)2

N∑

i=1

E((µi)21Ai) +
1

(N)2

N∑

i=1

E((µi)21Bi) ≤ Nε

(N)2

N∑

i=1

E(µi1Ai) +
N

(N)2
E((µ1)21B1

)

≤ Nε

(N)2
E(µ1 + · · · + µN ) +NE(1B1

) =
N2ε

(N)2
+NP(µ1 > Nε) → ε, N → ∞.

Thus, limN→∞ cN = 0, since ε > 0 can be chosen arbitrarily small. In order to determine the
asymptotics of the associated compound Poisson population model, let µ(1) ≥ · · · ≥ µ(N) denote
the ranked offspring sizes, i.e. the offspring sizes µ1, . . . , µN , but permutated in non-increasing
order. For all ε > 0 we have P(µ(1) > Nε) = P(

⋃N
i=1{µi > Nε}) ≤ NP(µ1 > Nε) → 0 as

N → ∞. Thus, µ(1)/N → 0 in probability as N → ∞. For arbitrary but fixed dimension d ∈ N

it follows that (µ(1)/N, . . . , µ(d)/N) → (0, . . . , 0) ∈ R
d in distribution as N → ∞. Treating the

infinite simplex ∆ := {x = (x1, x2, . . .) : x1 ≥ x2 ≥ · · · ≥ 0,
∑∞

i=1 xi ≤ 1} as a subset of the
metric space R

∞ equipped with the topology of pointwise convergence, this convergence of the
finite-dimensional distributions is already equivalent (see, Billingsley [2, p. 19]) to the convergence
of the full processes (µ(1)/N, . . . , µ(N)/N, 0, 0, . . .) → (0, 0, . . .) ∈ ∆ in distribution as N → ∞.
Comparing this limit with Sagitov’s convergence result [19, Theorem 2.1] shows that the model is
in the domain of attraction of the Kingman coalescent. 2

Proof. (of Theorem 2.4) Let X1, X2, . . . be independent random variables all with the same distri-
bution (16) of X. Define SN := X1 + · · · +XN , N ∈ N. For all k ∈ N0 and all N ≥ k,

P(µN,1 = k) =

(
N

k

)
σk(θ)σN−k((N − 1)θ)

σN (Nθ)
= P(X = k)

P(SN−1 = N − k)

P(SN = N)
.

The basic idea of the proof is to apply local limit theorems to the two probabilities P(SN−1 = N−k)
and P(SN = N) in the formula above. It turns out that the details of the proof differ for parts a),
b) and c), so we have to treat these parts separately.
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a) By assumption, φ′′(r−) < ∞ or, equivalently, Var(X) < ∞. Following the proof of Theorem
2.2, but with the root z(θ) replaced by r, it follows that µN,1 → X in distribution as N → ∞,
where X has distribution (16). For p ∈ (0, 2] the convergence of moments E(µp

N,1) → E(Xp)
as N → ∞ is shown in the same way as in Proof 2 of Theorem 2.2 by exploiting the standard
local limit theorem for sequences of independent and identically distributed random variables
having finite and non-vanishing variance. In particular, (N−1)cN = E((µN,1)2) → E((X)2) =
Var(X) = 1 + θr2φ′′(r−) as N → ∞. Thus, part a) of Theorem 2.4 is established.

b) Under the situation b) the local limit theorem limN→∞ supk∈N |dN (k)| = 0 holds, where
dN (k) =

√
N logNP(SN = k) − g((k − N)/

√
N logN), N ∈ N, k ∈ Z, and g(x) :=

(πc)−1/2 exp(−x2/c), x ∈ R, is the density of the normal distribution N(0, c/2). Applying
this local limit theorem to both probabilities P(SN = N) and P(SN−1 = N − k) it follows in
the same way as in Proof 2 of Theorem 2.2 that µN,1 → X in distribution as N → ∞. Let us
now turn to the asymptotics of the coalescence probability cN . We have

(N − 1)cN = E((µN,1)2) =
N∑

k=2

(k)2P(µN,1 = k)

=
N∑

k=2

(k)2P(X = k)
P(SN−1 = N − k)

P(SN = N)
(24)

∼
N∑

k=2

(k)2P(X = k)
g((1 − k)/

√
N logN) + dN−1(N − k)

g(0)

≥
⌊
√

N⌋∑

k=2

(k)2P(X = k)
g((1 − k)/

√
N logN) + dN−1(N − k)

g(0)

≥
⌊
√

N⌋∑

k=2

(k)2P(X = k)
g(−1/

√
logN) + dN−1(N − k)

g(0)
∼

⌊
√

N⌋∑

k=2

(k)2P(X = k).

Since P(X = k) ∼ ck−3 as k → ∞, the latter sum is asymptotically equal to c
∑⌊

√
N⌋

k=2 1/k ∼
c
∫ √

N

2
1/x dx ∼ c log

√
N = (c/2) logN . Thus, lim infN→∞(NcN )/ logN ≥ c/2. It remains

to verify that lim supN→∞(NcN )/ logN ≤ c/2. Define BN := ⌊
√
N logN⌋, N ∈ N, and

decompose the sum in (24) into a first part over all k ≤ BN and a second part over all
k > BN . The second part is negligible, since, uniformly for all k ∈ {BN + 1, . . . , N},

P(SN−1 = N − k)

P(SN = N)
∼ g((1 − k)/

√
N logN) + dN−1(N − k)

g(0)

≤ g(−
√

logN) + dN−1(N − k)

g(0)
→ 0

as N → ∞. Note that we used that the normal density g is non-decreasing on (−∞, 0], that
g(−

√
logN) → 0 as N → ∞ and that dN−1(N − k) → 0 as N → ∞ uniformly for all k. For
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the first part we use g(x) ≤ g(0), x ∈ R, and obtain

BN∑

k=2

(k)2P(X = k)
P(SN−1 = N − k)

P(SN = N)

∼
BN∑

k=2

(k)2P(X = k)
g((1 − k)/

√
N logN) + dN−1(N − k)

g(0)

≤
BN∑

k=2

(k)2P(X = k)
g(0) + dN−1(N − k)

g(0)
∼

BN∑

k=2

(k)2P(X = k),

again thanks to the fact that the convergence in the local limit theorem holds uniformly
for all k. From P(X = k) ∼ ck−3 as k → ∞ it follows that the last sum is asymptotically

equal to c
∑BN

k=2 1/k ∼ c logBN ∼ (c/2) logN . Thus, lim supN→∞(NcN )/ logN ≤ c/2 and
the asymptotics cN ∼ (c/2)(logN)/N is established.

c) Let us first verify that P(X = k) ∼ ck−α−1 as k → ∞ with c := θκrα/Γ(−α). It is readily
checked that (18) implies that

exp(θφ(z)) = A+B(z − r) + C(r − z)α +O((r − z)2), z → r,

with constants A := exp(θφ(r−)), B := θφ′(r−)A, and C := θκA. From that representation
it follows that

P (X = k) = rk exp(−θφ(r−))
σk(θ)

k!
=

rk

A
[zk] exp(θφ(z)) ∼ rk

A
C[zk](r − z)α

=
rk

A
C
rα

rk

(
α

k

)
(−1)k ∼ C

A
rα 1

Γ(−α)kα+1
=

c

kα+1
, k → ∞.

By the generalized central limit theorem (see also Lemma 5.3 in the appendix), (SN −
N)/N1/α → S in distribution as N → ∞, where S is an α-stable random variable with
characteristic function ϕ(t) := E(exp(itS)) = exp(cΓ(−α)(−it)α), t ∈ R. Define the constant
C := −cΓ(−α) cos πα

2 ∈ (0,∞) for convenience. For all p ∈ [0,∞),

∫ ∞

−∞
|t|p |ϕ(t)| dt (25)

=

∫ ∞

−∞
|t|p exp(cΓ(−α)Re((−it)α)) dt =

∫ ∞

−∞
|t|p exp(cΓ(−α)|t|α cos πα

2 ) dt

= 2

∫ ∞

0

tp exp(−Ctα) dt =
2

αC(p+1)/α

∫ ∞

0

u(p+1)/α−1 exp(−u) du

=
2Γ((p+ 1)/α)

αC(p+1)/α
∈ (0,∞), (26)

where we have used the substitution u = Ctα (⇒ dt/du = 1/(αC1/α)u1/α−1). In particular
(choose p = 0), ϕ is integrable with respect to the Lebesgue measure on R. Thus, by the
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Fourier inversion formula, S has density

g(x) =
1

2π

∫ ∞

−∞
exp

(
− ixt+ cΓ(−α)(−it)α

)
dt

=
1

π

∫ ∞

0

exp
(
cΓ(−α)tα cos πα

2

)
cos

(
xt+ cΓ(−α)tα sin πα

2

)
dt, x ∈ R.

Note that g is bounded, i.e. ‖g‖ := supx∈R |g(x)| <∞. Moreover (see, for example, Ibragimov
and Linnik [12, Theorem 4.2.1]) the local limit theorem limN→∞ supk∈Z |dN (k)| = 0 holds,
where dN (k) := N1/α

P(SN = k) − g((k − N)/N1/α), N ∈ N, k ∈ Z. In particular, P(SN =
N) = (g(0) + dN (N))/N1/α ∼ g(0)/N1/α and

P(SN−1 = N − k) =
g((1 − k)/(N − 1)1/α) + dN−1(N − k)

(N − 1)1/α

The convergence µN,1 → X in distribution therefore follows again in the same way as in Proof
2 of Theorem 2.2. We furthermore obtain

NcN ∼ E((µN,1)2) ∼ E(µ2
N,1) =

N∑

k=1

k2 P(X1 = k) P(SN−1 = N − k)

P(SN = N)

∼
N∑

k=1

k2
P(X = k)

g((1 − k)/(N − 1)1/α) + dN−1(N − k)

g(0)
= T1 + T2,

where

T1 :=
1

g(0)

N∑

k=1

k2
P(X = k) g((1 − k)/(N − 1)1/α)

and

T2 :=
1

g(0)

N∑

k=1

k2
P(X = k) dN−1(N − k).

Let us first analyse T2. Since (18) holds by assumption, it follows that supk∈Z |dN−1(N −
k)| = O(N1−2/α) by Theorem 5.4 (strong local limit theorem) in the appendix. Moreover,∑N

k=1 k
2
P(X = k) ∼ c

∑N
k=1 k

1−α = O(N2−α). Thus, T2 = O(N1−2/α)
∑N

k=1 k
2
P(X = k) =

O(N1−2/α)O(N2−α) = O(N δ) with δ := 3−2/α−α. Let us now turn to T1. Since the density
g is bounded, any finite number of values of the summation index k in the sum of T1 do not
contribute to the asymptotics of T1. It is therefore asymptotically allowed to replace P(X = k)
by its asymptotic expression ck−α−1 and we obtain

T1 ∼ c

g(0)

N∑

k=1

k1−αg((1 − k)/(N − 1)1/α).

For the last sum we have

N∑

k=1

k1−αg((1 − k)/(N − 1)1/α)
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=
N∑

k=1

N1/α

∫ (k+1)/N1/α

k/N1/α

⌊xN1/α⌋1−α g((1 − ⌊xN1/α⌋)/(N − 1)1/α) dx

= N1/α

∫ (N+1)/N1/α

1/N1/α

⌊xN1/α⌋1−αg((1 − ⌊xN1/α⌋)/(N − 1)1/α) dx

∼ N1/α

∫ ∞

0

x1−αN (1−α)/αg(−x) dx = N (2−α)/α

∫ ∞

0

x1−αg(−x) dx.

Note that the last integral is finite, since
∫ ∞
0
x1−αg(−x) dx ≤ ‖g‖

∫ 1

0
x1−α dx+

∫ ∞
1
g(−x) dx ≤

‖g‖/(2 − α) + 1 < ∞. Since δ = 3 − 2/α − α < (2 − α)/α, it follows in summary that
NcN ∼ T1 + T2 ∼ T1, and (19) follows immediately. The proof of part c) is complete. 2

Proof. (of Theorem 2.5) Without loss of generality assume that φ has radius of convergence r = 1.
Otherwise consider the new power series φ∗ defined via φ∗(z) := φ(rz), |z| < 1, and note that the
coefficients σ∗

k(θ) of the new power series φ∗ and the coefficients σk(θ) of the original power series
φ are related via σ∗

k(θ) = rkσk(θ), k ∈ N0, θ ∈ (0,∞).
Define Φ(z) := Φθ(z) := exp(θφ(z)) for |z| < 1 and θ ∈ (0,∞). Note that [zk]Φ(z) = σk(θ)/k!
for k ∈ N0 and θ ∈ (0,∞). By assumption there exist constants c = c(θ) ∈ (0,∞) and β =
β(θ) > 2 such that σk(θ)/k! ∼ ck−β as k → ∞. We are hence in the situation to apply Janson’s
[13] condensation result (Theorem 19.34) to the weights wk := σk(θ)/k!, k ∈ N0. Note that the
weight sequence (wk)k∈N0

has pgf
∑∞

k=0 wkz
k = exp(θφ(z)) = Φ(z), |z| < 1. Moreover, in Janson’s

notation, Ψ(z) := zΦ′(z)/Φ(z) = θzφ′(z), |z| < 1, and, hence, ν := Ψ(1−) = θφ′(1−) < 1 by
assumption. Fix k, l ∈ N0. Applying [13, Theorem 19.34 (ii)] (with number of balls m := N − k and
number of boxes n := N − l and N → ∞, which implies m/n→ 1 =: λ > ν) it follows for arbitrary
but fixed k, l ∈ N0 and θ ∈ (0,∞) that the partition function Z(m,n) = [zm]Φnθ(z) = σm(nθ)/m!
satisfies

σN−k((N − l)θ)

(N − k)!
∼ c

(λ− ν)β

(Φ(1−))N−l−1

Nβ−1
(27)

as N → ∞. For all k ∈ N0 and all N ∈ N with N ≥ k we have

P(µN,1 = k) =

(
N

k

)
σk(θ)σN−k((N − 1)θ)

σN (Nθ)
. (28)

Using the asymptotics (27) for l = 0 and for l = 1 it follows that

lim
N→∞

P(µN,1 = k) =
σk(θ)

k!

1

Φ(1−)
=

σk(θ)

k!
exp(−θφ(1−)), k ∈ N0,

which is the right hand side of (16) for r = 1. Thus, µN,1 → X in distribution as N → ∞.
As in the proof of Theorem 2.3 let µ(1) ≥ · · · ≥ µ(N) denote the ranked offspring sizes. Theorem
19.34 (i) of Janson [13] implies that

(µ(1)/N, . . . , µ(N)/N, 0, 0, . . .) → (u, 0, 0, . . .) (29)

in distribution as N → ∞, where u := λ− ν = 1 − θφ′(1−) ∈ (0, 1).
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In the following it is verified that limN→∞ cN = u2. We have µ(1)/N → u in distribution as N → ∞.
Since µ(1)/N is bounded for all N (between 0 and 1) it follows that µ(1)/N → u in L2. In particular,
E((µ(1))2)/(N)2 → u2 as N → ∞. Since

cN =
1

(N)2

N∑

i=1

E((µ(i))2) =
E((µ(1))2)

(N)2
+

1

(N)2

N∑

i=2

E((µ(i))2)

it hence remains to verify that

lim
N→∞

1

(N)2

N∑

i=2

E((µ(i))2) = 0. (30)

In order to establish the convergence (30) fix ε ∈ (0, 1) and define A := {µ(2) ≤ Nε} and its
complement B := {µ(2) > Nε}. We have

1

(N)2

N∑

i=2

E((µ(i))2) =
1

(N)2

N∑

i=2

E((µ(i))21A) +
1

(N)2

N∑

i=2

E((µ(i))21B)

≤ Nε

(N)2

N∑

i=2

E(µ(i)1A) +
N

(N)2

N∑

i=2

E(µ(i)1B)

=
Nε

(N)2
E((µ(2) + · · · + µ(N))1A) +

N

(N)2
E((µ(2) + · · · + µ(N))1B)

≤ N2ε

(N)2
+

N2

(N)2
P(µ(2) > Nε) → ε, as N → ∞,

since P(µ(2) > Nε) → 0 as N → ∞. Since ε > 0 can be chosen arbitrarily small, (30) holds and,
hence, the convergence limN→∞ cN = u2 ∈ (0, 1) is established. Comparing the limit (29) with Sag-
itov’s convergence result [19, Theorem 2.2] it follows that the associated compound Poisson model
is in the domain of attraction of a discrete-time Ξ-coalescent with Ξ(dx)/

∑∞
i=1 x

2
i = δ(u,0,0,...)(dx)

being the Dirac measure at (u, 0, 0, . . .) ∈ ∆ := {x = (x1, x2, . . .) : x1 ≥ x2 ≥ · · · ≥ 0,
∑∞

i=1 xi ≤ 1}.
Hence, the limiting process is a discrete-time coalescent with multiple collisions (Λ-coalescent) with
Λ(dt)/t2 = δu(dt) being the Dirac measure at u. 2

4 Examples

We start with the two most popular examples, the Wright–Fisher model and the Dirichlet model.
Note that (6) holds for these two models. These two examples have the advantage that most
calculations can be done explicitly. For example, we will verify the asymptotic results stated in
Theorem 2.2 directly.

Example 4.1 (Wright–Fisher model) For the standard symmetric Wright–Fisher model, φ(z) =
z. Therefore, ξn has a Poisson distribution with parameter θz and σk(θ) = θk, k ∈ N0, θ ∈ (0,∞).
For k ∈ N0 and θ ∈ (0,∞) it follows that

P(µN,1 = k) =

(
N

k

)
σk(θ)σN−k((N − 1)θ)

σN (Nθ)
=

(
N

k

)(
1

N

)k(
1 − 1

N

)N−k

.
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Thus, µN,1 has a binomial distribution with parameters N and 1/N . In particular, for arbitrary but
fixed p ∈ N, E((µN,1)p) = (N)p/N

p → 1 = E((X)p) as N → ∞, where X has a Poisson distribution
with parameter 1. The solution z(θ) of the equation θz(θ)φ′(z(θ)) = 1 is z(θ) = 1/θ. Note that
(21) holds with a(θ) := eθ and bkl(θ) := θ−ke−l, k, l ∈ N0, θ ∈ (0,∞). The effective population size
Ne = 1/cN = N coincides with the actual population size N , a well known result.

Example 4.2 (Dirichlet model) For the symmetric Dirichlet model, φ(z) = − log(1−z), |z| < 1.
Therefore, ξ1 has a negative binomial distribution with parameters θ and 1 − z. In particular,
E(ξ1) = θzφ′(z) = θz/(1 − z). Moreover, σk(θ) = [θ]k := θ(θ + 1) · · · (θ + k − 1) = Γ(k + θ)/Γ(θ),
k ∈ N0, θ ∈ (0,∞). Thus, for k ∈ N0 and θ ∈ (0,∞),

P(µN,1 = k) =

(
N

k

)
[θ]k[(N − 1)θ]N−k

[Nθ]N
=

[θ]k
k!

(N)k
Γ(Nθ − θ +N − k)Γ(Nθ)

Γ(Nθ − θ)Γ(Nθ +N)
.

Since Γ(x+ c) ∼ xcΓ(x) as x→ ∞ for any c ∈ R, it follows that

P(µN,1 = k) ∼ [θ]k
k!

(N)k
(Nθ +N)−θ−kΓ(Nθ +N)Γ(Nθ)

(Nθ)−θΓ(Nθ)Γ(Nθ +N)

=
[θ]k
k!

(N)k

(Nθ +N)k

(
θ + 1

θ

)−θ

→ [θ]k
k!

(
1

θ + 1

)k(
θ

θ + 1

)θ

.

Thus µN,1 → X in distribution as N → ∞ where X has a negative binomial distribution with
parameters θ and θ/(θ + 1) ∈ (0, 1). Moreover, for arbitrary but fixed p ∈ N, E((µN,1)p) =
(N)p[θ]p/[Nθ]p → [θ]p/θ

p = E((X)p) as N → ∞. Thus, E(µp
N,1) → E(Xp) as N → ∞ for all

p ∈ N in agreement with the general results derived in the proof of Theorem 2.2. The solution z(θ)
of the equation θz(θ)φ′(z(θ)) = 1 is z(θ) = 1/(θ+1). Note that (21) holds with a(θ) := (θ+1)θ+1/θθ

and bkl(θ) := (θ/(θ + 1))lθ+1/2(1/(θ + 1))k, k, l ∈ N0, θ ∈ (0,∞). The symmetric Dirichlet model
has effective population size Ne = 1/cN = (N − 1)/E((µN,1)2) = (Nθ + 1)/(θ + 1) ∼ ̺N with
̺ = θ/(θ + 1) = 1/Var(X), in agreement with Theorem 2.2.

Let us now study examples which do not satisfy (6). We start with a model which involves the
absolute Lah numbers.

Example 4.3 Suppose that φm = m! for all m ∈ N or, equivalently, that φ(z) = z/(1 − z),
|z| < 1. Note that φ′(z) = 1/(1 − z)2 and that φ′′(z) = 2/(1 − z)3 = 2φ′(z)/(1 − z), |z| < 1.
Then (Comtet [5, Section 3.3, p. 135, Theorem B]), σn(θ) =

∑n
k=1 L(n, k)θk, n ∈ N, θ ∈ R, where

L(n, k) := Bnk(1!, 2!, . . .) = n!(n − 1)!/(k!(k − 1)!(n − k)!), n ∈ N, k ∈ {1, . . . , n}, denote the
absolute Lah numbers. The solution z = z(θ) ∈ (0, 1) of the equation 1 = θzφ′(z) = θz/(1 − z)2

is z(θ) = 1 + θ/2 −
√
θ(θ + 4)/2. By Theorem 2.2, the model is in the domain of attraction of

the Kingman coalescent and the effective population size Ne satisfies Ne ∼ ̺N with ̺ := 1/(1 +
θz2φ′′(z)) = (1 − z)/(1 + z) < 1, since

1 + θz2φ′′(z) = 1 + θz2φ′(z)
2

1 − z
= 1 +

2z

1 − z
=

1 + z

1 − z
.

Note that the asymptotics (21) holds with a(θ) = eθφ(z)/z = eθz/(1−z)/z = e1−z/z and bkl(θ) :=
zke−lθφ(z)/

√
1 + θz2φ′′(z) = zke−l(1−z)/

√
(1 + z)/(1 − z), k, l ∈ N0, θ ∈ (0,∞).
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In the following example, which generalizes Example 4.3, the series φ solves a particular functional
equation and is hence (for most parameter constellations) only defined implicitly. Nevertheless an
explicit expression for the solution z = z(θ) of the equation θzφ′(z) = 1 is derived.

Example 4.4 Suppose that (see [1, p. 402, Eqs. (50) and (51)]) φm = (m− 1)!
(

am
m−1

)
bm−1, m ∈ N,

where it is assumed that the real parameters a and b are either both negative or b > 0 and
a ≥ 1 (such that all the coefficients φm are non-negative). Note that [1, Eq. (43)] the power
series φ(z) =

∑∞
m=1 φmz

m/m! is the solution of the functional equation φ(z) = zf(φ(z)) with
f(x) := (1 + bx)a and that φ is related to the generalized binomial series Ba (see, for example,
[8, p. 200]) via φ(z) = (Ba(bz) − 1)/b. It is readily checked that φ has radius of convergence
r := limm→∞(m+ 1)φm/φm+1 = (ab)−1(1− 1/a)a−1 ∈ (0,∞) and that φ(r−) = 1/(b(a− 1)) (= ∞
for a = 1), since, for a 6= 1, φ(r−) = 1/(b(a − 1)) is the only positive solution of the equation
φ(r−) = rf(φ(r−)). Differentiating both sides of the functional equation φ(z) = zf(φ(z)) yields
the derivatives

φ′(z) =
f(φ(z))

1 − zf ′(φ(z))
and φ′′(z) =

2f ′(φ(z))φ′(z) + zf ′′(φ(z))(φ′(z))2

1 − zf ′(φ(z))
, |z| < r.

For a = 1 (and b > 0) we have φm = m!bm−1, m ∈ N, and φ(z) = z/(1 − bz), |z| < 1/b.
For a = b = 1 we are back in Example 4.3. For a = 2 we have φ(z) = 4z/(1 +

√
1 − 4bz)2,

|z| < 1/(4b). For a = −1 (and b < 0) we have φm = (2m − 2)!/(m − 1)!(−b)m−1, m ∈ N, and
φ(z) = (

√
1 + 4bz − 1)/(2b) = 2z/(1 +

√
1 + 4bz), |z| < 1/(−4b). For general parameters a and b,

to the best of the authors knowledge, there seems to be no special function related to the power
series φ. Nevertheless, an explicit expression for the solution z = z(θ) of the equation θzφ′(z) = 1
is obtained as follows. Let x = x(θ) be the solution in the open interval (0, 1) of the quadratic
equation θx = b(1 − x)(a− x), i.e.

x(θ) =
θ + b+ ab−

√
(θ + b+ ab)2 − 4ab2

2b
∈ (0, 1). (31)

We have 0 < (1−x)/θ < 1/(b(a−1)) = φ(r−) (= ∞ for a = 1). Thus, z = z(θ) := φ−1((1−x)/θ) ∈
(0, r) is well defined. From (1 − x)/θ = φ(z) = zf(φ(z)) = zf((1 − x)/θ) it follows that

z =
1 − x

θ

1

f( 1−x
θ )

=
1 − x

θ

1

(1 + b 1−x
θ )a

=
1 − x

θ

1

(1 + x
a−x )a

=
1 − x

θ

(
a− x

a

)a

=
1 − x

θ

a− x

a

(
a− x

a

)a−1

=
x

ab

(
a− x

a

)a−1

. (32)

Moreover,

f ′(φ(z)) = f ′
(

1 − x

θ

)
= ab

(
1 + b

1 − x

θ

)a−1

= ab

(
1 +

x

a− x

)a−1

= ab

(
a

a− x

)a−1

=
x

z

and, hence,

θzφ′(z) =
θzf(φ(z))

1 − zf ′(φ(z))
=

θφ(z)

1 − zf ′(φ(z))
=

1 − x

1 − z x
z

= 1.

Thus, z = z(θ) satisfies θzφ′(z) = 1. Theorem 2.2 is therefore applicable. Straightforward com-
putations show that the limiting random variable X in Theorem 2.2 has variance Var(X) =
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1 + θz2φ′′(z) = (a − x2)/(a(1 − x)2). By Theorem 2.2, the model is in the domain of attrac-
tion of the Kingman coalescent and the effective population size Ne satisfies Ne ∼ ̺N as N → ∞
with ̺ = 1/Var(X) = a(1 − x)2/(a − x2) ∈ (0, 1). Note that the asymptotics (21) holds, where
a(θ) = eθφ(z)/z = e1−x/z and

bkl(θ) =
zke−lθφ(z)

√
1 + θz2φ′′(z)

= zke−l(1−x)

√
a(1 − x)2

a− x2

with x = x(θ) and z = z(θ) defined in (31) and (32). At first glance the solution x(θ) of the quadratic
equation θx = b(1−x)(a−x) seems to come ‘from nowhere’. In the following an intuitive argument
is provided showing how x(θ) comes into play. It is known [1, Eq. (51)] that σn(θ) =

∑n
j=1B(n, j)θj

with

B(n, j) =
(n− 1)!

(j − 1)!

(
an

n− j

)
bn−j . (33)

The fraction
B(n, n− j + 1)(nθ)n−j+1

B(n, n− j)(nθ)n−j
=

nθj

(n− j)(an− j + 1)b
is equal to 1 for j = jn with

jn :=
n(θ + b+ ab) + b−

√
(n(θ + b+ ab) + b)2 − 4b(bn+ abn2)

2b

∼ n
θ + b+ ab−

√
(θ + b+ ab)2 − 4ab2

2b
= nx(θ). (34)

Intuitively, when n is large, the contribution to the sum σn(nθ) =
∑n−1

j=0 B(n, n − j)(nθ)n−j is
essentially entirely originated from indices j having the property that j/n belongs to a (small)
neighborhood of x(θ). The choice of the neighborhood is rather unimportant. It is hence not sur-
prising that x(θ) plays a crucial role in finding the asymptotics of σn(nθ). Since the Bell numbers
(33) are known explicitly, one may carry out the Laplace method in detail leading to an alternative
proof of (21). We leave the details to the reader.

Example 4.5 Suppose that φm = 1 for all m ∈ N or, equivalently, that φ(z) = ez −1, z ∈ C. Then
(see, for example, Comtet [5, Section 3.3, p. 135, Theorem B]) σn(θ) =

∑n
k=1 S(n, k)θk, n ∈ N,

θ ∈ R, where the S(n, k) denote the Stirling numbers of the second kind. In this case the solution
z = z(θ) of the equation 1 = θzφ′(z) = θzez cannot be expressed in closed form anymore. By
Theorem 2.2, µN,1 → X in distribution, where X has distribution (15), and the model is in the
domain of attraction of the Kingman coalescent. The effective population size Ne satisfies Ne ∼ ̺N
with ̺ := 1/(1 + θz2φ′′(z)) = 1/(1 + θz2ez) = 1/(1 + z) < 1.

For two further examples where Theorem 2.2 is applicable we refer the reader to [10, Examples 1
and 2]. All examples considered so far satisfy φ′(r−) = ∞, which implies that for all θ ∈ (0,∞)
the equation θzφ′(z) = 1 has a unique real solution z = z(θ) ∈ (0, r). Let us now study examples
satisfying φ′(r−) <∞.

Example 4.6 (Polylog model) Fix α ∈ (0,∞) and suppose that φ is the polylog function, i.e.
φ(z) :=

∑∞
m=1m

−αzm, |z| < 1. For α = 1 the polylog model coincides with the Dirichlet model
(Example 4.2 with φ(z) = − log(1− z)). For α→ 0 we are back in Example 4.3 whereas for α→ ∞
we approach the Wright–Fisher model (Example 4.1).
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For non-integer parameter α ∈ (0,∞) \N, the first ⌊α⌋− 1 derivatives of the polylog function φ are
finite and φ has asymptotic expansion around z = 1 of the form

φ(z) =

⌊α⌋−1∑

j=0

φ(j)(1−)

j!
(z − 1)j + Γ(1 − α)(1 − z)α−1 +O((1 − z)⌊α⌋), z → 1, (35)

whereas for integer α ∈ N the expansion has the form (see also [7, p. 411])

φ(z) =
α−2∑

j=0

φ(j)(1−)

j!
(z − 1)j +

(−1)α

(α− 1)!
(1 − z)α−1 log(1 − z) +O((1 − z)α−1), z → 1. (36)

In the following it is verified that, for all α, θ ∈ (0,∞), the distribution (16) satisfies

P(X = k) =
σk(θ)

k!
exp(−θφ(1−)) ∼ θ

kα
, k → ∞. (37)

Assume first that 2 < α < 3 . Then, by (35), φ(z) = a+ b(z− 1)+Γ(1−α)(1− z)α−1 +O((1− z)2)
as z → 1 with a := φ(1−) = ζ(α) and b := φ′(1−) = ζ(α − 1), where ζ denotes the Riemann zeta
function. Thus,

Φθ(z) := exp(θφ(z)) = A+B(z − 1) + C(1 − z)α−1 +O((1 − z)2), z → 1,

where A := eθa, B := θbA and C := θΓ(1 − α)A. Using

[zk](1 − z)α−1 =

(
α− 1

k

)
(−1)k =

Γ(k − α+ 1)

Γ(1 − α) k!
∼ 1

Γ(1 − α)kα
, k → ∞,

it follows that

P(X = k) = exp(−θφ(1−))
σk(θ)

k!
=

1

A
[zk]Φθ(z) ∼ C

A
[zk](1 − z)α−1 ∼ θ

kα
, k → ∞,

and (37) is established for 2 < α < 3. For arbitrary non-integer α ∈ (0,∞) (37) follows from (35)
similarly as shown above for 2 < α < 3. For integer α ∈ N (37) follows from (36) and from [7,
p. 387, Eq. (24)]. Thus, (37) holds for arbitrary α ∈ (0,∞).
We now turn to the asymptotic behavior of the model as N → ∞. If α ≤ 2, then φ′(1−) = ∞ and
Theorem 2.2 is applicable for all θ ∈ (0,∞), so the associated symmetric compound Poisson model
is in the domain of attraction of the Kingman coalescent. There seems to be no closed expression
available for the solution z = z(θ) of the equation θzφ′(z) = 1. The case α = 2 is a nice exception
where it is easily seen that z(θ) = 1 − e−1/θ, θ ∈ (0,∞).
Assume now that α > 2. Then φ′(1−) = ζ(α − 1) < ∞. In this case the equation θzφ′(z) = 1
admits a solution z = z(θ) ∈ (0, 1) if and only if θ > θc with critical value θc := 1/φ′(1−) < 1.
Thus, Theorem 2.2 is not applicable for θ ≤ θc. Note that φ′′(1−) = ∞ for α ≤ 3 and φ′′(1−) =
ζ(α− 2) − ζ(α− 1) <∞ for α > 3.
If θ = θc (critical case), then by Theorem 2.3, the model is still in the domain of attraction of
the Kingman coalescent and, by Theorem 2.4 (part c) applied with α replaced by α − 1, so with
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constants κ := Γ(1 − α) and c := θc, the coalescence probability cN satisfies

cN ∼






Var(X)/N if α ∈ (3,∞),
θc

2

logN

N
=

1

2ζ(2)

logN

N
=

3

π2

logN

N
if α = 3,

θc

∫ ∞
0
x2−αg(−x) dx
g(0)

N2(2−α)/(α−1) if α ∈ (2, 3),

where, in the first case α ∈ (3,∞), Var(X) = 1 + θcφ
′′(1−) = 1 + φ′′(1−)/φ′(1−) = 1 + (ζ(α− 2)−

ζ(α−1))/ζ(α−1) = ζ(α−2)/ζ(α−1) ∈ (1,∞) and, in the third case α ∈ (2, 3), g denotes the density
of an (α − 1)-stable random variable with characteristic function t 7→ exp(θcΓ(1 − α)(−it)α−1),
t ∈ R. Finally, if 0 < θ < θc (subcritical case), then, by Theorem 2.5, the model is in the domain of
attraction of a discrete-time Λ-coalescent with Λ := u2δu and u := 1 − θφ′(1−) = 1 − θζ(α − 1) ∈
(0, 1).

The following example is a slight modification of the polylog model. In comparison to the polylog
model it has the advantage that for integer parameter α explicit expressions for the power series φ
are available.

Example 4.7 (Modified polylog model) As in the polylog model, fix α ∈ (0,∞), but suppose
that φ(z) =

∑∞
m=1 Γ(m)zm/Γ(m + α), |z| < 1. It does not come as a surprise that this model

behaves very similar as the polylog model. We therefore leave the details to the reader and provide
more information exemplary only for α = 3, in which case the explicit formula

φ(z) =
∞∑

m=1

zm

m(m+ 1)(m+ 2)
=

2(1 − z)2(− log(1 − z)) − 2z + 3z2

4z2
, |z| < 1,

is available. We have

φ′(z) =
∞∑

m=1

zm−1

(m+ 1)(m+ 2)
=

2z − z2 − 2(1 − z)(− log(1 − z))

2z3
, |z| < 1

and

φ′′(z) =
∞∑

m=2

(m− 1)zm−2

(m+ 1)(m+ 2)
=

z2 − 6z + 2(3 − 2z)(− log(1 − z))

2z4
, |z| < 1.

Note that φ(1−) = 1/4, φ′(1−) = 1/2, φ′′(1−) = ∞,

φ(z) =
1

4
+

1

2
(z − 1) − 1

2
(1 − z)2 log(1 − z) +O((1 − z)2), z → 1,

and, for θ ∈ (0,∞),

Φθ(z) := exp(θφ(z)) = A+B(z − 1) − C(1 − z)2 log(1 − z) +O((1 − z)2), z → 1,

where A := exp(θφ(1−)) = exp(θ/4), B := C := θA/2. From (1 − z)2(− log(1 − z)) = (1 − 2z +
z2)

∑∞
k=1 z

k/k = z−(3/2)z2+
∑∞

k=3 2/(k(k−1)(k−2))zk it follows that [zk](1−z)2(− log(1−z)) =
2/(k(k − 1)(k − 2)) for all k ≥ 3 and, hence, [zk](1 − z)2(− log(1 − z)) ∼ 2/k3 as k → ∞. Thus,

P(X = k) := exp(−θφ(1−))
σk(θ)

k!
=

1

A
[zk]Φθ(z) =

C

A
[zk](1− z)2(− log(1− z)) ∼ 2C

Ak3
=

θ

k3

22



as k → ∞. If θ > 1/φ′(1−) = 2 (supercritical case), then, by Theorem 2.2, the associated compound
Poisson model is in the domain of attraction of the Kingman coalescent and the coalescence proba-
bility cN satisfies limN→∞NcN = 1+ θz2φ′′(z), where z is the solution of the equation θzφ′(z) = 1
in the interval (0, 1).
If θ = 2 (critical case), then, by Theorem 2.3, the compound Poisson model is in the domain of
attraction of the Kingman coalescent and, by (17), applied with constant c := θ = 2, the coalescence
probability satisfies cN ∼ (logN)/N as N → ∞.
If θ ∈ (0, 2) (subcritical case), then, by Theorem 2.5, the model is in the domain of attraction of a
discrete-time Λ-coalescent with Λ(du) := u2δu and u := 1 − θφ′(1−) = 1 − θ/2 ∈ (0, 1).

We provide another example satisfying φ′(r−) <∞ and φ′′(r−) = ∞.

Example 4.8 (Lamperti model) Fix α ∈ (1, 2) and a ∈ (α,∞) and assume that φ(z) = az −
1 + (1 − z)α. Note that φ1 = a − α > 0 and φm = (−1)m(α)m > 0 for m ∈ {2, 3, . . .}. The series
φ has radius of convergence r = 1 with φ(1−) = a − 1 > 0. Moreover, φ′(z) = a − α(1 − z)α−1,
φ′′(z) = α(α− 1)(1 − z)α−2, and φ′(1−) = a ∈ (1,∞) and φ′′(1−) = ∞. It is readily checked that

Φθ(z) := exp(θφ(z)) = A+B(z − 1) + C(1 − z)α +O((1 − z)2), z → 1,

where A := Φθ(1−) = exp(θ(a− 1)), B := Φ′
θ(1−) = θaA and C := θA. Thus,

P(X = k) := exp(−θφ(1−))
σk(θ)

k!
=

1

A
[zk]Φθ(z) ∼ C

A
[zk](1 − z)α ∼ c

kα+1

as k → ∞, where c := C/(AΓ(−α)) = θ/Γ(−α). If θa > 1 (supercritical case), then, by Theorem
2.2, the associated symmetric compound Poisson population model is in the domain of attraction
of the Kingman coalescent and the coalescence probability cN satisfies cN ∼ (1 + θz2φ′′(z))/N as
N → ∞, where z = z(θ) is the solution of the equation θzφ′(z) = 1 in the interval (0, 1).
If θa = 1 (critical case) then, by Theorem 2.3, the model is still in the domain of attraction of the
Kingman coalescent, and, by Theorem 2.4 c), applied with constants κ = 1 and c = θ/Γ(−α) =
1/(aΓ(−α)), the coalescence probability cN satisfies

cN ∼ 1

aΓ(−α)

∫ ∞
0
x1−α g(−x) dx

g(0)
N2(1−α)/α, N → ∞,

with the density g as defined in Theorem 2.4 c).
If 0 < θa < 1 (subcritical case), then, by Theorem 2.5, the model is in the domain of attraction of
a discrete-time Λ-coalescent with Λ := u2δu and u := 1 − θφ′(1−) = 1 − θa ∈ (0, 1).

The following last example has much in common with the polylog model (Example 4.6).

Example 4.9 (exp polylog model) Fix α ∈ (0,∞), let Z(z) :=
∑∞

k=0 z
k/(k+1)α be the polylog

function divided by z and define φ(z) := log(Z(z)), |z| < 1. Note that σk(θ)/k! = [zk] exp(θφ(z)) =
[zk](Z(z))θ ≥ θ/(k + 1)α for all k ∈ N and all θ ∈ (0,∞). Therefore φk = limθ→0 σk(θ)/θ ≥
k!/(k + 1)α > 0 for all k ∈ N, so φ is a power series of the form φ(z) =

∑∞
k=1 φkz

k/k! with strictly
positive coefficients φk > 0, k ∈ N. For α = 1 we have φ(z) = log(− log(1− z)/z) and for α→ 0 we
approach the Dirichlet model (Example 4.2) with φ(z) = − log(1 − z), |z| < 1.
For 2 < α < 3 we have

Z(z) = ζ(α) + ζ(α− 1)(z − 1) + Γ(1 − α)(1 − z)α−1 +O((1 − z)2), z → 1.
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Taking the θ-power yields

(Z(z))θ = (ζ(α))θ + θ(ζ(α))θ−1ζ(α− 1)(z − 1) + θ(ζ(α))θ−1Γ(1 − α)(1 − z)α−1 +O((1 − z)2)

as z → 1. Using standard singularity analysis (see Flajolet and Sedgewick [7, p. 385, Theorem VI.2]
it follows that

P(X = k) := exp(−θφ(1−))
σk(θ)

k!
= (ζ(α))−θ[zk] exp(θφ(z)) = (ζ(α))−θ[zk](Z(z))θ ∼ θ

ζ(α)kα

as k → ∞. The same asymptotic result for P(X = k) is checked similarly for arbitrary α ∈ (0,∞).
Let us now discuss the asymptotic behavior of the model. If α ≤ 2, then φ′(1−) = ∞, so Theorem
2.2 is applicable for all θ ∈ (0,∞), which implies that the associated compound Poisson model is
in the domain of attraction of the Kingman coalescent.
Assume now that α > 2. Then φ′(1−) = ζ(α − 1)/ζ(α) − 1 ∈ (0,∞). In this case the equation
θzφ′(z) = 1 admits a solution z = z(θ) ∈ (0, 1) if and only if θ > θc with critical value θc :=
1/φ′(1−) ∈ (0,∞). Thus, Theorem 2.2 is not applicable for θ ≤ θc.
If θ = θc (critical case), then, by Theorem 2.3, the model is still in the domain of attraction of
the Kingman coalescent and, by Theorem 2.4, part c) applied with α replaced by α − 1, so with
constants κ := Γ(1 − α)/ζ(α) and c := θc/ζ(α) = 1/(φ′(1−)ζ(α)) = 1/(ζ(α − 1) − ζ(α)), the
coalescence probability cN satisfies

cN ∼






1

ζ(α− 1) − ζ(α)

∫ ∞
0
x2−αg(−x) dx
g(0)

N2(2−α)/(α−1) if α ∈ (2, 3),

1

2(ζ(2) − ζ(3))

logN

N
≈ 1.128981

logN

N
if α = 3,

Var(X)/N if α ∈ (3,∞),

where, in the first case α ∈ (2, 3), g denotes the density of an (α− 1)-stable random variable with
characteristic function t 7→ exp(θcΓ(1 − α)(−it)α−1), t ∈ R, and in the third case α ∈ (3,∞),

Var(X) = 1 + θcφ
′′(1−) = 1 +

φ′′(1−)

φ′(1−)
=

ζ(α)ζ(α− 2) − (ζ(α− 1))2

ζ(α)(ζ(α− 1) − ζ(α))
,

since Z ′′(1−) = ζ(α− 2) − 3ζ(α− 1) + 2ζ(α) and, hence,

φ′′(1−) =
Z ′′(1−)Z(1−) − (Z ′(1−))2

(Z(1−))2
=

ζ(α)ζ(α− 2) − ζ(α)ζ(α− 1) + (ζ(α))2 − (ζ(α− 1))2

(ζ(α))2
.

If 0 < θ < θc (subcritical case), then, by Theorem 2.5, the associated symmetric compound Poisson
model is in the domain of attraction of a discrete-time Λ-coalescent with Λ := u2δu and u :=
1 − θφ′(1−) = 1 − θ(ζ(α− 1)/ζ(α) − 1) ∈ (0, 1).

5 Appendix

The following simple but useful lemma is needed in the proof of Theorem 2.2.

Lemma 5.1 Let a1, a2, . . . ∈ [0,∞) such that
∑∞

m=1 amq
m < ∞ for some q ∈ (1,∞). Define

f(t) :=
∑∞

m=1 am cos(mt), t ∈ R. If a1 > 0 then there exists ε0 > 0 such that supε<|t|≤π f(t) ≤ f(ε)
for all ε ∈ [0, ε0].
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Proof. Since f(t) = f(−t) for t ∈ R it suffices to find some ε0 > 0 such that supε<t≤π f(t) ≤
f(ε) for all ε ∈ [0, ε0]. Obviously, f(0) − f(t) =

∑∞
m=1 am(1 − cos(mt)) ≥ a1(1 − cos t) > 0

for t ∈ (0, 2π), so f(t) < f(0) for t ∈ (0, 2π). For arbitrary but fixed t ∈ (−∞, log q), the map
(m, k) 7→ am(−1)k(mt)2k/(2k)! is integrable with respect to the counting measure εN ⊗ εN0

on
N × N0, since

∞∑

m=1

∞∑

k=0

∣∣∣∣am(−1)k (mt)2k

(2k)!

∣∣∣∣ ≤
∞∑

m=1

am

∞∑

l=0

(mt)l

l!
=

∞∑

m=1

ame
mt ≤

∞∑

m=1

amq
m < ∞

by assumption. Thus, by Fubini’s theorem,

f(t) =
∞∑

m=1

am cos(mt) =
∞∑

m=1

am

∞∑

k=0

(−1)k (mt)2k

(2k)!
=

∞∑

k=0

(−1)k t2k

(2k)!

∞∑

m=1

m2kam.

so on the interval (−∞, log q) the function f is a power series in t. Together with f ′(0) = 0 and
f ′′(0) = −∑∞

m=1m
2am < 0 it follows that there exists a constant δ ∈ (0, π) such that f is non-

increasing on [0, δ]. The continuous function f takes its supremum on the compact set [δ, π], so
supt∈[δ,π] f(t) = f(t0) for some t0 ∈ [δ, π]. Now choose ε0 ∈ (0, δ) sufficiently small such that
f(ε0) > f(t0), which is possible since f is continuous and f(0) > f(t0). Now let ε ∈ [0, ε0] arbitrary
but fixed. For t ∈ (ε, δ] we obtain f(t) ≤ f(ε), since f is non-increasing on [ε, δ]. For t ∈ [δ, π] we
have f(t) ≤ f(t0) < f(ε0) ≤ f(ε), since f is non-increasing on [ε, ε0]. Thus supε<t≤π f(t) ≤ f(ε).2

In the following we provide some results for certain α-stable distributions, which, to the best of the
authors knowledge, are not stated or at least quite hard to find in the literature. Our first result
concerns half-sided moments.

Lemma 5.2 Fix d > 0 and 1 < α < 2. Let S be an α-stable random variable with characteristic
function t 7→ exp(d(−it)α), t ∈ R, and let g denote the density of S. Then, for all β ∈ (−1, 0),

E((−S)β1{S≤0}) =

∫ ∞

0

xβg(−x) dx = dβ/α Γ(β)

Γ(β/α)
.

Moreover, P(S ≤ 0) = 1/α and g(0) = d−1/α|Γ(−1/α)|−1.

Proof. Since S has the same distribution as d1/αS0, where S0 is a random variable with character-
istic function t 7→ exp((−it)α), t ∈ R, we may assume without loss of generality that d = 1. By the
Fourier inversion formula,

∫ ∞

0

xβg(−x) dx =

∫ ∞

0

xβ 1

2π

∫ ∞

−∞
exp(itx+ (−it)α) dt dx

=
1

2π

∫ ∞

−∞
exp((−it)α)

∫ ∞

0

xβ exp(itx) dx dt

=
Γ(β + 1)

2π

∫ ∞

−∞
exp((−it)α)(−it)−β−1 dt

=
Γ(β + 1)

2π

Γ(−β/α)

α
2 sin(−πβ/α)

=
Γ(β + 1)

αΓ(1 + β/α)
=

Γ(β)

Γ(β/α)
,
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where the second last equality follows from Euler’s reflection formula sin(πz)Γ(z) = π/Γ(1 − z),
applied to the point z := −β/α < 1/α < 1. The relation P(S ≤ 0) = 1/α follows by taking the
limit β → 0 in the second last fraction above. Similarly,

g(0) =
1

2π

∫ ∞

−∞
exp((−it)α) dt =

1

2π

Γ(1/α)

α
2 sin(π/α) =

1

αΓ(1 − 1/α)
= |Γ(−1/α)|−1.

2

Let X1, X2, . . . be independent copies of a random variable X having distribution (16). We provide a
weak limiting result for SN := X1+ · · ·+XN , N ∈ N, which holds under the asymptotic assumption
(18) on the power series φ. The result provides detailed information on the rate of convergence in
terms of the characteristic functions. As an application (see Theorem 5.4) a local limit theorem is
obtained which provides information on the convergence rate.

Lemma 5.3 Assume that θrφ′(r−) = 1 (critical case). If there exist constants α ∈ (1, 2) and
κ = κ(α) > 0 such that the power series φ of the considered compound Poisson model satisfies (18),
then (SN −N)/N1/α → S in distribution as N → ∞, where S is an α-stable random variable with
characteristic function ϕ(t) := exp(θκrα(−it)α), t ∈ R. Moreover, there exists a constant C > 0
such that the difference of the characteristic functions ϕ(SN−N)/N1/α of (SN − N)/N1/α and S
satisfies

|ϕ(SN−N)/N1/α(t) − ϕ(t)| ≤ |ϕ(t)|(eCt2N1−2/α − 1) (38)

for all N ∈ N and all t ∈ R.

Proof. (of Lemma 5.3) Let t ∈ R. By (18), the characteristic function ϕX of the random variable
X with distribution (16) satisfies

logϕX(t)

θ
= φ(reit) − φ(r−) = φ′(r−)(reit − r) + κ(r − reit)α +O((r − reit)2)

= rφ′(r−)(eit − 1) + κrα(1 − eit)α +O(r2(1 − eit)2)

= rφ′(r−)(it+O(t2)) + κrα(−it+O(t2)) +O(t2)

= rφ′(r−)it+ κrα(−it)α +O(t2), t→ 0.

For convenience, define BN := N1/α for all N ∈ N. The characteristic function of (SN − N)/BN

satisfies E(eit(SN−N)/BN ) = e−itN/BN (ϕX(t/BN ))N and, therefore,

log E(eit(SN−N)/BN ) = −itN/BN +N logϕX(t/BN )

= −itN/BN +Nθ
(
rφ′(r−)it/BN + κrα(−it/BN )α +O((t/BN )2)

)

= −itN/BN

(
1 − θrφ′(r−)

)
+ θκrα(−it)α +O(t2N/B2

N )

= θκrα(−it)α +O(t2N/B2
N ) = logϕ(t) +O(t2N/B2

N ).

Note that we have used that θrφ′(r−) = 1 (critical case). Thus, for all t ∈ R,

E(eit(SN−N)/BN ) = elog ϕ(t)+O(t2N/B2
N ) = ϕ(t)eO(t2N/B2

N ),

where the constant of the O-term so far does not depend on t and N , which implies that (38) holds.
For arbitrary but fixed t we in particular obtain

E(eit(SN−N)/BN ) = ϕ(t)(1 +O(N/B2
N ) = ϕ(t) +O(N/B2

N ).
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Note that N/B2
N = N1−2/α → 0 as N → ∞. By the continuity theorem it follows that (SN −

N)/N1/α → S in distribution, where S has characteristic function ϕ. 2

We are now able to verify a local limit theorem which provides information on the rate of conver-
gence.

Theorem 5.4 (strong local limit theorem) Assume that the conditions of Lemma 5.3 are sat-
isfied. Then, the local limit theorem

sup
k∈Z

|dN (k)| = O(N1−2/α)

holds, where dN (k) := |N1/α
P(SN = k)−g((k−N)/N1/α)| and g denotes the density of the limiting

α-stable random variable S defined in Lemma 5.3.

Proof. (of Theorem 5.4) We modify the proof of the local limit theorem for lattice distributions
of Ibragimov and Linnik [12, Theorem 4.2.1]. By the Fourier inversion formula, S has density
g(x) = (2π)−1

∫ ∞
−∞ e−itx ϕ(t) dt, x ∈ R. As in the proof of Lemma 5.3 define BN := N1/α, N ∈ N.

The discrete inversion formula ensures that the integer valued random variable SN := X1+ · · ·+XN

has distribution

P (SN = k) =
1

2π

∫ π

−π

e−iukϕSN
(u) du =

1

2π

∫ π

−π

e−iuk (ϕX(u))N du

=
1

2πBN

∫ πBN

−πBN

e−itk/BN (ϕX(t/BN ))N dt

=
1

2πBN

∫ πBN

−πBN

e−it(x+N/BN ) (ϕX(t/BN ))N dt, k ∈ Z,

where we have used the substitution u = t/BN and where we use the notation x := (k −N)/BN .
Thus,

dN (k) = |BNP(SN = k) − g(x)|

=
1

2π

∣∣∣
∫ πBN

−πBN

e−itxe−itN/BN (ϕX(t/BN ))N −
∫ ∞

−∞
e−itxϕ(t) dt

∣∣∣

≤
∫ πBN

−πBN

|e−itN/BN (ϕX(t/BN ))N − ϕ(t)| dt+

∫

|t|>πBN

|ϕ(t)| dt

≤ I1 + I2 + I3 + I4,

with

I1 :=

∫ kN

−kN

|e−itN/BN (ϕX(t/BN ))N − ϕ(t)| dt,

I2 :=

∫

kN≤|t|≤εBN

|ϕX(t/BN )|N dt,

I3 :=

∫

εBN≤|t|≤πBN

|ϕX(t/BN )|N dt, and

I4 :=

∫

|t|>kN

|ϕ(t)| dt,
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where we choose kN := BN/
√
N = N1/α−1/2 and where ε ∈ (0, π) is a constant, to be determined.

Note that the integrals Ij , j ∈ {1, 2, 3, 4}, coincide with those on p. 122 of [12], except for the crucial
modification that the constant A on p. 122 in [12] is replaced by kN satisfying kN ≥ 1 for all N ∈ N

and kN → ∞ as N → ∞. We now turn to the estimation of these integrals and will show that
I1 = O(N1−2/α) and that I2, I3 and I4 are smaller than O(N1−2/α).

(1) By (38) there exists a constant C > 0 (not depending on t and N) such that

|e−itN/BN (ϕX(t/BN ))N − ϕ(t)| ≤ |ϕ(t)|(eCt2N/B2
N − 1), N ∈ N, t ∈ R.

Applying the inequality ex − 1 ≤ xex, x ∈ R, to the point x := Ct2N/B2
N yields

|e−itN/BN (ϕX(t/BN ))N − ϕ(t)| ≤ |ϕ(t)|Ct2 N
B2

N

eCt2N/B2
N , N ∈ N, t ∈ R.

For all |t| ≤ kN we have Ct2N/B2
N ≤ C and it follows that

|e−itN/BN (ϕX(t/BN ))N − ϕ(t)| ≤ CeC N

B2
N

t2|ϕ(t)|, N ∈ N, |t| ≤ kN .

Since, by (26),
∫ ∞
−∞ t2|ϕ(t)| dt <∞, it follows for all N ∈ N that I1 ≤ CeC(N/B2

N )
∫ ∞
−∞ t2|ϕ(t)| dt =

O(N1−2/α) as required.

(2) As in the proof of Theorem 4.2.1 of [12] it follows that, for any δ ∈ (0, α), there exist constants
c(δ) ∈ (0,∞) and ε(δ) > 0 not depending on N and a constant N0(δ) ∈ N such that |ϕX(t/BN )|N ≤
e−c(δ)|t|δ for all |t| ≤ ε(δ)BN and all N ≥ N0(δ). Thus, choosing δ := α/2 and using the notation
c := c(α/2) and ε := ε(α/2), it follows for all N ≥ N0(α/2) that

I2 ≤
∫

kN≤|t|≤εBN

e−c|t|α/2

dt ≤ 2

∫ ∞

kN

e−ctα/2

dt ≤ 2

∫ ∞

kN

e−c
√

tdt ∼ 4

c

√
kNe

−c
√

kN ,

a quantity being smaller than O(Nβ) for any β < 0, so in particular smaller than O(N1−2/α).

(3) From [12, Theorem 1.4.2] it follows that there exists a constant q ∈ (0, 1) such that |ϕX(u)| ≤ q
for all u ∈ [ε, π]. Thus, I3 = BN

∫
ε≤|u|≤π

|ϕX(u)|N du ≤ 2πBNq
N , a quantity being smaller than

O(Nβ) for any β < 0.

(4) In order to estimate the integral I4 define c := θκrα ∈ (0,∞) and D := −c cos πα
2 ∈ (0,∞) for

convenience. We have

I4 =

∫

|t|>kN

ecRe((−it)α)dt =

∫

|t|>kN

ec|t|α cos πα
2 dt = 2

∫ ∞

kN

e−Dtα

dt.

Noting that kN ≥ 1 for all N ∈ N and that α > 1 it follows that I4 ≤ 2
∫ ∞

kN
e−Dtdt = (2/D)e−DkN ,

again being smaller than O(Nβ) for any β < 0. 2
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