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On two multistable extensions of stable Lévy

motion and their semimartingale

representation
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Abstract

We compare two definitions of multistable Lévy motions. Such pro-

cesses are extensions of classical Lévy motion where the stability index

is allowed to vary in time. We show that the two multistable Lévy mo-

tions have distinct properties: in particular, one is a pure-jump Markov

process, while the other one satisfies neither of these properties. We

prove that both are semimartingales and provide semimartingale de-

compositions.
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1 Background on multistable Lévy motions

The class of multistable processes was introduced in [4] and further developed
in [5, 6, 7, 8, 10]. These processes extend the well-known stable processes
(see, e.g. [11]) by letting the stability index α evolve in “time”. Such models
are useful in various applications where the data display jumps with varying
intensity, such as financial records, EEG or natural terrains. Three paths
have been explored so far to define multistable processes: the first one uses
a field of stable processes X(t, α), and obtains a multistable process by con-
sidering a “diagonal” Y (t) = X(t, α(t)) on this field. This is the approach
of [4, 6]. In [5], multistable processes are obtained from moving average
processes. Finally, in [8, 10], multistable measures are used for this purpose.

In this work, we shall be interested only in multistable Lévy motions,
which are the simplest examples of multistable processes. These multistable
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extensions of α−stable Lévy motion were constructed in [4, 6] using re-
spectively Poisson and Fergusson-Klass-LePage representations, while similar
processes were defined in [8, 10] by their characteristic functions. In order to
give precise definitions, let us set the following notations, which will be used
throughout the paper:

• α : R → [c, d] ⊂ (0, 2) is a continuous function.

• a : R → R is a C1 function.

• Π is a Poisson process on [0, T ] × R, T > 0, with mean measure the
Lebesgue measure L.

• (Γi)i≥1 is a sequence of arrival times of a Poisson process with unit
arrival time.

• (Vi)i≥1 is a sequence of i.i.d. random variables with uniform distribution
on [0, T ].

• (γi)i≥1 is a sequence of i.i.d. random variables with distribution P (γi =
1) = P (γi = −1) = 1/2.

The three sequences (Γi)i≥1, (Vi)i≥1, and (γi)i≥1 are assumed to be indepen-
dent.

The following process, that we shall call field-based multistable Lévy mo-

tion, is considered in [4]:

LFB(t) = a(t)C
1/α(t)
α(t)

∑

(X,Y)∈Π

1[0,t](X)Y
<−1/α(t)> (t ∈ [0, T ]), (1)

where Y <−1/α(t)> := sign(Y )|Y |−1/α(t) and

Cu =

(
∫ ∞

0

x−u sin(x)dx

)−1

. (2)

Note that, when α(t) equals the constant α for all t, LFB is simply the
Poisson representation of α−stable Lévy motion. If one considers instead the
Fergusson-Klass-LePage representation of Lévy motion, then it is natural to
define LFB as follows:

LFB(t) = a(t)C
1/α(t)
α(t) T 1/α(t)

+∞
∑

i=1

γiΓ
−1/α(t)
i 1[0,t](Vi) (t ∈ [0, T ]). (3)

This is the approach of [6], where it is proven that (1) and (3) indeed
define the same process, and that the joint characteristic function of LFB

equals:
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E

(

e
i

m∑

j=1
θjLFB(tj)

)

= exp



−2

∫

[0,T ]

∫ +∞

0

sin2





m
∑

j=1

θja(tj)
C

1/α(tj )

α(tj )

2y1/α(tj)
1[0,tj ](x)



 dy dx





(4)
where m ∈ N, (θ1, . . . , θm) ∈ R

m, (t1, . . . , tm) ∈ R
m.

In [8, 10] another path is followed to define a multistable extension of Lévy
motion. Considering the characteristic function of α−stable Lévy motion L:

E(eiθL(t)) = exp (−t|θ|α) ,
one defines the process LII by its joint characteristic function as follows:

E

(

exp

(

i

d
∑

j=1

θjLII(tj)

))

= exp



−
∫

∣

∣

∣

∣

∣

d
∑

j=1

a(tj)θj1[0,tj ](s)

∣

∣

∣

∣

∣

α(s)

ds



 . (5)

It is clear from this definition that LII has independent increments (this is
why we call this version the independent increments multistable Lévy motion).
This is a strong difference with LFB, which is not even a Markov process.
The construction based on multistable measures thus offers the advantage of
retaining some properties of the classical Lévy motion: obviously, increments
stationarity cannot hold anymore, but we still deal with an additive process.
This is not the case for the field-based Lévy motion. However, a drawback
of (5) is that, while LFB coincides, at each fixed time, with a Lévy motion,
this is not true of LII .

The aim of this work is to elucidate the links between LFB and LII

(section 2), to prove that both processes are semimartingales and to give
semimartingales decompositions of these processes (section 3).

2 Series representations of independent incre-

ments multistable Lévy Motion

While three characterizations of LFB are known, namely the Poisson and
Fergusson-Klass-LePage representations and its characteristic function, only
the latter is available for LII . In this section, we provide the series represen-
tation of independent increments multistable Lévy motion.

2.1 Poisson series representation

Proposition 1. LII admits the following representation in law for t ∈ [0, T ]:

LII(t) = a(t)
∑

(X,Y )∈Π

C
1/α(X)
α(X) 1[0,t](X)Y <−1/α(X)>. (6)
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Proof. To simplify, we take a(t) ≡ 1 in this proof. Call L̃ the process on the
right hand side of (6). Proposition 4.2 in [4] entails that the series converges,
and that its marginal characteristic function reads:

E(eiθL̃(t)) = exp

(

−2

∫ ∫

sin2

(

1

2
θC

1/α(s)
α(s) 1[0,t](s)|y|−1/α(s)

)

dsdy

)

,

(an integral sign without bounds means integration over the whole domain).

We first prove that this quantity is equal to exp
(

−
∫ t

0
|θ|α(s)ds

)

. One com-

putes:

∫

2 sin2

(

1

2
θC

1/α(s)
α(s) 1[0,t](s)|y|−1/α(s)

)

dy =

∫

(

1− cos(θC
1/α(s)
α(s) 1[0,t](s)|y|−1/α(s))

)

dy

= α(s)|θ|α(s)Cα(s)1[0,t](s)

∫

(1− cos(z))

|z|α(s)+1
dz

= |θ1[0,t](s)|α(s),

where we have used the change of variables z = θC
1/α(s)
α(s) 1[0,t](s)y

−1/α(s) and
the fact that

α(s)

∫

(1− cos(z))

|z|α(s)+1
dz =

1

Cα(s)

.

Thus,

E(eiθL̃(t)) = exp

(

−
∫ ∫

2 sin2

(

1

2
θC

1/α(s)
α(s) 1[0,t](s)y

−1/α(s)

)

dsdy

)

= exp

(

−
∫

|θ1[0,t](s)|α(s)ds
)

= exp

(

−
∫ t

0

|θ|α(s)ds
)

.

The process defined by the series on the right hand side of (6) clearly has
independent increments. This fact and the above computation ensures that
it coincides in law with LII .

2.2 Fergusson-Klass-Le Page series representation

To simplify the notation, we take T = 1 in this section.

Proposition 2. LII admits the following representation in law:

LII(t) = a(t)
∞
∑

i=1

C
1/α(Vi)
α(Vi)

γiΓ
−1/α(Vi)
i 1(Vi≤t). (7)
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Proof. We set again a(t) ≡ 1. Let us first prove that the marginal character-
istic function of the right hand side Y of (7) is

E(eiθY (t)) = exp

(

−
∫ t

0

|θ|α(u)du
)

. (8)

Set
f(X,mX) = C

1/α(U)
α(U) γX−1/α(U)

1(U≤t)

where mX = (γ, U). Using the Marking Theorem (see [3, p. 55]), since
P(γ = 1) = P(γ = −1) = 1/2, one computes:

E(e−iθY (t)) = exp

(
∫ ∫

(1− e−f(x,m))dxP(x, dm)

)

= exp

(∫ ∫

(1− e
−iθC

1/α(u)
α(u)

γx−1/α(u)
1(u≤t))dxP(x, dm)

)

= exp

(

−1

2

∫ ∞

0

∫ ∞

0

((

1− eiθx
−1/α(u)

1(u≤t)

)

+
(

1− e−iθx−1/α(u)
1(u≤t)

))

dxdu

)

= exp

(

−
∫ ∞

0

∫ ∞

0

(

1− eiθx
−1/α(u)

1(u≤t) + e−iθx−1/α(u)
1(u≤t)

2

)

dxdu

)

= exp

(

−
∫ ∞

0

∫ ∞

0

(1− cos(θC
1/α(u)
α(u) 1(u≤t)x

−1/α(u)))dxdu

)

(9)

= exp

(

−
∫ t

0

|θ|α(u)du
)

(10)

where the passage from (9) to (10) follows along the same lines as in the
proof of Proposition 1. Now,

E
(

e−iθ(Y (t)−Y (s))
)

= exp

(
∫ ∫

(1− e
−iθC

1/α(u)
α(u)

γx−1/α(u)
1(s<u≤t))dxP(x, dm)

)

= exp

(

−1

2

∫ ∞

0

∫ ∞

0

((

1− eiθx
−1/α(u)

1(s<u≤t)

)

+
(

1− e−iθx−1/α(u)
1(s<u≤t)

))

dxdu

)

= exp

(

−
∫ ∞

0

∫ ∞

0

(

1− eiθx
−1/α(u)

1(s<u≤t) + e−iθx−1/α(u)
1(s<u≤t)

2

)

dxdu

)

= exp

(

−
∫ ∞

0

∫ ∞

0

(1− cos(θC
1/α(u)
α(u) 1(s<u≤t)x

−1/α(u)))dxdu

)

= exp

(

−
∫ ∞

0

|1(s,t](u)θ|α(u)du
)

= exp

(

−
∫ t

s

|θ|α(u)du
)

.

This entails independence of the increments and ends the proof.
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3 Multistable Lévy motions are semimartingales

3.1 Case of independent increments multistable Lévy

motion

Proposition 3. LII is a semimartingale.

Proof. We use Theorem 4.14 in chapter II of [9]. Indeed, LII is an in-
dependent increments process, and it suffices to verify that the function
t 7→ E(eiθY (t)) has finite variations on finite intervals for each θ. This is
obvious in view of (8).

It is easy to check that the system of generating triplets (in the notation
of [12]) of LII is (0, ν, 0), with ν(dx, dz) = |z|−α(x)−1dzdx. If α ranges in
[c, d] ⊂ (0, 1), then LII is a finite variation process, while if α ranges in

[c, d] ⊂ (1, 2), then
∫ 1

0

∫∞

1
|z|ν(dx, dz) =

∫ 1

0

∫∞

1
|z|−α(x)dxdz < ∞, which

entails that LII is a martingale. The proof is a simple adaptation of the
one for stable processes and is left to the reader. In general, the following
decomposition holds:

Proposition 4.

LII(t) = A(t) +M(t),

where

A(t) = a(t)
∑

(X,Y )∈Π,|Y |<1

C
1/α(X)
α(X) 1[0,t](X)Y <−1/α(X)>

is a finite variation process and

M(t) = a(t)
∑

(X,Y )∈Π,|Y |≥1

C
1/α(X)
α(X) 1[0,t](X)Y <−1/α(X)>

is a martingale.

Proof. That A has finite variation is a direct consequence of the fact that it
is almost surely composed of a finite number of (jump) terms.
To prove that M is a martingale, it is sufficient to show that it is in L1(Ω) for

all t. Note that the jumps of M are bounded by K = supt∈[0,T ] a(t) supb∈[c,d]C
1/b
b .

As a consequence, with obvious notations,

∫ t

0

∫ ∞

1

|z|νM (dx, dz) ≤
∫ t

0

∫ K

1

|z|ν(dx, dz) = 2

∫ t

0

∫ K

1

|z|−α(x)dx dz < ∞.

This entails that, for all t, M(t) has finite mean (see, e.g. [12, Theorem 25.3].

Remarks
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• A corresponding decomposition holds of course for the Fergusson-Klass-
LePage representation, i.e.:

LII(t) = A′(t) +M ′(t),

where

A′(t) = a(t)
∞
∑

i=1,Γi<1

C
1/α(Ui)
α(Ui)

γiΓ
−1/α(Ui)
i 1(Ui≤t)

has finite variation and

M ′(t) = a(t)

∞
∑

i=1,Γi≥1

C
1/α(Ui)
α(Ui)

γiΓ
−1/α(Ui)
i 1(Ui≤t)

is a martingale.

• As is well-known, the decomposition above is not unique. Another
decomposition of interest is the following:

LII(t) = M1(t) + A1(t)

with

M1(t) = a(t)

∞
∑

i=1,α(Ui)>
1
i

C
1/α(Ui)
α(Ui)

γiΓ
−1/α(Ui)
i 1(Ui≤t)

is a martingale and

A1(t) = a(t)

∞
∑

i=1,α(Ui)<
1
i

C
1/α(Ui)
α(Ui)

γiΓ
−1/α(Ui)
i 1(Ui≤t)

is an adapted process with finite variations.

3.2 Case of field-based multistable Lévy motion

LFB is not an independent increments process, and, contrarily to what its
definition might suggest at first sight, it is not a pure jump process (see
below for a more precise statement). Thus it is not immediately obvious
that it is indeed a semimartingale. We shall use the characterization of
semimartingales as “good integrators” (see, e.g. [2, 13]) to prove this fact.
More precisely, fix t > 0 and consider simple predictable processes ξ of the
form

ξ(u) = ξ01{0}(u) +
n
∑

k=1

ξk1(sk,tk ](u)
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where 0 ≤ s1 < t1 ≤ s2 < t2 ≤ ... ≤ sn < tn = t, ξk ∈ Fsk and |ξk| ≤ 1 a.s.
for all 0 ≤ k ≤ n. The integral of ξ with respect to a process Y is:

IY (ξ) =
n
∑

k=1

ξk(Ytk − Ysk).

It is well known that Y is a semimartingale if and only if the family {IY (ξ), |ξ| ≤
1, ξ is a simple predictable process} is bounded in probability.

In fact, we shall establish the semimartingale property for a more general
class of processes defined through Ferguson-Klass-LePage representations as
follows:

X(t) = a(t)C
1/α(t)
α(t)

∞
∑

i=1

γiΓ
−1/α(t)
i f(t, Vi), (11)

where the function f is such that, for all t,
∫ T

0
|f(t, x)|α(t) dx < ∞, and give

conditions on the kernel f ensuring that X is a semimartingale.

Theorem 5. Let X be defined by (11), with α a C1 function. Assume that X
is a càdlàg adapted process, and that there exists L∞ a positive constant such

that for all (t, x) ∈ R × [0, T ], |f(t, x)| ≤ L∞. Assume in addition that, for

all x ∈ E, the function u 7→ f(u, x) has finite variation on finite intervals,

with total variation V f(., x) verifying

∫ T

0

|V f(., x)|p dx < +∞ (12)

for some p ∈ (d, 2). Then X is a semimartingale.

Proof. We will show that X(t)

a(t)C
1/α(t)
α(t)

is a semimartingale. Both processes t 7→

γ1Γ
−1/α(t)
1 and t 7→ f(t, V1) have finite variation, thus the same holds for

t 7→ γ1Γ
−1/α(t)
1 f(t, V1). We shall prove that Y (t) =

∞
∑

i=2

γiΓ
−1/α(t)
i f(t, Vi) is a

semimartingale.
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One computes

IY (ξ) =

n
∑

k=1

ξk(Ytk − Ysk)

=
n
∑

k=1

ξk

+∞
∑

i=2

γi

(

Γ
−1/α(tk)
i f(tk, Vi)− Γ

−1/α(sk)
i f(sk, Vi)

)

=

n
∑

k=1

ξk

+∞
∑

i=2

γi

(

Γ
−1/α(tk)
i − Γ

−1/α(sk)
i

)

f(tk, Vi)

+

n
∑

k=1

ξk

+∞
∑

i=2

γiΓ
−1/α(sk)
i (f(tk, Vi)− f(sk, Vi))

=: A +B.

Let K > 0. We need to control P (|IY (ξ)| > K).
For the term A, we shall use the mean value theorem: there exists a sequence
of random variables wk

i ∈ (sk, tk) such that

Γ
−1/α(tk)
i − Γ

−1/α(sk)
i = (tk − sk)

α′(wk
i )

α2(wk
i )
(log Γi)Γ

−1/α(wk
i )

i .

One has

P

(∣

∣

∣

∣

∣

n
∑

k=1

ξk

+∞
∑

i=2

γi

(

Γ
−1/α(tk)
i − Γ

−1/α(sk)
i

)

f(tk, Vi)

∣

∣

∣

∣

∣

> K

)

= P

(∣

∣

∣

∣

∣

+∞
∑

i=2

γi

n
∑

k=1

ξk

(

(tk − sk)
α′(wk

i )

α2(wk
i )
(log Γi)Γ

−1/α(wk
i )

i

)

f(tk, Vi)

∣

∣

∣

∣

∣

p

> Kp

)

≤ 1

Kp
E

[∣

∣

∣

∣

∣

+∞
∑

i=2

γi

n
∑

k=1

ξk

(

(tk − sk)
α′(wk

i )

α2(wk
i )
(log Γi)Γ

−1/α(wk
i )

i

)

f(tk, Vi)

∣

∣

∣

∣

∣

p]

.

As in the proof of Proposition 4.9 of [7], we use Theorem 2 of [1] (note that
random variables wk

i are independent of the (γj)j). Since p<2,
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P

(∣

∣

∣

∣

∣

n
∑

k=1

ξk

+∞
∑

i=2

γi

(

Γ
−1/α(tk)
i − Γ

−1/α(sk)
i

)

f(tk, Vi)

∣

∣

∣

∣

∣

> K

)

≤ 2

Kp

+∞
∑

i=2

E

[∣

∣

∣

∣

∣

γi

n
∑

k=1

ξk

(

(tk − sk)
α′(wk

i )

α2(wk
i )
(log Γi)Γ

−1/α(wk
i )

i

)

f(tk, Vi)

∣

∣

∣

∣

∣

p]

≤ 2

Kp

+∞
∑

i=2

E

[(

n
∑

k=1

(tk − sk)
sups∈[0,t] |α′(s)|

c2
|log Γi| (Γ−1/c

i + Γ
−1/d
i )L∞

)p]

≤ 2

(

L∞t sups∈[0,t] |α′(s)|
Kc2

)p +∞
∑

i=2

E
[∣

∣

∣
log Γi(Γ

−1/c
i + Γ

−1/d
i )

∣

∣

∣

p]

,

where the infinite sum in the last line above converges since p > d. Let us
now consider the second term B of IY (ξ) :

P

(∣

∣

∣

∣

∣

n
∑

k=1

ξk

+∞
∑

i=2

γiΓ
−1/α(sk)
i (f(tk, Vi)− f(sk, Vi))

∣

∣

∣

∣

∣

> K

)

≤ 1

Kp
E

[∣

∣

∣

∣

∣

+∞
∑

i=2

γi

n
∑

k=1

ξkΓ
−1/α(sk)
i (f(tk, Vi)− f(sk, Vi))

∣

∣

∣

∣

∣

p]

.

We use again Theorem 2 of [1] :

P

(∣

∣

∣

∣

∣

n
∑

k=1

ξk

+∞
∑

i=2

γiΓ
−1/α(sk)
i (f(tk, Vi)− f(sk, Vi))

∣

∣

∣

∣

∣

> K

)

≤ 2

Kp

+∞
∑

i=2

E

[∣

∣

∣

∣

∣

n
∑

k=1

ξkΓ
−1/α(sk)
i (f(tk, Vi)− f(sk, Vi))

∣

∣

∣

∣

∣

p]

≤ 2

Kp

+∞
∑

i=2

E

[(

n
∑

k=1

(

Γ
−1/c
i + Γ

−1/d
i

)

|f(tk, Vi)− f(sk, Vi)|
)p]

≤ 2

Kp

+∞
∑

i=2

E

[

(

Γ
−1/c
i + Γ

−1/d
i

)p
(

n
∑

k=1

|f(tk, Vi)− f(sk, Vi)|
)p]

≤ 2

Kp

+∞
∑

i=2

E
[(

Γ
−1/c
i + Γ

−1/d
i

)p

|V f(., Vi)|p
]

=
2

Kp

+∞
∑

i=2

E
[(

Γ
−1/c
i + Γ

−1/d
i

)p]

E [|V f(., Vi)|p]

=
2

Kp
E [|V f(., V1)|p]

+∞
∑

i=2

E
[(

Γ
−1/c
i + Γ

−1/d
i

)p]

,

10



where, in the last line above, the first expectation is finite by assumption
(12) and the infinite sum converges converges because p > d.

We have thus shown that P (|IY (ξ)| > K) ≤ C
Kp for some constant C, as

required.

Corollary 6. Assume α is a C1 function. Then the field-based multistable

Lévy motion is a semimartingale.

The result above does not give a semimartingale decomposition of LFB.
The following theorem does so. In addition, it elucidates the links between
the two multistable Lévy motions:

Theorem 7. Assume α is a C1 function. Almost surely, for all t,

LFB(t) = A(t) + LII(t), (13)

where A is the finite variation process defined by:

A(t) =

∫ t

0

+∞
∑

i=1

γi
d
(

C
1/α(.)
α(.) Γ

−1/α(.)
i

)

dt
(s)1[0,s[(Vi)ds. (14)

From a heuristic point of view, this result states that, at all jumps points,
both Lévy multistable motions vary by the same amount. “In-between”
jumps, however, LII does not change (it is a pure jump process), while LFB

moves in a continuous fashion (and thus is not a pure jump process).

Proof. For the sake of notational simplicity, let:

b(t) = C
1/α(t)
α(t) ,

gi(t) = C
1/α(t)
α(t) Γ

−1/α(t)
i = b(t)Γ

−1/α(t)
i ,

di(t) = g′i(t) = b′(t)Γ
−1/α(t)
i +

α′(t)b(t)

α2(t)
Γ
−1/α(t)
i ln Γi,

ei(t) = b′(t)i−1/α(t) +
b(t)α′(t)

α2(t)
i−1/α(t)(ln i).

We wish to prove that (again, we set a(t) ≡ 1):

C
1/α(t)
α(t)

+∞
∑

i=1

γiΓ
−1/α(t)
i 1[0,t](Vi) =

∫ t

0

+∞
∑

i=1

γig
′
i(s)1[0,s[(Vi)ds+

+∞
∑

i=1

γiC
1/α(Vi)
α(Vi)

Γ
−1/α(Vi)
i 1[0,t](Vi).

Let

DN(s) =
N
∑

i=1

γidi(s)1[0,s[(Vi),

11



and

D(s) =
+∞
∑

i=1

γidi(s)1[0,s[(Vi).

Finally, write:

EN(s) =
N
∑

i=1

γiei(s)1[0,s[(Vi),

and

E(s) =
+∞
∑

i=1

γiei(s)1[0,s[(Vi).

The function s 7→ γidi(s)1[0,s[(Vi) is continuous and differentiable on (Vi, 1),
and vanishes on [0, Vi].

Choose A ∈ R such that ∀t ∈ (0, 1), |b′(t)| ≤ A , |α′(t)b(t)
α2(t)

| ≤ A and |α′(t)| ≤
A.
Case d < 1:
Fix 1 > d̂ > d and i0 ∈ N such that, for i ≥ i0,

(1+ln i)

i1/d
≤ 1

i1/d̂
. Then, for all

s ∈ [0, 1] and p ≥ p0,

q
∑

i=p

γiei(s)1[0,s[(Vi) ≤
q
∑

i=p

A
(1 + ln i)

i1/d

≤
q
∑

i=p

A
1

i1/d̂

≤ A
+∞
∑

i=p

1

i1/d̂

≤ Ap1−1/d̂.

The uniform Cauchy criterion entails that EN(s) converges uniformly on [0, 1]
to E(s).
Case d ≥ 1:
Set

Ej
α(s) =

2j+1−1
∑

i=2j

γiei(s)1[0,s[(Vi),

12



and b(j) = jA(1+(j+1) ln 2)

2j/d

√
2j. Consider

E(j) =

{

sup
s∈[0,1]

|Ej
α(s)| ≤ j

A(1 + (j + 1) ln 2)

2j/d

√
2j

}

=

{

sup
s∈[0,1]

|Ej
α(s)| ≤ b(j)

}

.

Fix d̂ > d ≥ 1 and i0 ∈ N such that, for i ≥ i0,
(1+ln i) ln i

i1/d
≤ 1

i1/d̂
. Let

δ > 1
2
+ 1

d
− 1

d̂
. Define the step function αj(s) =

[2jδ]−1
∑

k=0

α( k
[2jδ]

)1[ k

[2jδ ]
, k+1

[2jδ ]
[(s).

For all s ∈ [0, 1],

|αj(s)− α(s)| =

[2jδ]−1
∑

k=0

|α( k

[2jδ]
)− α(s)|1[ k

[2jδ ]
, k+1

[2jδ ]
[(s)

≤ A

[2jδ]
,

and thus

sup
s∈[0,1]

|αj(s)− α(s)| ≤ A

[2jδ]
.

Set

Ej
αj
(s) = a′(s)

2j+1−1
∑

i=2j

γii
−1/αj (s)1[0,s[(Vi)+

a(s)α′(s)

α2(s)

2j+1−1
∑

i=2j

γii
−1/αj (s)(ln i)1[0,s[(Vi).

Then,

Ej
α(s)−Ej

αj
(s) = a′(s)

2j+1−1
∑

i=2j

γi
(

i−1/α(s) − i−1/αj (s)
)

1[0,s[(Vi)

+
a(s)α′(s)

α2(s)

2j+1−1
∑

i=2j

γi(ln i)
(

i−1/α(s) − i−1/αj(s)
)

1[0,s[(Vi).

The finite increments theorem entails that there exists αi(s) ∈ [αj(s), α(s)]
(or in [α(s), αj(s)]) such that

Ej
α(s)− Ej

αj
(s) = a′(s)(α(s)− αj(s))

2j+1−1
∑

i=2j

γi
ln i

(αi(s))2
i−1/αi(s)

1[0,s[(Vi) +

a(s)α′(s)

α2(s)
(α(s)− αj(s))

2j+1−1
∑

i=2j

γi
(ln i)2

(αi(s))2
i−1/αi(s)

1[0,s[(Vi),

13



and thus

|Ej
α(s)− Ej

αj
(s)| ≤ A2

[2jδ]

2j+1−1
∑

i=2j

ln i(1 + ln i)

d2
i−1/d

≤ A2

[2jδ]d2

2j+1−1
∑

i=2j

1

i1/d̂

≤ A2

[2jδ]d2
2j

2j/d̂
.

Choose J0 ∈ N such that, for all j ≥ J0,

sup
s∈[0,1]

|Ej
α(s)−Ej

αj
(s)| ≤ b(j)

2
.

Then, for j ≥ J0,

P

(

E(j)
)

= P

(

sup
s∈[0,1]

|Ej
α(s)| > b(j)

)

≤ P

(

b(j)

2
+ sup

s∈[0,1]

|Ej
αj
(s)| > b(j)

)

= P

(

sup
s∈[0,1]

|Ej
αj
(s)| > b(j)

2

)

.

Denote Aj the set of possible values of αj . Then Card(Aj) = [2jδ]. For each
random drawing of the (Vi)i, E

j
αj
(s) is composed of a sum of n terms of the

form γil
−1/α0

i where α0 ∈ Aj. There are 2j possible values for n, and [2jδ]

14



possible values for α0. One thus has the following estimates:

P

(

E(j)
)

≤ P

(

sup
s∈[0,1]

|Ej
αj
(s)| > b(j)

2

)

≤ P

(

∪l1,...,l2j∈J2j ,2j+1−1K{Vl1 < Vl2 < ... < Vl
2j
} ∩ { sup

α0∈Aj

2j

sup
k=1

|
k
∑

i=1

γlil
−1/α0

i | > b(j)

2
}
)

≤
∑

l1,...,l2j∈J2j ,2j+1−1K

P

(

{Vl1 < Vl2 < ... < Vl
2j
} ∩ { sup

α0∈Aj

2j

sup
k=1

|
k
∑

i=1

γlil
−1/α0

i | > b(j)

2
}
)

≤
∑

l1,...,l2j∈J2j ,2j+1−1K

P
(

Vl1 < Vl2 < ... < Vl
2j

)

P

(

sup
α0∈Aj

2j

sup
k=1

|
k
∑

i=1

γli l
−1/α0

i | > b(j)

2

)

≤
∑

l1,...,l2j∈J2j ,2j+1−1K

1

(2j)!
P

(

∪α0∈Aj ∪2j

k=1 |
k
∑

i=1

γlil
−1/α0

i | > b(j)

2

)

≤ 1

(2j)!

∑

l1,...,l2j∈J2j ,2j+1−1K

∑

α0∈Aj

2j
∑

k=1

P

(

|
k
∑

i=1

γli l
−1/α0

i | > b(j)

2

)

≤ 1

(2j)!

∑

l1,...,l2j∈J2j ,2j+1−1K

∑

α0∈Aj

2j
∑

k=1

2e−
j2

8

≤ 2.2j[2jδ]e−
j2

8 ,

where Stute’s lemma [14] was used in the end. As a consequence,

P

(

lim inf
j

E(j)

)

= 1.

Let now p ∈ N, and set jp = [ ln p
ln 2

]. Define

Em,p
α (s) =

2jp+1−1
∑

i=m

γiei(s)1[0,s[(Vi),

and

Em,p
αjp

(s) = a′(s)

2jp+1−1
∑

i=m

γii
−1/αjp (s)1[0,s[(Vi)+

a(s)α′(s)

α2(s)

2jp+1−1
∑

i=m

γii
−1/αjp (s)(ln i)1[0,s[(Vi).

As above,

sup
s∈[0,1]

|αjp(s)− α(s)| ≤ A

[2jpδ]

15



and

|Em,p
α (s)−Em,p

αjp
(s)| ≤ A2

[2jpδ]d2

2jp+1−1
∑

i=m

1

i1/d̂

≤ A2

[2jpδ]d2

2jp+1−1
∑

i=2jp

1

i1/d̂

≤ A2

[2jpδ]d2
2jp

2jp/d̂
.

Fix p0 ∈ N such that for all p ≥ p0,

sup
m∈J2jp ,2jp+1−1K

sup
s∈[0,1]

|Em,p
α (s)− Em,p

αjp
(s)| ≤ b(jp)

2
,

and consider

E(p) =

{

sup
m∈J2jp ,2jp+1−1K

sup
s∈[0,1]

|Em,p
α (s)| ≤ b(jp)

}

.

For p ≥ p0,

P

(

E(p)
)

≤ P

(

sup
m∈J2jp ,2jp+1−1K

sup
s∈[0,1]

|Em,p
αjp

(s)| > b(jp)

2

)

≤
∑

m∈J2jp ,2jp+1−1K

P

(

sup
s∈[0,1]

|Em,p
αjp

(s)| > b(jp)

2

)

≤
∑

m∈J2jp ,2jp+1−1K

2.2jp[2jpδ]e−
j2p
8

≤ 2.22jp[2jpδ]e−
j2p
8 .

As a consequence,

P

(

lim inf
p

E(p)

)

= 1.

Reasoning along the same lines and setting

Em,q
α (s) =

m
∑

i=2jq

γiei(s)1[0,s[(Vi),
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and

E(q) =

{

sup
m∈J2jq ,2jq+1−1K

sup
s∈[0,1]

|Em,q
α (s)| ≤ b(jq)

}

,

one gets

P

(

lim inf
q

E(q)

)

= 1.

Finally, let p, q ∈ N, with q ≥ p: for all s ∈ [0, 1],

|Eq(s)−Ep(s)| =

∣

∣

∣

∣

∣

∣

2jp+1−1
∑

i=p

γiei(s)1[0,s[(Vi) +

jq−1
∑

j=jp+1

2j+1−1
∑

i=2j

γiei(s)1[0,s[(Vi) +

q
∑

i=2jq

γiei(s)1[0,s[(Vi)

∣

∣

∣

∣

∣

∣

≤ b(jp) +

jq−1
∑

j=jp+1

b(j) + b(jq)

≤ 2b(jp) +
+∞
∑

j=jp

b(j).

Again, the uniform Cauchy criterion entails that EN(s) converges uniformly
on [0, 1] to E(s).
Convergence of the difference term:

Let q ≥ p and denote Rp,q(s) =
q
∑

i=p

γi(di(s)− ei(s))1[0,s[(Vi).

Fix p0 such that, for all p ≥ p0,

Rp,q(s) =

q
∑

i=p

γi(di(s)− ei(s))1[0,s[(Vi)1 1
2
≤

Γi
i
≤2
.

One computes:

Rp,q(s) ≤
q
∑

i=p

|di(s)− ei(s)|1 1
2
≤

Γi
i
≤2

≤ A

q
∑

i=p

|i−1/α(t) − Γ
−1/α(t)
i |1 1

2
≤

Γi
i
≤2

+ A

q
∑

i=p

|i−1/α(t) ln i− Γ
−1/α(t)
i ln Γi|1 1

2
≤

Γi
i
≤2

≤ A

q
∑

i=p

1

i1/d
|1− (

Γi

i
)−1/α(t)|1 1

2
≤

Γi
i
≤2

+ A

q
∑

i=p

ln i

i1/d
|1− ln Γi

ln i
(
Γi

i
)−1/α(t)|1 1

2
≤

Γi
i
≤2

≤ AKc,d

q
∑

i=p

(1 + ln i)

i1/d

∣

∣

∣

∣

Γi

i
− 1

∣

∣

∣

∣

.
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The series
∑

i

(1+ln i)

i1/d

∣

∣

Γi

i
− 1
∣

∣ converges almost surely. The uniform Cauchy

criterion thus applies to the effect that DN(s)− EN(s) converges uniformly.
As a consequence, DN(s) converges uniformly to D(s).

Thus, almost surely,

lim
N→+∞

∫ t

0

DN(s)ds =

∫ t

0

D(s)ds =

∫ t

0

+∞
∑

i=1

γig
′
i(s)1[0,s[(Vi)ds.

Besides,

∫ t

0

DN(s)ds =

N
∑

i=1

γi

∫ t

0

g′i(s)1[0,s[(Vi)ds

=

N
∑

i=1

γi

(
∫ t

Vi

di(s)ds

)

1[0,t](Vi)

=
N
∑

i=1

γi (gi(t)− gi(Vi))1[0,t](Vi)

=

N
∑

i=1

γigi(t)1[0,t](Vi)−
N
∑

i=1

γigi(Vi)1[0,t](Vi)

which entails finally that

lim
N→+∞

∫ t

0

DN(s)ds =
+∞
∑

i=1

γigi(t)1[0,t](Vi)−
+∞
∑

i=1

γigi(Vi)1[0,t](Vi).

This is (13).
That A has finite variation follows from the fact that it is an absolutely

continuous function.
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