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Compound Poisson population models are particular conditional branching process models. A formula for the transition probabilities of the backward process for general compound Poisson models is verified. Symmetric compound Poisson models are defined in terms of a parameter θ ∈ (0, ∞) and a power series φ with positive radius r of convergence. It is shown that the asymptotic behavior of symmetric compound Poisson models is mainly determined by the characteristic value θrφ ′ (r-). If θrφ ′ (r-) ≥ 1, then the model is in the domain of attraction of the Kingman coalescent. If θrφ ′ (r-) < 1, then under mild regularity conditions a condensation phenomenon occurs which forces the model to be in the domain of attraction of a discrete-time Λ-coalescent. The proofs are partly based on the analytic saddle point method. They draw heavily from local limit theorems and from results of S. Janson on simply generated trees, conditioned Galton-Watson trees, random allocations and condensation. Several examples of compound Poisson models are provided and analyzed.

Introduction

Conditional branching process models, introduced by Karlin and McGregor [START_REF] Karlin | Direct product branching processes and related Markov chains[END_REF][START_REF] Karlin | Direct product branching processes and related Markov chains. I. Calculations of rates of approach to homozygosity[END_REF], are population models with fixed population size N ∈ N := {1, 2, . . .} and non-overlapping generations. They are defined in terms of a sequence (ξ n ) n∈N of independent non-negative integer-valued random variables satisfying P(ξ 1 + • • • + ξ N = N ) > 0. If, for i ∈ {1, . . . , N }, µ N,i denotes the number of offspring of the ith individual alive in some fixed generation, then the random variables µ N,1 , . . . , µ N,N have (by definition) joint distribution

P(µ N,1 = j 1 , . . . , µ N,N = j N ) = P(ξ 1 = j 1 ) • • • P(ξ N = j N ) P(ξ 1 + • • • + ξ N = N ) , j 1 
, . . . , j N ∈ N 0 := {0, 1, . . .} with j 1 + • • • + j N = N . For convenience we will often drop the index N and simply write µ i instead of µ N,i . For some more information on conditional branching process models we refer the reader to [9, Section 3] and [START_REF] Huillet | Correction on 'Population genetics models with skewed fertilities: a forward and backward analysis[END_REF].

We now turn to the definition of compound Poisson population models. Let θ 1 , θ 2 , . . . be strictly positive real numbers and let φ(z) = ∞ m=1 φ m z m /m!, |z| < r, be a power series with radius r ∈ (0, ∞] of convergence and with non-negative coefficients φ m ≥ 0, m ∈ N. It is also assumed that φ 1 > 0. Compound Poisson models are particular conditional branching process models where each random variable ξ n has probability generating function (pgf)

f n (x) := E(x ξn ) = exp(-θ n (φ(z) -φ(zx))), |x| ≤ 1. (1) 
In [START_REF] Berestycki | Gibbs distributions for random partitions generated by a fragmentation process[END_REF], z is viewed as a fixed parameter satisfying 0 < z < r. If M n is a random variable having a Poisson distribution with parameter θ n φ(z) and if X 1 , X 2 , . . . are independent random variables and independent of M n each with pgf x → φ(zx)/φ(z), |x| ≤ 1, then Mn j=1 X j has pgf [START_REF] Berestycki | Gibbs distributions for random partitions generated by a fragmentation process[END_REF]. This subclass of conditional branching process models is therefore called the compound Poisson class. In order to analyze compound Poisson models it is useful to view z as a variable and to introduce, for θ ∈ [0, ∞), the Taylor expansion exp(θφ(z)) = ∞ k=0 σ k (θ)z k /k!, |z| < r. The coefficients σ k (θ) depend on (φ m ) m∈N and they satisfy the recursion

σ 0 (θ) = 1 and σ k+1 (θ) = θ k l=0 k l φ k-l+1 σ l (θ), k ∈ N 0 , θ ∈ [0, ∞). (2) 
The coefficients σ k (θ) are mainly introduced, since, by [START_REF] Berestycki | Gibbs distributions for random partitions generated by a fragmentation process[END_REF], the distribution of ξ n , n ∈ N, satisfies

P(ξ n = k) = σ k (θ n ) k! z k exp(-θ n φ(z)), k ∈ N 0 . (3) 
Note furthermore that ξ 1 + • • • + ξ n , n ∈ N, has distribution

P(ξ 1 + • • • + ξ n = k) = σ k (Θ n ) k! z k exp(-Θ n φ(z)), k ∈ N 0 ,
where Θ n := θ 1 + • • • + θ n . From (2) it follows by induction on k ∈ N that φ k = lim θ→0 σ k (θ)/θ for all k ∈ N, so the coefficients φ k , k ∈ N, of the power series φ can be recovered from the coefficients σ k (θ), k ∈ N 0 , θ ∈ (0, ∞). From φ 1 > 0 it follows that σ k (θ) is a polynomial in θ of degree k. In the literature (see, for example, [START_REF] Berestycki | Gibbs distributions for random partitions generated by a fragmentation process[END_REF] or [START_REF] Charalambides | An asymptotic formula for the exponential polynomials and a central limit theorem for their coefficients[END_REF]) the σ k (θ) are called the exponential or Bell polynomials. We have σ 1 (θ) = θφ 1 , σ 2 (θ) = θφ 2 + θ 2 φ 2 1 , σ 3 (θ) = θφ 3 + 3θ 2 φ 1 φ 2 + θ 3 φ 3 1 , σ 4 (θ) = θφ 4 + θ 2 (4φ 1 φ 3 + 3φ 2 2 ) + 6θ 3 φ 2 1 φ 2 + θ 4 φ 4 1 , and so on. The coefficients B kl (φ 1 , φ 2 , . . .), k ∈ N 0 , l ∈ {0, . . . , k}, of the polynomials σ k (θ) = k l=0 B kl (φ 1 , φ 2 , . . .) θ l , k ∈ N 0 , are called the Bell coefficients. In the following, for x ∈ R and k ∈ N 0 , the notation (x) k := x(x -1) • • • (x -k + 1) and [x] k := x(x + 1) • • • (x + k -1) is used for the descending and ascending factorials respectively, with the convention that (x) 0 := 1 and [x] 0 := 1. It is readily checked that ξ n has descending factorial moments 2 and so on. The descending factorial moments therefore satisfy the recursion

E((ξ n ) k ) = f (k) n (1) = z k k l=0 B kl (φ ′ (z), φ ′′ (z), . . .) θ l n , n ∈ N, k ∈ N 0 , i.e. E(ξ n ) = θ n zφ ′ (z), E((ξ n ) 2 ) = θ n z 2 φ ′′ (z) + θ 2 n z 2 (φ ′ (z))
E((ξ n ) k+1 ) = θ n k l=0 k l z k-l+1 φ (k-l+1) (z)E((ξ n ) l ), n ∈ N, k ∈ N 0 .
It is known (see, for example, [9, p. 535]) that µ = (µ 1 , . . . , µ N ) has distribution

P(µ = j) = N ! σ N (Θ N ) N n=1 σ jn (θ n ) j n ! , j = (j 1 , . . . , j N ) ∈ ∆(N ), (4) 
where Θ N := θ 1 + • • • + θ N and ∆(N ) denotes the discrete N -simplex consisting of all j = (j 1 , . . . , j N ) ∈ N N 0 satisfying j 1 + • • • + j N = N . Note that the distribution of µ is not necessarily exchangeable. Moreover (see, for example, [10, Eq. ( 4)]), µ has joint factorial moments

E((µ 1 ) k1 • • • (µ N ) k N ) = N ! σ N (Θ N ) j 1 ≥k 1 ,...,j N ≥k N j 1 +•••+j N =N σ j1 (θ 1 ) • • • σ j N (θ N ) (j 1 -k 1 )! • • • (j N -k N )! , (5) 
N ∈ N, k 1 , . . . , k N ∈ N 0 , θ 1 , . . . , θ N ∈ (0, ∞). For some compound Poisson models, namely for skewed Wright-Fisher models and for skewed Dirichlet models, the alternative and simpler formula (see, for example, [10, Lemma 2.1] and the remarks thereafter)

E((µ 1 ) k1 • • • (µ N ) k N ) = (N ) k σ k1 (θ 1 ) • • • σ k N (θ N ) σ k (θ 1 + • • • + θ N ) (6) 
holds for all k 1 , . . . , k N ∈ N 0 and all θ 1 , . . . , θ N ∈ (0, ∞), where k

:= k 1 + • • • + k N .
For some more information on compound Poisson models we refer the reader to [START_REF] Möhle | Coalescent processes derived from some compound Poisson population models[END_REF].

The article is organized as follows. The main results are presented in the following Section 2. Proofs are provided in Section 3. Examples of compound Poisson models are studied in Section 4. One purpose of this article is to provide proofs of the results stated without proof in [START_REF] Huillet | Correction on 'Population genetics models with skewed fertilities: a forward and backward analysis[END_REF].

Results

The following Proposition 2.1, stated without proof in [10, Proposition 2.2], provides expressions for the transition probabilities P i,j of the backward process X for an arbitrary compound Poisson model. The proof of Proposition 2.1 is provided in Section 3.

Proposition 2.1 If, for each n ∈ N, the random variable ξ n has a pgf of the form (1), then the backward process X of the associated compound Poisson model has transition probabilities

P i,j = 1 N i 1≤n1<•••<nj ≤N k 1 ,...,k j ∈N 0 k:=k 1 +•••+k j ≤N (N ) k k 1 ! • • • k j ! • • ( j i=1 σ ki (θ ni )) σ N -k (Θ N - j i=1 θ ni ) σ N (Θ N ) l 1 ,...,l j ∈N l 1 +•••+l j =i k 1 l 1 • • • k j l j , i, j ∈ S, (7) 
with the convention that P i,0 = δ i0 , i ∈ S. Here Θ ), are recursively defined via (2). In particular,

N := θ 1 + • • • + θ N , S := {0, . . . , N }, and the coefficients σ k (θ), k ∈ N 0 , θ ∈ [0, ∞
P i,1 = N n=1 N k=i N -i k -i σ k (θ n ) σ N -k (Θ N -θ n ) σ N (Θ N ) , i ∈ {1, . . . , N }. ( 8 
)
Remark. Proposition 2.1 in particular yields the coalescence probability

c N := P 2,1 = N n=1 N k=2 N -2 k -2 σ k (θ n ) σ N -k (Θ N -θ n ) σ N (Θ N ) , N ≥ 2, (9) 
and the probability

d N := P 3,1 = N n=1 N k=3 N -3 k -3 σ k (θ n ) σ N -k (Θ N -θ n ) σ N (Θ N ) , N ≥ 3, (10) 
that three individuals, picked at random and without replacement from some arbitrary but fixed generation of the population, share a common parent.

In the following we focus on the unbiased (symmetric) case, when all the parameters θ n = θ are equal to some constant θ ∈ (0, ∞). In this case the distribution (4) of µ is exchangeable and ( 7) reduces to

P i,j = N j N i k 1 ,...,k j ∈N 0 k:=k 1 +•••+k j ≤N (N ) k k 1 ! • • • k j ! ( j i=1 σ ki (θ)) σ N -k ((N -j)θ) σ N (N θ) l 1 ,...,l j ∈N l 1 +•••+l j =i k 1 l 1 • • • k j l j , (11) 
i, j ∈ S, with the convention that P i,0 = δ i0 , i ∈ S. In particular,

P i,1 = N N k=i N -i k -i σ k (θ) σ N -k ((N -1)θ) σ N (N θ) , i ∈ {1, . . . , N }, (12) 
c N = N N k=2 N -2 k -2 σ k (θ) σ N -k ((N -1)θ) σ N (N θ) , N ≥ 2, (13) 
and

d N = N N k=3 N -3 k -3 σ k (θ) σ N -k ((N -1)θ) σ N (N θ) , N ≥ 3, (14) 
in agreement with (8), [START_REF] Huillet | Population genetics models with skewed fertilities: a forward and backward analysis[END_REF], and [START_REF] Huillet | Correction on 'Population genetics models with skewed fertilities: a forward and backward analysis[END_REF].

We are interested in the asymptotic behavior of symmetric compound Poisson models as N → ∞.

The following results show that the characteristic value θrφ ′ (r-) ∈ (0, ∞] is of fundamental interest in this context, where r ∈ (0, ∞] denotes the radius of convergence of φ. Theorem 2.2 below, stated in slightly different form and without proof in [10, Theorem 2.3], clarifies that many symmetric compound Poisson models are in the domain of attraction of the Kingman coalescent.

Theorem 2.2 (supercritical case) Suppose that θrφ ′ (r-) ∈ (1, ∞] such that the equation θzφ ′ (z) = 1 has a unique real solution z(θ) ∈ (0, r). Then, µ N,1 → X in distribution as N → ∞ with convergence E(µ p N,1 ) → E(X p ) as N → ∞, p ∈ (0, ∞)
, of all moments, where X is a non-negative integer-valued random variable with distribution

P(X = k) = σ k (θ) k! (z(θ)) k exp(-θφ(z(θ))), k ∈ N 0 , (15) 
and mean E(X) = 1. Moreover, in the sense of [9, Definition 2.1 (a)], the associated symmetric compound Poisson population model is in the domain of attraction of the Kingman coalescent.

The effective population size

N e := 1/c N satisfies N e ∼ ̺N as N → ∞ with ̺ := 1/Var(X) = 1/(1 + θ(z(θ)) 2 φ ′′ (z(θ))) ∈ (0, 1].

Remarks.

1. Two independent proofs of Theorem 2.2 are provided in Section 3. The first proof involves the saddle point method and the second proof is based on the local limit theorem. Both proofs differ significantly from the erroneous proof in [START_REF] Huillet | Population genetics models with skewed fertilities: a forward and backward analysis[END_REF]. To the best of the authors knowledge these proofs are the first approaches where saddle point methods or, alternatively, local limit theorems are used to establish convergence to the Kingman coalescent. The distribution of the limiting variable X coincides with the distribution (3) of ξ 1 with the parameter z in (3) replaced by z(θ). Note that X has mean E(X) = θz(θ)φ ′ (z(θ)) = 1. Thus, conditioning ξ 1 on the event that ξ 1 + • • • + ξ N = N and afterwards taking N → ∞, has altogether the effect that the distribution of ξ 1 is 'nearly' recovered. Only the information about the mean of ξ 1 is lost.

2. If φ ′ (r-) = ∞, then for all θ ∈ (0, ∞) the equation θzφ ′ (z) = 1 has a solution z(θ) ∈ (0, r). If φ ′ (r-) < ∞, then a solution z(θ) ∈ (0, r) of the equation θzφ ′ (z) = 1 exists if and only if θrφ ′ (r-) > 1. Examples satisfying φ ′ (r-) < ∞ are provided in Section 4. The solution z(θ) (if it exists) is unique since the map z → zφ ′ (z)
is strictly increasing on (0, r). Closed expressions for the solution z = z(θ) of the equation u(z) := zφ ′ (z) = 1/θ seem to be not available in general. By the inversion formula of Lagrange (see, for example, [5, Section 3.8]), for k ∈ N and x ∈ (0, ∞),

[x k ]u -1 (x) = [z k-1 ](z/u(z)) k k = [z k-1 ](1/φ ′ (z)) k k = B k-1,k (ψ 0 , ψ 1 , . . .),
where ψ n := ψ (n) (0), n ∈ N 0 , with ψ(z) := 1/φ ′ (z). Choosing x := 1/θ and noting that z(θ) = u -1 (x) yields the formal expansion

z(θ) = ∞ k=1 [z k-1 ](ψ(z)) k k θ -k = ∞ k=1 B k-1,k (ψ 0 , ψ 1 , . . .)θ -k .
Note however that, depending on φ and θ, this series may not converge, so we can only speak about a formal series here. Alternatively one may approximate the root z(θ) of the map

z → θzφ ′ (z) -1 numerically. Theorem 2.2 is not applicable if θrφ ′ (r-) ≤ 1. In this case we have φ ′ (r-) < ∞, which implies that φ(r-) < ∞, since zφ ′ (z) = ∞ m=1 φ m z m /(m -1)! ≥ ∞ m=1 φ m z m /m! = φ(z)
for all z ∈ [0, r). Moreover, from φ(r-) < ∞ it follows that r < ∞. Assume from now on that θrφ ′ (r-) ≤ 1 and introduce a non-negative integer-valued random variable X with distribution

P(X = k) = σ k (θ) k! r k exp(-θφ(r-)), k ∈ N 0 . (16) 
Note that X has pgf s → E(s X ) = exp(-θ(φ(r-) -φ((rs)-))), |s| ≤ 1, and characteristic function t → E(exp(itX)) = exp(-θ(φ(r-) -φ((re it )-))), t ∈ R. In particular, E(X) = θrφ ′ (r-) ≤ 1.

Moreover, E(X k ) < ∞ if and only if φ (k) (r-) < ∞, k ∈ N. Our second asymptotic result, Theorem 2.3 below, addresses the critical case E(X) = θrφ ′ (r-) = 1. The subcritical case E(X) < 1 is considered at the end of this section. In general c N can tend to zero very slowly. The proof of Theorem 2.3, provided in Section 3, does not provide direct information on the speed of convergence. Under additional assumptions more can be said about the asymptotics of c N . The proof of the following Theorem 2.4 draws solely but heavily from local limit theorems. For examples we refer the reader to Section 4 from Example 4.6 on.

Theorem 2.4 (critical case, speed of convergence) Assume that θrφ ′ (r-) = 1.

a) If the random variable X with distribution ( 16) satisfies E(X 2 ) < ∞ or, equivalently, if φ ′′ (r-) < ∞, then µ N,1 → X in distribution as N → ∞. Moreover, the coalescence probability c N satisfies c N ∼ Var(X)/N as N → ∞, where Var(X) = 1 + θr 2 φ ′′ (r-).

b) If there exists a constant c = c(θ) > 0 such that the distribution (16) of the random variable

X satisfies P(X = k) ∼ ck -3 as k → ∞, then µ N,1 → X in distribution as N → ∞. Moreover, the coalescence probability c N satisfies c N ∼ c 2 log N N , N → ∞. (17) 
c) If there exist constants α ∈ (1, 2) and κ = κ(α) ∈ (0, ∞) such that the power series φ of the compound Poisson model satisfies

φ(z) = φ(r-) + φ ′ (r-)(z -r) + κ(r -z) α + O((r -z) 2 ), z → r, (18) 
then the distribution (16) of the random variable X satisfies P(X = k) ∼ ck -α-1 as k → ∞ with c := θκr α /Γ(-α). Moreover, µ N,1 → X in distribution as N → ∞ and the coalescence probability c N satisfies

c N ∼ c ∞ 0 x 1-α g(-x) dx g(0) N 2(1-α)/α , N → ∞. ( 19 
)
Here g denotes the density of an α-stable random variable with characteristic function t → exp(d(-it) α ), t ∈ R, where d := cΓ(-α) = θκr α .

Remarks.

1. Assume that α ∈ (1, 2). Lemma 5.2, applied with

β := 1 -α ∈ (-1, 0), shows that ∞ 0 x 1-α g(-x) dx = d (1-α)/α Γ(1 -α)/Γ((1 -α)/α) and g(0) = d -1/α |Γ(-1/α)| -1
. Thus, the fraction in [START_REF] Sagitov | Convergence to the coalescent with simultaneous multiple mergers[END_REF] can be expressed in terms of the gamma function via

∞ 0 x 1-α g(-x) dx g(0) = d (2-α)/α Γ(1 -α)|Γ(-1/α)| Γ((1 -α)/α) , α ∈ (1, 2).
2. Theorem 2.4 b) can be viewed as the boundary case α = 2 of Theorem 2.4 c). Note that, under the assumptions of Theorem 2.4 b) or c) respectively,

E(X 2 1 {X≤N } ) N = 1 N N k=1 k 2 P(X = k) ∼ c N N k=1 k 1-α ∼ c 2-α N 1-α for α ∈ (1, 2), c log N N for α = 2.
(20) The naive prospect, based on the equation (N -1)c N = E((µ N,1 ) 2 ), that the coalescence probability c N could be asymptotically equal to (20), is wrong due to Theorem 2.4 b) and c). Theorems 2.2, 2.3, and 2.4 are not applicable if E(X) < 1. In this subcritical case it seems to be not straightforward to derive asymptotic results without further regularity assumptions on the weights w k := σ k (θ)/k!, k ∈ N 0 . Our last asymptotic result below essentially states that a 'condensation phenomenon' occurs which forces the model to be in the domain of attraction of a discrete-time Λ-coalescent with Λ(dt)/t 2 being a Dirac measure (Dirac coalescent). The result in particular shows that, under certain circumstances, Dirac coalescents arise naturally in the limit as the total population size N tends to infinity and indicates that Dirac coalescents are more important in the context of ancestral population genetics as it seems to be at a first glance.

Theorem 2.5 (subcritical case) Fix θ ∈ (0, ∞) and assume that there exist constants c > 0 and β > 2 such that w

k := σ k (θ)/k! ∼ ck -β /r k as k → ∞. If θrφ ′ (r-) < 1, then µ N,1 → X in distribution as N → ∞,
where X is a non-negative integer-valued random variable with distribution [START_REF] Möhle | Total variation distances and rates of convergence for ancestral coalescent processes in exchangeable population models[END_REF]. Moreover, lim N →∞ c N = u 2 , where u := 1 -E(X) = 1 -θrφ ′ (r-) ∈ (0, 1) and, in the sense of [9, Definition 2.1 (b)], the associated symmetric compound Poisson population model is in the domain of attraction of a discrete-time Λ-coalescent with Λ := u 2 δ u .

Remarks.

1. Note that lim N →∞ P i,j = i j-1 u i-j+1 (1 -u) j-1 for all i, j ∈ N with i > j. 2. The physical image is the one of a very prolific individual giving birth to a fixed fraction u of the total population, the others adjusting their random offspring to ensure a constant population size N in each generation. This 'condensation phenomenon' is reminiscent of the one observed by Eldon and Wakeley [START_REF] Wakeley | Coalescent processes when the distribution of offspring number among individuals is highly skewed[END_REF] (see also [START_REF] Huillet | On the extended Moran model and its relation to coalescents with multiple collisions[END_REF]Proposition 4]) in the context of extended Moran models. However, as observed in [9, Proposition 3.1], compound Poisson models and extended Moran models constitute disjoint reproduction laws.

3. It remains unclear whether Theorem 2.5 holds without any regularity condition on the weight sequence (w k ) k∈N0 . Note that, for arbitrary weights (not necessarily coming from a compound Poisson model), theorems of this form do not hold without any regularity condition on the weight sequence (w k ) k∈N0 . We refer the reader to the remark before Example 19.33 and to the Examples 19.37 and 19.38 of [START_REF] Janson | Simply generated trees, conditioned Galton-Watson trees, random allocations and condensation[END_REF] for analog comments and more details. In our situation however, the weights are coming from a compound Poisson model and have the particular structure ω k = σ k (θ)/k!. Thus, our weights cannot be arbitrarily irregular and hence, there is some chance that Theorem 2.5 could hold without any conditions on (w k ) k∈N0 . We leave this problem open for future work.

Proofs

Proof. (of Proposition 2.1) For j ∈ {1, . . . , N }, pairwise distinct n 1 , . . . , n j ∈ {1, . . . , N }, and

k 1 , . . . , k j ∈ N 0 with k := k 1 + • • • + k j ≤ N we have P(µ n1 = k 1 , . . . , µ nj = k j ) = ( j i=1 P(ξ ni = k i )) P( m∈[N ]\{n1,...,nj } ξ m = N -k) P(ξ 1 + • • • + ξ N = N ) = (N ) k k 1 ! • • • k j ! σ k1 (θ n1 ) • • • σ kj (θ nj ) σ N -k (Θ N - j i=1 θ ni ) σ N (Θ N )
and, therefore, for l 1 , . . . , l j ∈ N 0 ,

E j i=1 µ ni l i = k1,...,kj j i=1 k i l i (N ) k k 1 ! • • • k j ! σ k1 (θ n1 ) • • • σ kj (θ nj )σ N -k (Θ N - j i=1 θ ni ) σ N (Θ N )
,

where the sum k1,...,kj extends over all k 1 , . . . , k j ∈ N 0 satisfying k [START_REF] Flajolet | Analytic Combinatorics[END_REF] follows from [9, Eq. ( 4)]. For j = 1, (7) reduces to [START_REF] Graham | Concrete Mathematics. A Foundation for Computer Science, Second Edition[END_REF]. Alternatively, (8) follows as well via

:= k 1 + • • • + k j ≤ N . Thus ( 
P i,1 = N n=1 E((µ n ) i ) (N ) i = N n=1 N k=i (k) i (N ) i P(µ n = k) = N n=1 N k=i (k) i (N ) i N k σ k (θ n ) σ N -k (Θ N -θ n ) σ N (Θ N ) = N n=1 N k=i N -i k -i σ k (θ n ) σ N -k (Θ N -θ n ) σ N (Θ N ) . 2 
Proof. (of Theorem 2.2) Two independent proofs are provided. The first proof exploits the analytic saddle point method. The second proof is based on the standard local limit theorem for sequences of independent and identically distributed random variables with finite and non-vanishing variance. We think that both proofs are worthwhile, since they demonstrate the intertwining of analysis and probability.

Proof 1. Fix k, l ∈ N 0 and θ ∈ (0, ∞). Let us verify that

σ n-k ((n -l)θ) (n -k)! ∼ (a(θ)) n √ 2πn b kl (θ), n → ∞, (21) 
where

a(θ) := e θφ(z(θ)) z(θ) and b kl (θ) := (z(θ)) k e -lθφ(z(θ)) 1 + θ(z(θ)) 2 φ ′′ (z(θ)) . ( 22 
)
We proceed similarly as in the proof of [4, Theorem 2.1]. However, note that in [START_REF] Charalambides | An asymptotic formula for the exponential polynomials and a central limit theorem for their coefficients[END_REF] asymptotic expansions for σ n (θ) are provided whereas we are essentially interested in the asymptotics of σ n (nθ). By Cauchy's integral formula,

σ n (θ)/n! = (2πi) -1 C z -(n+1) e θφ(z) dz, n ∈ N 0 ,
where C is some contour around the origin. Replacing n by n -k and θ by (n -l)θ it follows that

σ n-k ((n -l)θ) (n -k)! = 1 2πi C e (n-l)θφ(z) z n-k+1 dz = 1 2πi C h(z)e ng(z) dz,
where h(z) := z k-1 e -lθφ(z) and g(z) := θφ(z) -log z. Note that g ′ (z) = θφ ′ (z) -1/z and that g ′′ (z) = θφ ′′ (z) + 1/z 2 . In particular, g ′ has a single real zero in the interval (0, r) at the point z(θ) solving the equation θz(θ)φ ′ (z(θ)) = 1. Note that g ′′ (z) > 0 for all z ∈ (0, r). In order to derive the asymptotics of the integral C h(z)e ng(z) dz we use the saddle point method (see, for example, [START_REF] Bruijn | Asymptotic Methods in Analysis[END_REF] or [START_REF] Flajolet | Analytic Combinatorics[END_REF] for general references) and choose the contour C to be the circle around the origin with radius z(θ) such that it passes through the zero z(θ) of g ′ . Note that g ′ (z(θ)) = 0, so g(z(θ)e it ) has Taylor expansion

g(z(θ)e it ) = ∞ j=0 g (j) (z(θ)) j! (z(θ)) j (e it -1) j = g(z(θ)) + g ′′ (z(θ)) 2 (z(θ)) 2 (e it -1) 2 + g ′′′ (z(θ)) 3! (z(θ)) 3 (e it -1) 3 + O(t 4 )
leading to the Taylor expansions Re(g(z(θ

)e it )) = g(z(θ)) -(z(θ)) 2 g ′′ (z(θ))t 2 /2 + O(t 4 ) and Im(g(z(θ)e it )) = O(t 3
). The saddle point method yields the asymptotics

C h(z)e ng(z) dz ∼ i 2π ng ′′ (z(θ)) e ng(z(θ)) h(z(θ)).
Dividing this expression by 2πi and writing z instead of z(θ) for convenience yields

σ n-k ((n -l)θ) (n -k)! ∼ e ng(z) h(z) 2πng ′′ (z) = 1 √ 2πn (a(θ)) n b kl (θ)
with a(θ) := e g(z) = e θφ(z) /z and b kl (θ) := h(z)/ g ′′ (z) = z k-1 e -lθφ(z) / z -2 + θφ ′′ (z) = z k e -lθφ(z) / 1 + θz 2 φ ′′ (z). Thus, (21) is established. Note that for k = l = 0 we have

σ n (nθ) n! = 1 2πi C e ng(z) z dz = 1 2πi π -π e ng(z(θ)e it ) z(θ)e it iz(θ)e it dt = 1 2π π -π
e ng(z(θ)e it ) dt.

Taking the real part yields

σ n (nθ) n! = 1 2π π -π Re(e ng(z(θ)e it ) ) dt ∼ 1 2π π -π e nRe(g(z(θ)e it )) dt, (23) 
where the last asymptotics is based on the Laplace method as follows. Choose a sequence (δ n ) n∈N of positive real numbers satisfying nδ 2 n → ∞ and nδ 3 n → 0, for example, δ n := n -α for some fixed α ∈ (1/3, 1/2). Decomposing the first integral in (23) into the two parts

I 1 := δn -δn
Re(e ng(z(θ)e it ) ) dt and I 2 := {δn<|t|≤π} Re(e ng(z(θ)e it ) ) dt we can approximate I 1 and show that I 2 is negligible (in comparison to I 1 ) for large n. Obviously, 1 -x 2 /2 ≤ cos x ≤ 1 for all x ∈ R. Choosing x := nIm(g(z(θ)e it )) and using Im(g(z(θ)e it )) = O(t 3 ) and nt 3 → 0 as n → ∞ uniformly for all |t| ≤ δ n it follows that

lim n→∞ sup |t|≤δn | cos(nIm(g(z(θ)e it ))) -1| = 0.
Thus, as n → ∞, the map t → cos(nIm(g(z(θ)e it ))) converges uniformly on [-δ n , δ n ] to the constant map t → 1, which implies that

I 1 = δn -δn cos(nIm(g(z(θ)e it )
))e nRe(g(z(θ)e it )) dt ∼ δn -δn e nRe(g(z(θ)e it )) dt.

Let us now turn to the second integral I 2 . Define the two functions f : R → R and m : R → R via f (t

) := Re(φ(z(θ)e it )) = ∞ m=1 (φ m /m!)(z(θ)) m cos(mt) and m(t) := Re(g(z(θ)e it )) = Re(θφ(z(θ)e it ) -log(z(θ)e it )) = θf (t) -log(z(θ)
) for all t ∈ R. Note that f is 2π-periodic and that f (t) = f (-t) for all t ∈ R. The same holds for the function m since it is a linear transformation of f . For m ∈ N define a m := φ m (z(θ)) m /m! and choose some q ∈ (1, r/z(θ)). Then, ∞ m=1 a m q m = φ(z(θ)q) < ∞, since z(θ)q < r. By Lemma 5.1 (applied for the function f and with ε := δ n ) it follows that there exists a constant n 0 ∈ N (which may depend on θ and φ) such that sup δn<|t|≤π m(t) ≤ m(δ n ) for all n ∈ N with n > n 0 . Therefore

|I 2 | ≤ {δn<|t|≤π} e nRe(g(z(θ)e it )) dt = {δn<|t|≤π} e nm(t) dt ≤ 2πe nm(δn) . The expansion m(t) = g(z(θ)) -(z(θ)) 2 g ′′ (z(θ))t 2 /2 + O(t 4 ) applied for t = δ n yields e nm(δn) ∼ e ng(z(θ)) e -(z(θ)) 2 g ′′ (z(θ))nδ 2 n /2 . Thus, |I 2 |/I 1 = O( √ n/e cnδ 2 n ) with c := (z(θ)) 2 g ′′ (z(θ))/2 > 0. Since nδ 2 n = n 1-2α → ∞ it follows that |I 2 |/I 1 → 0 as n → ∞. Thus, the integral I 2 is negligible in comparison to I 1 and (23) is established. For k ∈ N 0 and N ∈ N with N ≥ k it follows from (21) that P(µ N,1 = k) = N k σ k (θ) σ N -k ((N -1)θ) σ N (N θ) = σ k (θ) k! σ N -k ((N -l)θ) (N -k)! σ N (N θ) N ! ∼ σ k (θ) k! (a(θ)) N b k1 (θ)/ √ 2πN (a(θ)) N b 00 (θ)/ √ 2πN = σ k (θ) k! b k1 (θ) b 00 (θ) = σ k (θ) (z(θ)) k k! e -θφ(z(θ)) .
Thus, µ N,1 → X in distribution as N → ∞, where X has distribution [START_REF] Karlin | Direct product branching processes and related Markov chains. I. Calculations of rates of approach to homozygosity[END_REF]. In the following, for fixed p ∈ (0, ∞), the convergence E(µ p N,1 ) → E(X p ) as N → ∞ of the p-th moments is established. For all N ∈ N and all k, l ∈ {0, . . . , N } we have

σ N -k ((N -l)θ) (N -k)! ≤ σ N -k (N θ) (N -k)! = 1 2πi C z k-1 e N g(z) dz = 1 2πi π -π (z(θ)e it ) k-1 e N g(z(θ)e it ) iz(θ)e it dt = (z(θ)) k 2π π -π
e ikt e N g(z(θ)e it ) dt.

Taking the complex absolute value it follows for all N ∈ N and all k, l ∈ {0, . . . , N } that

σ N -k ((N -l)θ) (N -k)! ≤ (z(θ)) k 2π π -π |e N g(z(θ)e it ) | dt = (z(θ)) k 2π π -π
e N Re(g(z(θ)e it )) dt.

Since, by ( 23), (2π) -1 π -π e N Re(g(z(θ)e it )) dt ∼ σ N (N θ)/N !, it follows that there exists a constant N 0 ∈ N (which may depend on θ and φ but not on k and l) such that

σ N -k ((N -l)θ) (N -k)! ≤ 2(z(θ)) k σ N (N θ) N !
for all N ≥ N 0 and all k, l ∈ {0, . . . , N }. In particular, for all N ≥ N 0 and all k ∈ {0, . . . , N },

P(µ N,1 = k) = σ k (θ) k! σ N -k ((N -1)θ) (N -k)! σ N (N θ) N ! ≤ σ k (θ) k! 2(z(θ)) k = κ(θ)P(X = k),
where κ(θ) := 2e θφ(z(θ)) ∈ (0, ∞). For all p ∈ (0, ∞) the map k → k p P(X = k), k ∈ N 0 , is integrable with respect to the counting measure ε N0 on N 0 , since [START_REF] Möhle | A classification of coalescent processes for haploid exchangeable population models[END_REF] or [16, Theorem 4 (b)]) that the considered symmetric compound Poisson model is in the domain of attraction of the Kingman coalescent. The proof is complete.

k p P(X = k)ε N0 (dk) = ∞ k=0 k p P(X = k) = E(X p ) < ∞. Dominated convergence yields the convergence E(µ p N,1 ) → E(X p ) as N → ∞ of all moments. In particular, (N -1)c N = E((µ N,1 ) 2 ) → E((X) 2 ) > 0 and (N -1)(N -2)d N = E((µ N,1 ) 3 ) → E((X) 3 ) as N → ∞. Thus, d N /c N = O(1/N ) → 0 as N → ∞, which ensures (see
Proof 2. Let X 1 , X 2 , . . . be independent copies of the random variable X with distribution [START_REF] Karlin | Direct product branching processes and related Markov chains. I. Calculations of rates of approach to homozygosity[END_REF].

For N ∈ N define S N := X 1 + • • • + X N . Since 0 < Var(X) < ∞, the local limit theorem lim N →∞ sup k∈Z |d N (k)| = 0 holds, where d N (k) := √ N P(S N = k) -g((k -N )/ √ N
) and g denotes the density of the normal distribution N (0, Var(X)). We have

P(µ N,1 = k) = N k σ k (θ) σ N -k ((N -1)θ) σ N (N θ) = P(X = k) P(S N -1 = N -k) P(S N = N ) . Since P(S N = N ) = (g(0) + d N (N ))/ √ N ∼ g(0)/ √ N as N → ∞ and, for arbitrary but fixed k, P(S N -1 = N -k) = (g((1 -k)/ √ N ) + d N -1 (N -k))/ √ N -1 ∼ g(0)/ √ N as N → ∞
thanks to the fact that the convergence in the local limit theorem holds uniformly for all k, it follows that P(S N -1 = N -k)/P(S N = N ) → 1 as N → ∞ and, therefore,

P(µ N,1 = k) → P(X = k) as N → ∞ for all k ∈ N 0 . Thus, µ N,1 → X in distribution as N → ∞. Fix p ∈ (0, ∞). For all N ∈ N, E(µ p N,1 ) = N k=1 k p P(X = k) P(S N -1 = N -k) P(S N = N ) .
Applying the local limit theorem to both probabilities P(S N -1 = N -k) and P(S N = N ) it follows for arbitrary but fixed p ∈ (0, ∞) that

E(µ p N,1 ) ∼ N k=1 k p P(X = k) g((1 -k)/ √ N -1) + d N -1 (N -k) g(0) ≤ N k=1 k p P(X = k) g(0) + d N -1 (N -k) g(0) ∼ N k=1 k p P(X = k) → ∞ k=1 k p P(X = k) = E(X p ),
where we have used that the density g is non-decreasing on (-∞, 0] and that d N -1 (N -k) → 0 as N → ∞ uniformly for all k by the local limit theorem. Similarly,

E(µ p N,1 ) ≥ ⌊N 1/4 ⌋ k=1 k p P(X = k) P(S N -1 = N -k) P(S N = N ) ∼ ⌊N 1/4 ⌋ k=1 k p P(X = k) g((1 -k)/ √ N -1) + d N -1 (N -k) g(0) ≥ ⌊N 1/4 ⌋ k=1 k p P(X = k) g((1 -N 1/4 )/ √ N -1) + d N -1 (N -k) g(0) ∼ ⌊N 1/4 ⌋ k=1 k p P(X = k) → ∞ k=1 k p P(X = k) = E(X p ),
where we used again that g is non-decreasing on (-∞, 0] and that the convergence in the local limit theorem holds uniformly for all k. Thus, the convergence E(µ p N,1 ) → E(X p ) as N → ∞, p ∈ (0, ∞), is established. The rest of the proof is identical to the last four lines of Proof 1.

2

Proof. (of Theorem 2.3) We verify that lim N →∞ c N = 0. Fix ε ∈ (0, 1) and define A i := {µ i ≤ N ε} and B i := {µ i > N ε}, i ∈ {1, . . . , N }. As in the proof of [START_REF] Janson | Simply generated trees, conditioned Galton-Watson trees, random allocations and condensation[END_REF]Theorem 19.2], applied to the weights w k := e -θφ(r-) σ k (θ)/k! and with n := m := N , it follows that there exists a constant

c ε ∈ (-∞, 0) such that P(µ 1 > N ε) ≤ exp(c ε N + o(N )).
In particular, lim N →∞ N P(µ 1 > N ε) = 0 and

c N = 1 (N ) 2 N i=1 E((µ i ) 2 1 Ai ) + 1 (N ) 2 N i=1 E((µ i ) 2 1 Bi ) ≤ N ε (N ) 2 N i=1 E(µ i 1 Ai ) + N (N ) 2 E((µ 1 ) 2 1 B1 ) ≤ N ε (N ) 2 E(µ 1 + • • • + µ N ) + N E(1 B1 ) = N 2 ε (N ) 2 + N P(µ 1 > N ε) → ε, N → ∞.
Thus, lim N →∞ c N = 0, since ε > 0 can be chosen arbitrarily small. In order to determine the asymptotics of the associated compound Poisson population model, let µ (1) ≥ • • • ≥ µ (N ) denote the ranked offspring sizes, i.e. the offspring sizes µ 1 , . . . , µ N , but permutated in non-increasing order. For all ε > 0 we have P(µ (1) > N ε) = P(

N i=1 {µ i > N ε}) ≤ N P(µ 1 > N ε) → 0 as N → ∞. Thus, µ (1) /N → 0 in probability as N → ∞. For arbitrary but fixed dimension d ∈ N it follows that (µ (1) /N, . . . , µ (d) /N ) → (0, . . . , 0) ∈ R d in distribution as N → ∞. Treating the infinite simplex ∆ := {x = (x 1 , x 2 , . . .) : x 1 ≥ x 2 ≥ • • • ≥ 0, ∞ i=1 x i ≤ 1}
as a subset of the metric space R ∞ equipped with the topology of pointwise convergence, this convergence of the finite-dimensional distributions is already equivalent (see, Billingsley [2,p. 19]) to the convergence of the full processes (µ (1) /N, . . . , µ (N ) /N, 0, 0, . . .) → (0, 0, . . .) ∈ ∆ in distribution as N → ∞. Comparing this limit with Sagitov's convergence result [START_REF] Sagitov | Convergence to the coalescent with simultaneous multiple mergers[END_REF]Theorem 2.1] shows that the model is in the domain of attraction of the Kingman coalescent.

2

Proof. (of Theorem 2.4) Let X 1 , X 2 , . . . be independent random variables all with the same distribution (16) of X. Define

S N := X 1 + • • • + X N , N ∈ N.
For all k ∈ N 0 and all N ≥ k,

P(µ N,1 = k) = N k σ k (θ) σ N -k ((N -1)θ) σ N (N θ) = P(X = k) P(S N -1 = N -k) P(S N = N ) .
The basic idea of the proof is to apply local limit theorems to the two probabilities P(S N -1 = N -k) and P(S N = N ) in the formula above. It turns out that the details of the proof differ for parts a), b) and c), so we have to treat these parts separately. a) By assumption, φ ′′ (r-) < ∞ or, equivalently, Var(X) < ∞. Following the proof of Theorem 2.2, but with the root z(θ) replaced by r, it follows that µ N,1 → X in distribution as N → ∞, where X has distribution [START_REF] Möhle | Total variation distances and rates of convergence for ancestral coalescent processes in exchangeable population models[END_REF]. For p ∈ (0, 2] the convergence of moments E(µ p N,1 ) → E(X p ) as N → ∞ is shown in the same way as in Proof 2 of Theorem 2.2 by exploiting the standard local limit theorem for sequences of independent and identically distributed random variables having finite and non-vanishing variance. In particular, (N - 

1)c N = E((µ N,1 ) 2 ) → E((X) 2 ) = Var(X) = 1 + θr 2 φ ′′ (r-) as N → ∞. Thus,
d N (k) = √ N log N P(S N = k) -g((k -N )/ √ N log N ), N ∈ N, k ∈ Z, and g(x) := (πc) -1/2 exp(-x 2 /c), x ∈ R,
is the density of the normal distribution N (0, c/2). Applying this local limit theorem to both probabilities P(S N = N ) and P(S N -1 = N -k) it follows in the same way as in Proof 2 of Theorem 2.2 that µ N,1 → X in distribution as N → ∞. Let us now turn to the asymptotics of the coalescence probability c N . We have

(N -1)c N = E((µ N,1 ) 2 ) = N k=2 (k) 2 P(µ N,1 = k) = N k=2 (k) 2 P(X = k) P(S N -1 = N -k) P(S N = N ) (24) 
∼ N k=2 (k) 2 P(X = k) g((1 -k)/ √ N log N ) + d N -1 (N -k) g(0) ≥ ⌊ √ N ⌋ k=2 (k) 2 P(X = k) g((1 -k)/ √ N log N ) + d N -1 (N -k) g(0) ≥ ⌊ √ N ⌋ k=2 (k) 2 P(X = k) g(-1/ √ log N ) + d N -1 (N -k) g(0) ∼ ⌊ √ N ⌋ k=2 (k) 2 P(X = k).
Since P(X = k) ∼ ck -3 as k → ∞, the latter sum is asymptotically equal to c

⌊ √ N ⌋ k=2 1/k ∼ c √ N 2 1/x dx ∼ c log √ N = (c/2) log N . Thus, lim inf N →∞ (N c N )/ log N ≥ c/2. It remains to verify that lim sup N →∞ (N c N )/ log N ≤ c/2. Define B N := ⌊ √ N log N ⌋, N ∈ N,
and decompose the sum in (24) into a first part over all k ≤ B N and a second part over all k > B N . The second part is negligible, since, uniformly for all k ∈ {B N + 1, . . . , N },

P(S N -1 = N -k) P(S N = N ) ∼ g((1 -k)/ √ N log N ) + d N -1 (N -k) g(0) ≤ g(- √ log N ) + d N -1 (N -k) g(0) → 0
as N → ∞. Note that we used that the normal density g is non-decreasing on (-∞, 0], that g(-√ log N ) → 0 as N → ∞ and that d N -1 (N -k) → 0 as N → ∞ uniformly for all k. For the first part we use g(x) ≤ g(0), x ∈ R, and obtain

B N k=2 (k) 2 P(X = k) P(S N -1 = N -k) P(S N = N ) ∼ B N k=2 (k) 2 P(X = k) g((1 -k)/ √ N log N ) + d N -1 (N -k) g(0) ≤ B N k=2 (k) 2 P(X = k) g(0) + d N -1 (N -k) g(0) ∼ B N k=2 (k) 2 P(X = k),
again thanks to the fact that the convergence in the local limit theorem holds uniformly for all k. From P(X = k) ∼ ck -3 as k → ∞ it follows that the last sum is asymptotically equal to c

B N k=2 1/k ∼ c log B N ∼ (c/2) log N . Thus, lim sup N →∞ (N c N )/ log N ≤ c/2 and the asymptotics c N ∼ (c/2)(log N )/N is established. c) Let us first verify that P(X = k) ∼ ck -α-1 as k → ∞ with c := θκr α /Γ(-α). It is readily checked that (18) implies that exp(θφ(z)) = A + B(z -r) + C(r -z) α + O((r -z) 2 ), z → r,
with constants A := exp(θφ(r-)), B := θφ ′ (r-)A, and C := θκA. From that representation it follows that

P (X = k) = r k exp(-θφ(r-)) σ k (θ) k! = r k A [z k ] exp(θφ(z)) ∼ r k A C[z k ](r -z) α = r k A C r α r k α k (-1) k ∼ C A r α 1 Γ(-α)k α+1 = c k α+1 , k → ∞.
By the generalized central limit theorem (see also Lemma 5.3 in the appendix), (S N -N )/N 1/α → S in distribution as N → ∞, where S is an α-stable random variable with characteristic function ϕ(t)

:= E(exp(itS)) = exp(cΓ(-α)(-it) α ), t ∈ R. Define the constant C := -cΓ(-α) cos πα 2 ∈ (0, ∞) for convenience. For all p ∈ [0, ∞), ∞ -∞ |t| p |ϕ(t)| dt (25) = ∞ -∞ |t| p exp(cΓ(-α)Re((-it) α )) dt = ∞ -∞ |t| p exp(cΓ(-α)|t| α cos πα 2 ) dt = 2 ∞ 0 t p exp(-Ct α ) dt = 2 αC (p+1)/α ∞ 0 u (p+1)/α-1 exp(-u) du = 2Γ((p + 1)/α) αC (p+1)/α ∈ (0, ∞), (26) 
where we have used the substitution u = Ct α (⇒ dt/du = 1/(αC 1/α )u 1/α-1 ). In particular (choose p = 0), ϕ is integrable with respect to the Lebesgue measure on R. Thus, by the Fourier inversion formula, S has density 

g(x) = 1 2π ∞ -∞ exp -ixt + cΓ(-α)(-it) α dt = 1 π ∞ 0 exp cΓ(-α)
) := N 1/α P(S N = k) -g((k -N )/N 1/α ), N ∈ N, k ∈ Z. In particular, P(S N = N ) = (g(0) + d N (N ))/N 1/α ∼ g(0)/N 1/α and P(S N -1 = N -k) = g((1 -k)/(N -1) 1/α ) + d N -1 (N -k) (N -1) 1/α
The convergence µ N,1 → X in distribution therefore follows again in the same way as in Proof 2 of Theorem 2.2. We furthermore obtain

N c N ∼ E((µ N,1 ) 2 ) ∼ E(µ 2 N,1 ) = N k=1 k 2 P(X 1 = k) P(S N -1 = N -k) P(S N = N ) ∼ N k=1 k 2 P(X = k) g((1 -k)/(N -1) 1/α ) + d N -1 (N -k) g(0) = T 1 + T 2 ,
where

T 1 := 1 g(0) N k=1 k 2 P(X = k) g((1 -k)/(N -1) 1/α )
and

T 2 := 1 g(0) N k=1 k 2 P(X = k) d N -1 (N -k).
Let us first analyse T 2 . Since [START_REF] Möhle | A classification of coalescent processes for haploid exchangeable population models[END_REF] holds by assumption, it follows that sup k∈Z |d N -1 (Nk)| = O(N 1-2/α ) by Theorem 5.4 (strong local limit theorem) in the appendix. Moreover,

N k=1 k 2 P(X = k) ∼ c N k=1 k 1-α = O(N 2-α ). Thus, T 2 = O(N 1-2/α ) N k=1 k 2 P(X = k) = O(N 1-2/α )O(N 2-α ) = O(N δ ) with δ := 3 -2/α -α.
Let us now turn to T 1 . Since the density g is bounded, any finite number of values of the summation index k in the sum of T 1 do not contribute to the asymptotics of T 1 . It is therefore asymptotically allowed to replace P(X = k) by its asymptotic expression ck -α-1 and we obtain

T 1 ∼ c g(0) N k=1 k 1-α g((1 -k)/(N -1) 1/α ).
For the last sum we have

N k=1 k 1-α g((1 -k)/(N -1) 1/α ) = N k=1 N 1/α (k+1)/N 1/α k/N 1/α ⌊xN 1/α ⌋ 1-α g((1 -⌊xN 1/α ⌋)/(N -1) 1/α ) dx = N 1/α (N +1)/N 1/α 1/N 1/α ⌊xN 1/α ⌋ 1-α g((1 -⌊xN 1/α ⌋)/(N -1) 1/α ) dx ∼ N 1/α ∞ 0 x 1-α N (1-α)/α g(-x) dx = N (2-α)/α ∞ 0 x 1-α g(-x) dx.
Note that the last integral is finite, since 

∞ 0 x 1-α g(-x) dx ≤ g 1 0 x 1-α dx+ ∞ 1 g(-x) dx ≤ g /(2 -α) + 1 < ∞. Since δ = 3 -2/α -α < (2 -α)/α, it follows in summary that N c N ∼ T 1 + T 2 ∼ T 1 ,
(θ) = r k σ k (θ), k ∈ N 0 , θ ∈ (0, ∞). Define Φ(z) := Φ θ (z) := exp(θφ(z)) for |z| < 1 and θ ∈ (0, ∞). Note that [z k ]Φ(z) = σ k (θ)/k! for k ∈ N 0 and θ ∈ (0, ∞).
By assumption there exist constants c = c(θ) ∈ (0, ∞) and β = β(θ) > 2 such that σ k (θ)/k! ∼ ck -β as k → ∞. We are hence in the situation to apply Janson's [START_REF] Janson | Simply generated trees, conditioned Galton-Watson trees, random allocations and condensation[END_REF] condensation result (Theorem 19.34) to the weights 

w k := σ k (θ)/k!, k ∈ N 0 . Note that the weight sequence (w k ) k∈N0 has pgf ∞ k=0 w k z k = exp(θφ(z)) = Φ(z), |z| < 1. Moreover, in Janson's notation, Ψ(z) := zΦ ′ (z)/Φ(z) = θzφ ′ (z), |z| < 1,
(m, n) = [z m ]Φ nθ (z) = σ m (nθ)/m! satisfies σ N -k ((N -l)θ) (N -k)! ∼ c (λ -ν) β (Φ(1-)) N -l-1 N β-1 (27)
as N → ∞. For all k ∈ N 0 and all N ∈ N with N ≥ k we have

P(µ N,1 = k) = N k σ k (θ) σ N -k ((N -1)θ) σ N (N θ) . ( 28 
)
Using the asymptotics (27) for l = 0 and for l = 1 it follows that lim

N →∞ P(µ N,1 = k) = σ k (θ) k! 1 Φ(1-) = σ k (θ) k! exp(-θφ(1-)), k ∈ N 0 ,
which is the right hand side of ( 16) for r = 1. Thus, µ N,1 → X in distribution as N → ∞.

As in the proof of Theorem 2.3 let µ (1) ≥ • • • ≥ µ (N ) denote the ranked offspring sizes. Theorem 19.34 (i) of Janson [START_REF] Janson | Simply generated trees, conditioned Galton-Watson trees, random allocations and condensation[END_REF] implies that (µ (1) /N, . . . , µ (N ) /N, 0, 0, . . .) → (u, 0, 0, . . .)

in distribution as N → ∞, where u := λ -ν = 1 -θφ ′ (1-) ∈ (0, 1).

In the following it is verified that lim N →∞ c N = u 2 . We have µ (1) /N → u in distribution as N → ∞. Since µ (1) /N is bounded for all N (between 0 and 1) it follows that µ (1) /N → u in L 2 . In particular,

E((µ (1) ) 2 )/(N ) 2 → u 2 as N → ∞. Since c N = 1 (N ) 2 N i=1 E((µ (i) ) 2 ) = E((µ (1) ) 2 ) (N ) 2 + 1 (N ) 2 N i=2 E((µ (i) ) 2 )
it hence remains to verify that lim

N →∞ 1 (N ) 2 N i=2 E((µ (i) ) 2 ) = 0. ( 30 
)
In order to establish the convergence (30) fix ε ∈ (0, 1) and define A := {µ (2) ≤ N ε} and its complement B := {µ (2) > N ε}. We have

1 (N ) 2 N i=2 E((µ (i) ) 2 ) = 1 (N ) 2 N i=2 E((µ (i) ) 2 1 A ) + 1 (N ) 2 N i=2 E((µ (i) ) 2 1 B ) ≤ N ε (N ) 2 N i=2 E(µ (i) 1 A ) + N (N ) 2 N i=2 E(µ (i) 1 B ) = N ε (N ) 2 E((µ (2) + • • • + µ (N ) )1 A ) + N (N ) 2 E((µ (2) + • • • + µ (N ) )1 B ) ≤ N 2 ε (N ) 2 + N 2 (N ) 2 P(µ (2) > N ε) → ε, as N → ∞, since P(µ (2) > N ε) → 0 as N → ∞.
Since ε > 0 can be chosen arbitrarily small, (30) holds and, hence, the convergence lim N →∞ c N = u 2 ∈ (0, 1) is established. Comparing the limit (29) with Sagitov's convergence result [START_REF] Sagitov | Convergence to the coalescent with simultaneous multiple mergers[END_REF]Theorem 2.2] it follows that the associated compound Poisson model is in the domain of attraction of a discrete-time Ξ-coalescent with Ξ(dx)/ ∞ i=1 x 2 i = δ (u,0,0,...) (dx) being the Dirac measure at (u, 0, 0, . . .) ∈ ∆ := {x = (x 1 , x 2 , . . .) :

x 1 ≥ x 2 ≥ • • • ≥ 0, ∞ i=1 x i ≤ 1}.
Hence, the limiting process is a discrete-time coalescent with multiple collisions (Λ-coalescent) with Λ(dt)/t 2 = δ u (dt) being the Dirac measure at u. 2

Examples

We start with the two most popular examples, the Wright-Fisher model and the Dirichlet model. Note that (6) holds for these two models. These two examples have the advantage that most calculations can be done explicitly. For example, we will verify the asymptotic results stated in Theorem 2.2 directly. 

(θ) = θ k , k ∈ N 0 , θ ∈ (0, ∞).
For k ∈ N 0 and θ ∈ (0, ∞) it follows that

P(µ N,1 = k) = N k σ k (θ) σ N -k ((N -1)θ) σ N (N θ) = N k 1 N k 1 - 1 N N -k .
Thus, µ N,1 has a binomial distribution with parameters N and 1/N . In particular, for arbitrary but fixed p ∈ N, E((µ N,1 Therefore, ξ 1 has a negative binomial distribution with parameters θ and 1 -z. In particular,

) p ) = (N ) p /N p → 1 = E((X) p ) as N → ∞,
E(ξ 1 ) = θzφ ′ (z) = θz/(1 -z). Moreover, σ k (θ) = [θ] k := θ(θ + 1) • • • (θ + k -1) = Γ(k + θ)/Γ(θ), k ∈ N 0 , θ ∈ (0, ∞).
Thus, for k ∈ N 0 and θ ∈ (0, ∞),

P(µ N,1 = k) = N k [θ] k [(N -1)θ] N -k [N θ] N = [θ] k k! (N ) k Γ(N θ -θ + N -k)Γ(N θ) Γ(N θ -θ)Γ(N θ + N ) .
Since Γ(x + c) ∼ x c Γ(x) as x → ∞ for any c ∈ R, it follows that

P(µ N,1 = k) ∼ [θ] k k! (N ) k (N θ + N ) -θ-k Γ(N θ + N )Γ(N θ) (N θ) -θ Γ(N θ)Γ(N θ + N ) = [θ] k k! (N ) k (N θ + N ) k θ + 1 θ -θ → [θ] k k! 1 θ + 1 k θ θ + 1 θ . Thus µ N,1 → X in distribution as N → ∞
where X has a negative binomial distribution with parameters θ and θ/(θ + 1) ∈ (0, 1). Moreover, for arbitrary but fixed p ∈ N, E((µ N,1 Thus,E(µ p N,1 ) → E(X p ) as N → ∞ for all p ∈ N in agreement with the general results derived in the proof of Theorem 2.2. The solution z(θ) of the equation θz(θ)φ ′ (z(θ)) = 1 is z(θ) = 1/(θ+1). Note that (21) holds with a(θ) := (θ+1) θ+1 /θ θ and b kl (θ) := (θ/(θ + 1)) lθ+1/2 (1/(θ + 1)) k , k, l ∈ N 0 , θ ∈ (0, ∞). The symmetric Dirichlet model has effective population size N e = 1/c N = (N -1)/E((µ N,1 ) 2 ) = (N θ + 1)/(θ + 1) ∼ ̺N with ̺ = θ/(θ + 1) = 1/Var(X), in agreement with Theorem 2.2.

) p ) = (N ) p [θ] p /[N θ] p → [θ] p /θ p = E((X) p ) as N → ∞.
Let us now study examples which do not satisfy [START_REF] Wakeley | Coalescent processes when the distribution of offspring number among individuals is highly skewed[END_REF]. We start with a model which involves the absolute Lah numbers.

Example 4.3 Suppose that φ m = m! for all m ∈ N or, equivalently, that φ(z) = z/(1 -z), |z| < 1. Note that φ ′ (z) = 1/(1 -z) 2 and that φ ′′ (z) = 2/(1 -z) 3 = 2φ ′ (z)/(1 -z), |z| < 1. Then (Comtet [5, Section 3.3, p. 135, Theorem B]), σ n (θ) = n k=1 L(n, k)θ k , n ∈ N, θ ∈ R, where L(n, k) := B nk (1!, 2!, . . .) = n!(n -1)!/(k!(k -1)!(n -k)!), n ∈ N, k ∈ {1, . . . , n}, denote the absolute Lah numbers. The solution z = z(θ) ∈ (0, 1) of the equation 1 = θzφ ′ (z) = θz/(1 -z) 2 is z(θ) = 1 + θ/2 -θ(θ + 4)/2
. By Theorem 2.2, the model is in the domain of attraction of the Kingman coalescent and the effective population size N e satisfies N e ∼ ̺N with

̺ := 1/(1 + θz 2 φ ′′ (z)) = (1 -z)/(1 + z) < 1, since 1 + θz 2 φ ′′ (z) = 1 + θz 2 φ ′ (z) 2 1 -z = 1 + 2z 1 -z = 1 + z 1 -z .
Note that the asymptotics (21) holds with a(θ) = e θφ(z) /z = e θz/(1-z) /z = e 1-z /z and b kl (θ) :=

z k e -lθφ(z) / 1 + θz 2 φ ′′ (z) = z k e -l(1-z) / (1 + z)/(1 -z), k, l ∈ N 0 , θ ∈ (0, ∞).
In the following example, which generalizes Example 4.3, the series φ solves a particular functional equation and is hence (for most parameter constellations) only defined implicitly. Nevertheless an explicit expression for the solution z = z(θ) of the equation θzφ ′ (z) = 1 is derived. 

φ m = (m -1)! am m-1 b m-1 , m ∈ N,
where it is assumed that the real parameters a and b are either both negative or b > 0 and a ≥ 1 (such that all the coefficients φ m are non-negative). Note that [1, Eq. ( 43)] the power series φ(z) = ∞ m=1 φ m z m /m! is the solution of the functional equation φ(z) = zf (φ(z)) with f (x) := (1 + bx) a and that φ is related to the generalized binomial series B a (see, for example, [8, p. 200

]) via φ(z) = (B a (bz) -1)/b. It is readily checked that φ has radius of convergence r := lim m→∞ (m + 1)φ m /φ m+1 = (ab) -1 (1 -1/a) a-1 ∈ (0, ∞) and that φ(r-) = 1/(b(a -1)) (= ∞ for a = 1), since, for a = 1, φ(r-) = 1/(b(a -1)
) is the only positive solution of the equation φ(r-) = rf (φ(r-)). Differentiating both sides of the functional equation φ(z) = zf (φ(z)) yields the derivatives 

φ ′ (z) = f (φ(z)) 1 -zf ′ (φ(z)) and φ ′′ (z) = 2f ′ (φ(z))φ ′ (z) + zf ′′ (φ(z))(φ ′ (z)) 2 1 -zf ′ (φ(z)) , |z| < r.
(z) = 4z/(1 + √ 1 -4bz) 2 , |z| < 1/(4b). For a = -1 (and b < 0) we have φ m = (2m -2)!/(m -1)!(-b) m-1 , m ∈ N, and φ(z) = ( √ 1 + 4bz -1)/(2b) = 2z/(1 + √ 1 + 4bz), |z| < 1/(-4b).
For general parameters a and b, to the best of the authors knowledge, there seems to be no special function related to the power series φ. Nevertheless, an explicit expression for the solution z = z(θ) of the equation θzφ ′ (z) = 1 is obtained as follows. Let x = x(θ) be the solution in the open interval (0, 1) of the quadratic equation θx = b(1 -x)(a -x), i.e.

x(θ) = θ + b + ab -(θ + b + ab) 2 -4ab 2 2b ∈ (0, 1). ( 31 
)
We have 0

< (1 -x)/θ < 1/(b(a -1)) = φ(r-) (= ∞ for a = 1). Thus, z = z(θ) := φ -1 ((1 -x)/θ) ∈ (0, r) is well defined. From (1 -x)/θ = φ(z) = zf (φ(z)) = zf ((1 -x)/θ) it follows that z = 1 -x θ 1 f ( 1-x θ ) = 1 -x θ 1 (1 + b 1-x θ ) a = 1 -x θ 1 (1 + x a-x ) a = 1 -x θ a -x a a = 1 -x θ a -x a a -x a a-1 = x ab a -x a a-1 . (32) 
Moreover,

f ′ (φ(z)) = f ′ 1 -x θ = ab 1 + b 1 -x θ a-1 = ab 1 + x a -x a-1 = ab a a -x a-1 = x z
and, hence,

θzφ ′ (z) = θzf (φ(z)) 1 -zf ′ (φ(z)) = θφ(z) 1 -zf ′ (φ(z)) = 1 -x 1 -z x z = 1.
Thus, z = z(θ) satisfies θzφ ′ (z) = 1. Theorem 2.2 is therefore applicable. Straightforward computations show that the limiting random variable X in Theorem 2.2 has variance Var(X) = 1 + θz 2 φ ′′ (z) = (a -x 2 )/(a(1 -x) 2 ). By Theorem 2.2, the model is in the domain of attraction of the Kingman coalescent and the effective population size N e satisfies N e ∼ ̺N as N → ∞ with ̺ = 1/Var(X) = a(1 -x) 2 /(a -x 2 ) ∈ (0, 1). Note that the asymptotics (21) holds, where a(θ) = e θφ(z) /z = e 1-x /z and

b kl (θ) = z k e -lθφ(z) 1 + θz 2 φ ′′ (z) = z k e -l(1-x) a(1 -x) 2 a -x 2
with x = x(θ) and z = z(θ) defined in (31) and (32). At first glance the solution x(θ) of the quadratic equation θx = b(1 -x)(a -x) seems to come 'from nowhere'. In the following an intuitive argument is provided showing how x(θ) comes into play. It is known [1, Eq. ( 51)] that

σ n (θ) = n j=1 B(n, j)θ j with B(n, j) = (n -1)! (j -1)! an n -j b n-j . (33) 
The fraction

B(n, n -j + 1)(nθ) n-j+1 B(n, n -j)(nθ) n-j = nθj (n -j)(an -j + 1)b
is equal to 1 for j = j n with

j n := n(θ + b + ab) + b -(n(θ + b + ab) + b) 2 -4b(bn + abn 2 ) 2b ∼ n θ + b + ab -(θ + b + ab) 2 -4ab 2 2b = nx(θ). (34) 
Intuitively, when n is large, the contribution to the sum σ n (nθ) = n-1 j=0 B(n, n -j)(nθ) n-j is essentially entirely originated from indices j having the property that j/n belongs to a (small) neighborhood of x(θ). The choice of the neighborhood is rather unimportant. It is hence not surprising that x(θ) plays a crucial role in finding the asymptotics of σ n (nθ). Since the Bell numbers (33) are known explicitly, one may carry out the Laplace method in detail leading to an alternative proof of (21). We leave the details to the reader. For non-integer parameter α ∈ (0, ∞) \ N, the first ⌊α⌋ -1 derivatives of the polylog function φ are finite and φ has asymptotic expansion around z = 1 of the form

φ(z) = ⌊α⌋-1 j=0 φ (j) (1-) j! (z -1) j + Γ(1 -α)(1 -z) α-1 + O((1 -z) ⌊α⌋ ), z → 1, (35) 
whereas for integer α ∈ N the expansion has the form (see also [7, p. 411])

φ(z) = α-2 j=0 φ (j) (1-) j! (z -1) j + (-1) α (α -1)! (1 -z) α-1 log(1 -z) + O((1 -z) α-1 ), z → 1. ( 36 
)
In the following it is verified that, for all α, θ ∈ (0, ∞), the distribution (16) satisfies

P(X = k) = σ k (θ) k! exp(-θφ(1-)) ∼ θ k α , k → ∞. ( 37 
)
Assume first that 2 < α < 3 . Then, by (35

), φ(z) = a + b(z -1) + Γ(1 -α)(1 -z) α-1 + O((1 -z) 2 ) as z → 1 with a := φ(1-) = ζ(α) and b := φ ′ (1-) = ζ(α -1)
, where ζ denotes the Riemann zeta function. Thus,

Φ θ (z) := exp(θφ(z)) = A + B(z -1) + C(1 -z) α-1 + O((1 -z) 2 ), z → 1, 
where A := e θa , B := θbA and

C := θΓ(1 -α)A. Using [z k ](1 -z) α-1 = α -1 k (-1) k = Γ(k -α + 1) Γ(1 -α) k! ∼ 1 Γ(1 -α)k α , k → ∞, it follows that P(X = k) = exp(-θφ(1-)) σ k (θ) k! = 1 A [z k ]Φ θ (z) ∼ C A [z k ](1 -z) α-1 ∼ θ k α , k → ∞,
and (37) is established for 2 < α < 3. For arbitrary non-integer α ∈ (0, ∞) (37) follows from (35) similarly as shown above for 2 < α < 3. For integer α ∈ N (37) follows from (36) and from [START_REF] Flajolet | Analytic Combinatorics[END_REF]p. 387,Eq. (24)]. Thus, (37) holds for arbitrary α ∈ (0, ∞).

We now turn to the asymptotic behavior of the model as N → ∞. If α ≤ 2, then φ ′ (1-) = ∞ and Theorem 2.2 is applicable for all θ ∈ (0, ∞), so the associated symmetric compound Poisson model is in the domain of attraction of the Kingman coalescent. There seems to be no closed expression available for the solution z = z(θ) of the equation θzφ ′ (z) = 1. The case α = 2 is a nice exception where it is easily seen that z(θ

) = 1 -e -1/θ , θ ∈ (0, ∞). Assume now that α > 2. Then φ ′ (1-) = ζ(α -1) < ∞.
In this case the equation θzφ ′ (z) = 1 admits a solution z = z(θ) ∈ (0, 1) if and only if θ > θ c with critical value θ c := 1/φ ′ (1-) < 1. Thus, Theorem 2.2 is not applicable for θ ≤ θ c . Note that φ ′′ 

(1-) = a -1 > 0. Moreover, φ ′ (z) = a -α(1 -z) α-1 , φ ′′ (z) = α(α -1)(1 -z) α-2 , and φ ′ (1-) = a ∈ (1, ∞) and φ ′′ (1-) = ∞. It is readily checked that Φ θ (z) := exp(θφ(z)) = A + B(z -1) + C(1 -z) α + O((1 -z) 2 ), z → 1,
where A := Φ θ (1-) = exp(θ(a -1)), B := Φ ′ θ (1-) = θaA and C := θA. Thus,

P(X = k) := exp(-θφ(1-)) σ k (θ) k! = 1 A [z k ]Φ θ (z) ∼ C A [z k ](1 -z) α ∼ c k α+1
as k → ∞, where c := C/(AΓ(-α)) = θ/Γ(-α). If θa > 1 (supercritical case), then, by Theorem 2.2, the associated symmetric compound Poisson population model is in the domain of attraction of the Kingman coalescent and the coalescence probability c N satisfies c N ∼ (1 + θz 2 φ ′′ (z))/N as N → ∞, where z = z(θ) is the solution of the equation θzφ ′ (z) = 1 in the interval (0, 1). If θa = 1 (critical case) then, by Theorem 2.3, the model is still in the domain of attraction of the Kingman coalescent, and, by Theorem 2.4 c), applied with constants κ = 1 and c = θ/Γ(-α) = 1/(aΓ(-α)), the coalescence probability c N satisfies

c N ∼ 1 aΓ(-α) ∞ 0 x 1-α g(-x) dx g(0) N 2(1-α)/α , N → ∞,
with the density g as defined in Theorem 2.4 c). If 0 < θa < 1 (subcritical case), then, by Theorem 2.5, the model is in the domain of attraction of a discrete-time Λ-coalescent with Λ := u 2 δ u and u := 1 -θφ ′ (1-) = 1 -θa ∈ (0, 1).

The following last example has much in common with the polylog model (Example 4.6). 

= log(Z(z)), |z| < 1. Note that σ k (θ)/k! = [z k ] exp(θφ(z)) = [z k ](Z(z)) θ ≥ θ/(k + 1) α for all k ∈ N and all θ ∈ (0, ∞). Therefore φ k = lim θ→0 σ k (θ)/θ ≥ k!/(k + 1) α > 0 for all k ∈ N, so φ is a power series of the form φ(z) = ∞ k=1 φ k z k /k! with strictly positive coefficients φ k > 0, k ∈ N. For α = 1 we have φ(z) = log(-log(1 -z)/z) and for α → 0 we approach the Dirichlet model (Example 4.2) with φ(z) = -log(1 -z), |z| < 1. For 2 < α < 3 we have Z(z) = ζ(α) + ζ(α -1)(z -1) + Γ(1 -α)(1 -z) α-1 + O((1 -z) 2 ), z → 1. Proof. Since f (t) = f (-t) for t ∈ R it suffices to find some ε 0 > 0 such that sup ε<t≤π f (t) ≤ f (ε) for all ε ∈ [0, ε 0 ]. Obviously, f (0) -f (t) = ∞ m=1 a m (1 -cos(mt)) ≥ a 1 ( 1 
-cos t) > 0 for t ∈ (0, 2π), so f (t) < f (0) for t ∈ (0, 2π). For arbitrary but fixed t ∈ (-∞, log q), the map (m, k) → a m (-1) k (mt) 2k /(2k)! is integrable with respect to the counting measure ε

N ⊗ ε N0 on N × N 0 , since ∞ m=1 ∞ k=0 a m (-1) k (mt) 2k (2k)! ≤ ∞ m=1 a m ∞ l=0 (mt) l l! = ∞ m=1 a m e mt ≤ ∞ m=1 a m q m < ∞
by assumption. Thus, by Fubini's theorem,

f (t) = ∞ m=1 a m cos(mt) = ∞ m=1 a m ∞ k=0 (-1) k (mt) 2k (2k)! = ∞ k=0 (-1) k t 2k (2k)! ∞ m=1 m 2k a m .
so on the interval (-∞, log q) the function f is a power series in t. Together with f ′ (0) = 0 and f ′′ (0) = -∞ m=1 m 2 a m < 0 it follows that there exists a constant δ ∈ (0, π) such that f is nonincreasing on [0, δ]. The continuous function f takes its supremum on the compact set

[δ, π], so sup t∈[δ,π] f (t) = f (t 0 ) for some t 0 ∈ [δ, π]. Now choose ε 0 ∈ (0, δ) sufficiently small such that f (ε 0 ) > f (t 0 ), which is possible since f is continuous and f (0) > f (t 0 ). Now let ε ∈ [0, ε 0 ] arbitrary but fixed. For t ∈ (ε, δ] we obtain f (t) ≤ f (ε), since f is non-increasing on [ε, δ]. For t ∈ [δ, π] we have f (t) ≤ f (t 0 ) < f (ε 0 ) ≤ f (ε), since f is non-increasing on [ε, ε 0 ]. Thus sup ε<t≤π f (t) ≤ f (ε).2
In the following we provide some results for certain α-stable distributions, which, to the best of the authors knowledge, are not stated or at least quite hard to find in the literature. Our first result concerns half-sided moments. Lemma 5.2 Fix d > 0 and 1 < α < 2. Let S be an α-stable random variable with characteristic function t → exp(d(-it) α ), t ∈ R, and let g denote the density of S. Then, for all β ∈ (-1, 0),

E((-S) β 1 {S≤0} ) = ∞ 0 x β g(-x) dx = d β/α Γ(β) Γ(β/α) .
Moreover, P(S ≤ 0) = 1/α and g(0

) = d -1/α |Γ(-1/α)| -1 .
Proof. Since S has the same distribution as d 1/α S 0 , where S 0 is a random variable with characteristic function t → exp((-it) α ), t ∈ R, we may assume without loss of generality that d = 1. By the Fourier inversion formula,

∞ 0 x β g(-x) dx = ∞ 0 x β 1 2π ∞ -∞ exp(itx + (-it) α ) dt dx = 1 2π ∞ -∞ exp((-it) α ) ∞ 0 x β exp(itx) dx dt = Γ(β + 1) 2π ∞ -∞ exp((-it) α )(-it) -β-1 dt = Γ(β + 1) 2π Γ(-β/α) α 2 sin(-πβ/α) = Γ(β + 1) αΓ(1 + β/α) = Γ(β) Γ(β/α) ,
where the second last equality follows from Euler's reflection formula sin(πz)Γ(z) = π/Γ(1 -z), applied to the point z := -β/α < 1/α < 1. The relation P(S ≤ 0) = 1/α follows by taking the limit β → 0 in the second last fraction above. Similarly,

g(0) = 1 2π ∞ -∞ exp((-it) α ) dt = 1 2π Γ(1/α) α 2 sin(π/α) = 1 αΓ(1 -1/α) = |Γ(-1/α)| -1 . 2 
Let X 1 , X 2 , . . . be independent copies of a random variable X having distribution [START_REF] Möhle | Total variation distances and rates of convergence for ancestral coalescent processes in exchangeable population models[END_REF]. We provide a weak limiting result for S N := X 1 +• • •+X N , N ∈ N, which holds under the asymptotic assumption (18) on the power series φ. The result provides detailed information on the rate of convergence in terms of the characteristic functions. As an application (see Theorem 5.4) a local limit theorem is obtained which provides information on the convergence rate.

Lemma 5.3 Assume that θrφ ′ (r-) = 1 (critical case). If there exist constants α ∈ (1, 2) and κ = κ(α) > 0 such that the power series φ of the considered compound Poisson model satisfies [START_REF] Möhle | A classification of coalescent processes for haploid exchangeable population models[END_REF], then (S N -N )/N 1/α → S in distribution as N → ∞, where S is an α-stable random variable with characteristic function ϕ(t) := exp(θκr α (-it) α ), t ∈ R. Moreover, there exists a constant C > 0 such that the difference of the characteristic functions ϕ

(S N -N )/N 1/α of (S N -N )/N 1/α and S satisfies |ϕ (S N -N )/N 1/α (t) -ϕ(t)| ≤ |ϕ(t)|(e Ct 2 N 1-2/α -1) (38) 
for all N ∈ N and all t ∈ R. ). Note that we have used that θrφ ′ (r-) = 1 (critical case). Thus, for all t ∈ R, E(e it(S N -N )/B N ) = e log ϕ(t)+O(t 2 N/B 2 N ) = ϕ(t)e O(t 2 N/B 2 N ) ,

where the constant of the O-term so far does not depend on t and N , which implies that (38) holds.

For arbitrary but fixed t we in particular obtain E(e it(S N -N )/B N ) = ϕ(t)(1 + O(N/B 2 N ) = ϕ(t) + O(N/B 2 N ).

Note that N/B 2 N = N 1-2/α → 0 as N → ∞. By the continuity theorem it follows that (S N -N )/N 1/α → S in distribution, where S has characteristic function ϕ.

2

We are now able to verify a local limit theorem which provides information on the rate of convergence.

Theorem 5.4 (strong local limit theorem) Assume that the conditions of Lemma 5.3 are satisfied. Then, the local limit theorem where we choose k N := B N / √ N = N 1/α-1/2 and where ε ∈ (0, π) is a constant, to be determined. Note that the integrals I j , j ∈ {1, 2, 3, 4}, coincide with those on p. 122 of [START_REF] Ibragimov | Independent and Stationary Sequences of Random Variables[END_REF], except for the crucial modification that the constant A on p. 122 in [START_REF] Ibragimov | Independent and Stationary Sequences of Random Variables[END_REF] is replaced by k N satisfying k N ≥ 1 for all N ∈ N and k N → ∞ as N → ∞. We now turn to the estimation of these integrals and will show that I 1 = O(N 1-2/α ) and that I 2 , I 3 and I 4 are smaller than O(N 1-2/α ). (2) As in the proof of Theorem 4.2.1 of [START_REF] Ibragimov | Independent and Stationary Sequences of Random Variables[END_REF] it follows that, for any δ ∈ (0, α), there exist constants c(δ) ∈ (0, ∞) and ε(δ) > 0 not depending on N and a constant N 0 (δ) ∈ N such that |ϕ X (t/B N )| N ≤ e -c(δ)|t| δ for all |t| ≤ ε(δ)B N and all N ≥ N 0 (δ). Thus, choosing δ := α/2 and using the notation c := c(α/2) and ε := ε(α/2), it follows for all N ≥ N 0 (α/2) that

I 2 ≤ k N ≤|t|≤εB N e -c|t| α/2 dt ≤ 2 ∞ k N e -ct α/2 dt ≤ 2 ∞ k N e -c √ t dt ∼ 4 c k N e -c √ k N ,
a quantity being smaller than O(N β ) for any β < 0, so in particular smaller than O(N 1-2/α ).

(3) From [12, Theorem 1.4.2] it follows that there exists a constant q ∈ (0, 1) such that |ϕ X (u)| ≤ q for all u ∈ [ε, π]. Thus, I 3 = B N ε≤|u|≤π |ϕ X (u)| N du ≤ 2πB N q N , a quantity being smaller than O(N β ) for any β < 0.

(4) In order to estimate the integral I 4 define c := θκr α ∈ (0, ∞) and D := -c cos πα 2 ∈ (0, ∞) for convenience. We have 

I 4 =

Theorem 2 . 3 (

 23 critical case, convergence) If θrφ ′ (r-) = 1, then lim N →∞ c N → 0 and, in the sense of [9, Definition 2.1 (a)], the associated symmetric compound Poisson population model is in the domain of attraction of the Kingman coalescent.

  part a) of Theorem 2.4 is established. b) Under the situation b) the local limit theorem lim N →∞ sup k∈N |d N (k)| = 0 holds, where

  and, hence, ν := Ψ(1-) = θφ ′ (1-) < 1 by assumption. Fix k, l ∈ N 0 . Applying[START_REF] Janson | Simply generated trees, conditioned Galton-Watson trees, random allocations and condensation[END_REF] Theorem 19.34 (ii)] (with number of balls m := N -k and number of boxes n := N -l and N → ∞, which implies m/n → 1 =: λ > ν) it follows for arbitrary but fixed k, l ∈ N 0 and θ ∈ (0, ∞) that the partition function Z

Example 4 . 1 (

 41 Wright-Fisher model) For the standard symmetric Wright-Fisher model, φ(z) = z. Therefore, ξ n has a Poisson distribution with parameter θz and σ k

  where X has a Poisson distribution with parameter 1. The solution z(θ) of the equation θz(θ)φ ′ (z(θ)) = 1 is z(θ) = 1/θ. Note that (21) holds with a(θ) := eθ and b kl (θ) := θ -k e -l , k, l ∈ N 0 , θ ∈ (0, ∞). The effective population size N e = 1/c N = N coincides with the actual population size N , a well known result.

Example 4 . 2 (

 42 Dirichlet model) For the symmetric Dirichlet model, φ(z) = -log(1-z), |z| < 1.

Example 4 . 4

 44 Suppose that (see [1, p. 402, Eqs. (50) and (51)])

For a = 1 (

 1 and b > 0) we have φ m = m!b m-1 , m ∈ N, and φ(z) = z/(1 -bz), |z| < 1/b. For a = b = 1 we are back in Example 4.3. For a = 2 we have φ

Example 4 . 5

 45 Suppose that φ m = 1 for all m ∈ N or, equivalently, that φ(z) = e z -1, z ∈ C. Then (see, for example, Comtet[START_REF] Comtet | Advanced Combinatorics[END_REF] Section 3.3, p. 135, Theorem B]) σ n (θ) = n k=1 S(n, k)θ k , n ∈ N, θ ∈ R,where the S(n, k) denote the Stirling numbers of the second kind. In this case the solution z = z(θ) of the equation 1 = θzφ ′ (z) = θze z cannot be expressed in closed form anymore. By Theorem 2.2, µ N,1 → X in distribution, where X has distribution[START_REF] Karlin | Direct product branching processes and related Markov chains. I. Calculations of rates of approach to homozygosity[END_REF], and the model is in the domain of attraction of the Kingman coalescent. The effective population size N e satisfies N e ∼ ̺N with̺ := 1/(1 + θz 2 φ ′′ (z)) = 1/(1 + θz 2 e z ) = 1/(1 + z) < 1.For two further examples where Theorem 2.2 is applicable we refer the reader to[START_REF] Huillet | Correction on 'Population genetics models with skewed fertilities: a forward and backward analysis[END_REF] Examples 1 and 2]. All examples considered so far satisfy φ ′ (r-) = ∞, which implies that for all θ ∈ (0, ∞) the equation θzφ ′ (z) = 1 has a unique real solution z = z(θ) ∈ (0, r). Let us now study examples satisfying φ ′ (r-) < ∞.

Example 4 . 6 (

 46 Polylog model) Fix α ∈ (0, ∞) and suppose that φ is the polylog function, i.e. φ(z) := ∞ m=1 m -α z m , |z| < 1. For α = 1 the polylog model coincides with the Dirichlet model (Example 4.2 with φ(z) = -log(1 -z)). For α → 0 we are back in Example 4.3 whereas for α → ∞ we approach the Wright-Fisher model (Example 4.1).

( 1 -Example 4 . 8 (

 148 ) = ∞ for α ≤ 3 and φ ′′ (1-) = ζ(α -2) -ζ(α -1) < ∞ for α > 3. If θ = θ c (critical case), then by Theorem 2.3, the model is still in the domain of attraction of the Kingman coalescent and, by Theorem 2.4 (part c) applied with α replaced by α -1, so with as k → ∞. If θ > 1/φ ′ (1-) = 2 (supercritical case), then, by Theorem 2.2, the associated compound Poisson model is in the domain of attraction of the Kingman coalescent and the coalescence probability c N satisfies lim N →∞ N c N = 1 + θz 2 φ ′′ (z), where z is the solution of the equation θzφ ′ (z) = 1 in the interval (0, 1). If θ = 2 (critical case), then, by Theorem 2.3, the compound Poisson model is in the domain of attraction of the Kingman coalescent and, by (17), applied with constant c := θ = 2, the coalescence probability satisfies c N ∼ (log N )/N as N → ∞.If θ ∈ (0, 2) (subcritical case), then, by Theorem 2.5, the model is in the domain of attraction of a discrete-time Λ-coalescent with Λ(du) := u 2 δ u and u := 1 -θφ ′ (1-) = 1 -θ/2 ∈ (0, 1).We provide another example satisfying φ ′ (r-) < ∞ and φ ′′ (r-) = ∞. Lamperti model) Fix α ∈ (1, 2) and a ∈ (α, ∞) and assume that φ(z) = az -1 + (1 -z) α . Note that φ 1 = a -α > 0 and φ m = (-1) m (α) m > 0 for m ∈ {2, 3, . . .}. The series φ has radius of convergence r = 1 with φ

Example 4 . 9 (

 49 exp polylog model) Fix α ∈ (0, ∞), let Z(z) := ∞ k=0 z k /(k + 1) α be the polylog function divided by z and define φ(z) :

Proof. (of Lemma 5 . 3 )

 53 Let t ∈ R. By[START_REF] Möhle | A classification of coalescent processes for haploid exchangeable population models[END_REF], the characteristic function ϕ X of the random variable X with distribution[START_REF] Möhle | Total variation distances and rates of convergence for ancestral coalescent processes in exchangeable population models[END_REF] satisfies log ϕ X (t) θ = φ(re it ) -φ(r-) = φ ′ (r-)(re it -r) + κ(r -re it ) α + O((r -re it ) 2 ) = rφ ′ (r-)(e it -1) + κr α (1 -e it ) α + O(r 2 (1 -e it ) 2 ) = rφ ′ (r-)(it + O(t 2 )) + κr α (-it + O(t 2 )) + O(t 2 ) = rφ ′ (r-)it + κr α (-it) α + O(t 2 ), t → 0.For convenience, define B N := N 1/α for all N ∈ N. The characteristic function of (S N -N )/B N satisfies E(e it(S N -N )/B N ) = e -itN/B N (ϕ X (t/B N )) N and, therefore,log E(e it(S N -N )/B N ) = -itN/B N + N log ϕ X (t/B N ) = -itN/B N + N θ rφ ′ (r-)it/B N + κr α (-it/B N ) α + O((t/B N ) 2 ) = -itN/B N 1 -θrφ ′ (r-) + θκr α (-it) α + O(t 2 N/B 2 N ) = θκr α (-it) α + O(t 2 N/B 2 N ) = log ϕ(t) + O(t 2 N/B 2 N

≤ I 1 + I 2 + I 3 + I 4

 1234 sup k∈Z |d N (k)| = O(N 1-2/α ) holds, where d N (k) := |N 1/α P(S N = k)-g((k -N )/N 1/α )| and g denotes the density of the limiting α-stable random variable S defined in Lemma 5.3. Proof. (of Theorem 5.4) We modify the proof of the local limit theorem for lattice distributions of Ibragimov and Linnik [12, Theorem 4.2.1]. By the Fourier inversion formula, S has density g(x) = (2π) -1 ∞ -∞ e -itx ϕ(t) dt, x ∈ R.As in the proof of Lemma 5.3 define B N := N 1/α , N ∈ N. The discrete inversion formula ensures that the integer valued random variableS N := X 1 +• • •+X N has distribution P (S N = k) e -itk/B N (ϕ X (t/B N )) N dt e -it(x+N/B N ) (ϕ X (t/B N )) N dt, k ∈ Z,where we have used the substitution u = t/B N and where we use the notation x := (k -N )/B N . Thus,d N (k) = |B N P(S N = k) -g(x)| = 1 2π πB N -πB N e -itx e -itN/B N (ϕ X (t/B N )) N -∞ -∞ e -itx ϕ(t) dt ≤ πB N -πB N |e -itN/B N (ϕ X (t/B N )) N -ϕ(t)| dt + |t|>πB N |ϕ(t)| dt |e -itN/B N (ϕ X (t/B N )) N -ϕ(t)| dt, I 2 := k N ≤|t|≤εB N |ϕ X (t/B N )| N dt,I 3 := εB N ≤|t|≤πB N |ϕ X (t/B N )| N dt, and I 4 := |t|>k N |ϕ(t)| dt,

( 1 ) 2 Ne 2 Nt 2

 1222 By (38) there exists a constant C > 0 (not depending on t and N ) such that|e -itN/B N (ϕ X (t/B N )) N -ϕ(t)| ≤ |ϕ(t)|(e Ct 2 N/B 2 N -1), N ∈ N, t ∈ R.Applying the inequality ex -1 ≤ xe x , x ∈ R, to the point x := Ct 2 N/B 2 N yields |e -itN/B N (ϕ X (t/B N )) N -ϕ(t)| ≤ |ϕ(t)|Ct 2 N B Ct 2 N/B 2 N , N ∈ N, t ∈ R.For all |t| ≤ k N we have Ct 2 N/B 2 N ≤ C and it follows that|e -itN/B N (ϕ X (t/B N )) N -ϕ(t)| ≤ Ce C N B |ϕ(t)|, N ∈ N, |t| ≤ k N .Since, by (26),∞ -∞ t 2 |ϕ(t)| dt < ∞, it follows for all N ∈ N that I 1 ≤ Ce C (N/B 2 N ) ∞ -∞ t 2 |ϕ(t)| dt = O(N 1-2/α ) as required.

2 ∞k

 2 |t|>k N e cRe((-it) α ) dt = |t|>k N e c|t| α cos πα 2 dt = 2 ∞ k N e -Dt α dt.Noting that k N ≥ 1 for all N ∈ N and that α > 1 it follows that I 4 ≤ N e -Dt dt = (2/D)e -Dk N , again being smaller than O(N β ) for any β < 0. 2

  t α cos πα Note that g is bounded, i.e. g := sup x∈R |g(x)| < ∞. Moreover (see, for example, Ibragimov and Linnik [12, Theorem 4.2.1]) the local limit theorem lim N →∞ sup k∈Z |d N (k)| = 0 holds, where d N (k

	2	cos xt + cΓ(-α)t α sin πα 2	dt,	x ∈ R.

  and[START_REF] Sagitov | Convergence to the coalescent with simultaneous multiple mergers[END_REF] follows immediately. The proof of part c) is complete.

2

Proof. (of Theorem 2.5) Without loss of generality assume that φ has radius of convergence r = 1. Otherwise consider the new power series φ * defined via φ * (z) := φ(rz), |z| < 1, and note that the coefficients σ * k (θ) of the new power series φ * and the coefficients σ k (θ) of the original power series φ are related via σ * k
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constants κ := Γ(1 -α) and c := θ c , the coalescence probability c N satisfies

where, in the first case α ∈ (3, ∞),

and, in the third case α ∈ (2, 3), g denotes the density of an (α -1)-stable random variable with characteristic function

Finally, if 0 < θ < θ c (subcritical case), then, by Theorem 2.5, the model is in the domain of attraction of a discrete-time Λ-coalescent with Λ := u 2 δ u and u

The following example is a slight modification of the polylog model. In comparison to the polylog model it has the advantage that for integer parameter α explicit expressions for the power series φ are available. 

It does not come as a surprise that this model behaves very similar as the polylog model. We therefore leave the details to the reader and provide more information exemplary only for α = 3, in which case the explicit formula

is available. We have

and, for θ ∈ (0, ∞),

where

Taking the θ-power yields

as z → 1. Using standard singularity analysis (see Flajolet and Sedgewick [7, p. 385, Theorem VI.2] it follows that

as k → ∞. The same asymptotic result for P(X = k) is checked similarly for arbitrary α ∈ (0, ∞). Let us now discuss the asymptotic behavior of the model. If α ≤ 2, then φ ′ (1-) = ∞, so Theorem 2.2 is applicable for all θ ∈ (0, ∞), which implies that the associated compound Poisson model is in the domain of attraction of the Kingman coalescent. Assume now that α > 2. Then φ

In this case the equation θzφ ′ (z) = 1 admits a solution z = z(θ) ∈ (0, 1) if and only if θ > θ c with critical value θ c := 1/φ ′ (1-) ∈ (0, ∞). Thus, Theorem 2.2 is not applicable for θ ≤ θ c . If θ = θ c (critical case), then, by Theorem 2.3, the model is still in the domain of attraction of the Kingman coalescent and, by Theorem 2.4, part c) applied with α replaced by α -1, so with constants κ

where, in the first case α ∈ (2, 3), g denotes the density of an (α -1)-stable random variable with characteristic function t → exp(θ c Γ(1 -α)(-it) α-1 ), t ∈ R, and in the third case α ∈ (3, ∞), 

Appendix

The following simple but useful lemma is needed in the proof of Theorem 2.2.

Lemma 5.1 Let a 1 , a 2 , . . . ∈ [0, ∞) such that ∞ m=1 a m q m < ∞ for some q ∈ (1, ∞). Define f (t) := ∞ m=1 a m cos(mt), t ∈ R. If a 1 > 0 then there exists ε 0 > 0 such that sup ε<|t|≤π f (t) ≤ f (ε) for all ε ∈ [0, ε 0 ].