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Asymptotic enumeration of Eulerian orientations for graphs with strong mixing properties

We prove an asymptotic formula for the number of Eulerian orientations for graphs with strong mixing properties and with vertices having even degrees. The exact value is determined up to the multiplicative error O(n -1+ε ), where n is the number of vertices.

Introduction

An Eulerian orientation of the graph G is an orientation of its edges such that for every vertex the number of incoming edges and outgoing edges are equal. We denote EO(G) the number of Eulerian orientations of graph G. It is easy clear that EO(G) = 0, if the degree of at least one vertex of G is odd. An Eulerian orientation of the complete graph K n is called regular tournament.

The problem of counting the number of Eulerian orientations of an undirected simple graph (i.e. graph without loops and multiple edges) is complete for the class #P . Thus this problem is difficult in terms of complexity theory. We recall also that this problem can be reduced to counting perfect matching for some class of bipartite graphs for which it can be done approximately with high probability in polynomial time, see [START_REF] Mihail | On the number of Eulerian orientations of a graph[END_REF].

In addition, for the case of loopless 2d-regular graph G with n vertices the following estimates hold, see [START_REF] Vergnas | Le polynôme de Martin d'un graphe eulérien[END_REF], [START_REF] Schrijver | Bounds on the number of Eulerian orientations[END_REF]:

2 d (2d -1)!! d! n-1 ≤ EO(G) ≤ (2d)! d! • d! n/2
.

(1.1)

An improvement of the upper bound for the regular graph case and some additional studies in this direction were fulfilled in [START_REF] Vergnas | An upper bound for the number of Eulerian orientations of a regular graph[END_REF].

Even for a complete graph K n the exact expression of the number of Eulerian orientations is unknown and only the asymptotic formula was obtained (see [START_REF] Mckay | The asymptotic numbers of regular tournaments, eulirian digraphs and eulirian oriented graphs[END_REF]): for odd n → ∞

EO(K n ) = 2 n+1 πn (n-1)/2 n 1/2 e -1/2 1 + O(n -1/2+ε ) (1.2)
for any fixed ε > 0.

In [START_REF] Isaev | Asymptotic behaviour of the number of Eulerian orientations of graphs[END_REF] the approach of [START_REF] Mckay | The asymptotic numbers of regular tournaments, eulirian digraphs and eulirian oriented graphs[END_REF] was generalized. In particular, the asymptotic behaviour of the number of Eulerian orienations was determined for graphs with large algebraic connectivity. This class of graphs we mean as the class of graphs having strong mixing properties and it can be also defined as the class of graphs having large Cheeger constant (isoperimetric number) or sufficiently large spectral gap from 1 for the second largest eigenvalue of the transition probability matrix of the random walk on the graph and large degree of each vertex. The equivalence of these definitions was proved, for example, in [START_REF] Isaev | On the class of graphs with strong mixing properties[END_REF].

In the present work we continue studies of [START_REF] Isaev | Asymptotic behaviour of the number of Eulerian orientations of graphs[END_REF], [START_REF] Isaev | On the class of graphs with strong mixing properties[END_REF], [START_REF] Mckay | The asymptotic numbers of regular tournaments, eulirian digraphs and eulirian oriented graphs[END_REF]. We prove the asymptotic formula for the number of Eulerian orientations of graphs having strong mixing properties. This result is presented in detail in Section 2 of the present work and was given for the first time, but without proof, in [START_REF] Isaev | On the class of graphs with strong mixing properties[END_REF].

Actually, the estimation of the number of Eulerian orientations was reduced in [START_REF] Isaev | Asymptotic behaviour of the number of Eulerian orientations of graphs[END_REF] to estimating of an n-dimensional integral which is close to Gaussian-type. In Sections 3, 5, 6 we develop an approach for estimating of integrals of such a type.

We note also that in [START_REF] Isaev | Asymptotic behaviour of the number of Eulerian circuits[END_REF] the asymptotic behaviour of the number of Eulerian circuits was determined for graphs having strong mixing properties. Apparently, proceeding from the results of [START_REF] Isaev | Asymptotic behaviour of the number of Eulerian circuits[END_REF] and the estimates of the present work, it is possible to prove the asymptotic formula for the number of Eulerian circuits given in [START_REF] Isaev | On the class of graphs with strong mixing properties[END_REF]. In a subsequent paper we plan to develop this approach.

Main result

Let G be an undirected simple graph with vertex set V G and edge set EG. We define n × n matrix Q by

Q jk =    -1, {v j , v k } ∈ EG, d j , j = k, 0, otherwise, (2.1) 
where n = |V G| and d j denotes the degree of

v j ∈ V G. The matrix Q = Q(G)
is called the Laplacian matrix of the graph G. The eigenvalues λ 1 ≤ λ 2 ≤ . . . ≤ λ n of the matrix Q are always non-negative real numbers and λ 1 = 0. The eigenvalue λ 2 = λ 2 (G) is called the algebraic connectivity of the graph G. In addition the following inequalities hold:

2 min j d j -n + 2 ≤ λ 2 ≤ n n -1 min j d j . (2.2) 
For more information on the spectral properties of graphs see, for example, [START_REF] Fiedler | Algebraic connectivity of graphs[END_REF] and [START_REF] Mohar | The Laplacian spectrum of graphs, Graph Theory, Combinatorics, and Applications[END_REF].

According to the Kirchhoff Matrix-Tree-Theorem, see [START_REF] Kirchhoff | Über die Auflösung der Gleichungen, auf welche man bei der Untersuchung der linearen Verteilung galvanischer Ströme geführt wird[END_REF], we have that

t(G) = 1 n λ 2 λ 3 • • • λ n = det M 11 , (2.3) 
where t(G) denotes the number of spanning trees of the graph G and M 11 results from deleting the first row and the first column of Q.

We call the graph G as γ-mixing graph, γ > 0, if the algebraic connectivity λ 2 = λ 2 (G) ≥ γ|V G|.

(2.4)

In addition, we recall that (see, [START_REF] Isaev | On the class of graphs with strong mixing properties[END_REF]):

• The class of γ-mixing graphs can be also defined as the class of graphs having sufficiently large Cheeger constant (isoperimetric number) or spectral gap from 1 for the second largest eigenvalue of the transition probability matrix of the random walk on the graph and sufficiently large degree of each vertex.

• Almost all graphs (asymptotically, in some probabilistic sense) are γmixing.

The main result of the present work is the following theorem.

Theorem 2.1. Let G be an undirected simple graph with n vertices v 1 , v 2 , . . . , v n having even degrees. Let G satisfy (2.4) for some γ > 0. Then

EO(G) = (1 + δ(G))   2 |EG|+ n-1 2 π -n-1 2 1 t(G) {vj ,v k }∈EG P jk   , P jk = 1 - 1 4(d j + 1) 2 - 1 2(d j + 1)(d k + 1) - 1 4(d k + 1) 2 , (2.5)
where d j denotes the degree of vertex v j , t(G) denotes the number of spanning trees of the graph G and for any ε > 0

|δ(G)| ≤ Cn -1+ε , (2.6) 
where constant C > 0 depends only on γ and ε.

Proof of Theorem 2.1 is given in Section 4. This proof is based on results presented in Section 3.

Remark 2.1. For the complete graph λ 2 (K n ) = n, EK n = n(n-1) 2 , t(K n ) = n n-2 , {vj ,v k }∈EKn P jk = 1 - 1 4n 2 - 1 2n 2 - 1 4n 2 n(n-1) 2 = = e ln(1-1 n 2 ) n(n-1) 2 = e -1/2 + O(n -1 ).
(2.7)

The result of Theorem 2.1 for this case improve the error estimate in (1.2).

Asymptotic estimates of an integral

We fix constants a, b, ε > 0. In this section we use notation f = O(g) meaning that |f | ≤ c|g| for some c > 0 depending only on a, b and ε.

Let p ≥ 1 be a real number and x ∈ R n . Let

x p =   n j=1 |x j | p   1/p . (3.1)
For p = ∞ we have the maximum norm

x ∞ = max j |x j |. (3.2) 
The matrix norm corresponding to the p-norm for vectors is

A p = sup x =0 A x p x p . (3.3) 
One can show that for symmetric matrix A and p ≥ 1

A p ≥ A 2 . (3.4) 
For invertible matrices one can define the condition number

µ p (A) = A p • A -1 p ≥ AA -1 p = 1. (3.5) 
Let I be identity n × n matrix and A = I + X be such a matrix that:

A is positive definite symmetric matrix,

|X jk | ≤ a/n, X jj = 0, A -1 2 ≤ b. (3.6) 
Note that

A -1 -1 2 ≤ A 2 ≤ A ∞ = A 1 = max j n k=1 |A jk | = O(1). (3.7) 
We recall that (see Lemma 3.2 of [START_REF] Isaev | Asymptotic behaviour of the number of Eulerian orientations of graphs[END_REF] ), under assumptions (3.6), 

µ ∞ (A) = µ 1 (A) = O(µ 2 (A)). ( 3 

6). Then

A -1 ∞ = A -1 1 = O(1), (3.9 
)

|X ′ jk | = O(n -1 ), (3.10) 
where

X ′ = A -1 -I = A -1 (I -A) = -A -1 X. (3.11)
We use the following notation:

< g > F,Ω = Ω g( θ)e F ( θ) d θ, (3.12) 
For r > 0 let

< g > F,r =< g > F,Un(rn ε ) , (3.13) 
where

U n (ρ) = {(θ 1 , θ 2 , . . . , θ n ) ∈ R n : |θ j | ≤ ρ for all j = 1 . . . n}. (3.14) Let F ( θ) = -θ T A θ + R( θ), (3.15) 
where A satisfy (3.6). We consider the following assumptions on function R:

R( θ) ≤ c 1 θ T A θ n , (3.16 
) (3.6) and assumptions (3.16), (3.17) hold for some c 1 , c 2 > 0. Then

∂R( θ) ∂ θ ∞ ≤ c 2 θ 3 ∞ n (3.17) For R ≡ 0 we denote < g > Ω =< g > F,Ω , < g > r =< g > F,r , < g >=< g > +∞ . Proposition 3.2. Let Ω ⊂ R n be such that U n (r 1 n ε ) ⊂ Ω ⊂ U n (r 2 n ε ) for some r 2 > r 1 > 0. Let A satisfy
< 1 > Ω = (1 + O exp(-c 3 n 2ε ) ) < 1 >, (3.18) < 1 > F,Ω = O (< 1 >) , (3.19) 
< θ 4 k > F,Ω = 3 4 < 1 > F,Ω +O(n -1+7ε ) < 1 > (3.20)
and, for k = l:

< θ k θ 3 l > F,Ω = O(n -1+7ε ) < 1 >, (3.21) < θ 2 k θ 2 l > F,Ω = 1 4 < 1 > F,Ω +O(n -1+7ε ) < 1 >, (3.22)
where F is defined by (3.15) and

c 3 = c 3 (r 1 , r 2 , c 1 , c 2 , a, b, ε) > 0.
Proof of Proposition 3.2 is given in Section 5.

Proof of Theorem 2.1

The Laplacian matrix Q of the graph G has the eigenvector [1, 1, . . . , 1] T , corresponding to the eigenvalue λ 1 = 0. Let Q = Q + J, where J denotes the matrix with every entry 1. Note that Q and Q have the same set of eigenvectors and eigenvalues, except for the eigenvalue corresponding to the eigenvector [1, 1, . . . , 1] T , which equals 0 for Q and n for Q. Using (2.3), we find that

t(G) = 1 n λ 2 λ 3 • • • λ n = det Q n 2 . (4.1)
Using (3.4), we get that

λ n = ||Q|| 2 ≤ || Q|| 2 ≤ || Q|| 1 = max j n k=1 | Qjk | = n. (4.2)
Then, we find that

|| Q-1 || 2 = 1 λ 2 ≤ 1 γn . (4.3) Using (2.
2), we get that

n -1 ≥ d j ≥ λ 2 n -1 n ≥ γ(n -1). (4.4) 
We recall that under assumtions of Theorem 2.1 (see, Proposition 6.1 of [START_REF] Isaev | Asymptotic behaviour of the number of Eulerian orientations of graphs[END_REF])

EO(G) = 1 + O n -1+6ε 2 |EG|-1/2 π -n+1/2 n Int, (4.5) 
where

Int = Un(n -1/2+ε ) exp   - 1 2 ξ T Q ξ - 1 12 {vj ,v k }∈EG ∆ 4 jk   d ξ, ∆ jk = ξ j -ξ k . (4.6) Let θ k = (d k + 1)/2 ξ k . (4.7) Then ∆ 4 jk = 4θ 4 j (d j + 1) 2 -4 4θ 3 j θ k (d j + 1) 3/2 (d k + 1) 1/2 + 6 4θ 2 j θ 2 k (d j + 1)(d k + 1) - -4 4θ 3 k θ j (d k + 1) 3/2 (d j + 1) 1/2 + 4θ 4 k (d k + 1) 2 . (4.8) - 1 2 ξ T Q ξ = -θ T A θ, (4.9) 
where

A jk = 1 (d j + 1)(d k + 1)
Qjk .

(4.10)

For a subset Θ of EG let

R Θ ( θ) = - 1 12 {vj ,v k }∈Θ⊂EG ∆ 4 jk . (4.11) 
Using (4.3), (4.4), (4.8) it is not difficult to find that the assumptions of Proposition 3.2 for

Ω = { θ ∈ R n : ξ ∈ U n (n -1/2+ε )} (4.12)
and 

F ( θ) = F Θ ( θ) = -θ T A θ + R Θ ( θ) (4 
(d k + 1) 2 < 1 > FΘ,Ω + +O(n -3+7ε ) < 1 > . (4.14) Using (3.19), we get that < e -1 12 ∆ 4 jk > FΘ,Ω = P jk < 1 > FΘ,Ω +O(n -3+7ε ) < 1 >, (4.15) 
where 

P jk = 1 - 1 4(d j + 1) 2 - 1 2(d j + 1)(d k + 1) - 1 4(d k + 1) 2 . ( 4 
< 1 > FEG,Ω = {vj ,v k }∈EG P jk < 1 > Ω +O(n -1+7ε ) < 1 > . (4.18)
Combining (3.18) and (4.18), we get that

< 1 > FEG,Ω =   {vj ,v k }∈EG P jk + O(n -1+7ε )   < 1 > . (4.19) Then Int = Un(n -1/2+ε ) exp   - 1 2 ξ T Q ξ - 1 12 {vj ,v k }∈EG ∆ 4 jk   d ξ = = Un(n -1/2+ε ) exp -θ T A θ + R EG ( θ) d ξ = =   (vj ,v k )∈EG P jk + O(n -1+7ε )   R n exp -θ T A θ d ξ = 1 + O(n -1+7ε ) (2π) n/2 det Q {vj ,v k }∈EG P jk .
(4.20)

Combining (4.1), (4.5), (4.20), we obtain (2.5).

5 Proof of Proposition 3.

2 Let φ( θ) = (φ 1 ( θ), φ 2 ( θ), . . . , φ n ( θ)) = A θ. (5.1) 
According to (3.6), A = I + X, X jj = 0, and so for some

g 1 ( θ) = g 1 (θ 2 , . . . , θ n ) θ T A θ = φ 2 1 ( θ) + g 1 ( θ). (5.2) 
Using (3.6), (5.2) and estimating insignificant parts of Gaussian integral of the following type:

(max{|x|, k 1 }) s e -(x-k2) 2 dx, (5.3) 
we find that for r > 0, s ≥ 0

< θ s ∞ > = R n θ s ∞ e -θ T A θ d θ = = +∞ -∞ • • • +∞ -∞ e -g1(θ2,...,θn)   +∞ -∞ θ s ∞ e -φ1( θ) 2 dθ 1   dθ 2 . . . dθ n = 1 + O exp(-c 4 n 2ε ) |φ1( θ)|≤rn ε θ s ∞ e -θ T A θ d θ, (5.4) 
where c 4 = c 4 (r, ε, s) > 0. Combining similar expressions for φ 1 , φ 2 , . . . φ n , we get that

|| φ( θ)||∞≤rn ε θ s ∞ e -θ T A θ d θ = 1 + O exp(-c 5 n 2ε ) < θ s ∞ >, (5.5) 
where c 5 = c 5 (r, ε, s) > 0. Combining (3.9), (5.1) and (5.5) with s = 0, we obtain (3.18). Using (3.16), we find that

| < 1 > F,Ω | ≤ Ω |e F ( θ) |d θ ≤ R n e -θ T A θ+ c 1 n θ T A θ d θ = O(< 1 >). (5.6) 
In order to prove (3.20) -(3.22) we use the following two lemmas. The proofs of them are given in Section 6. (3.6) and assumptions (3.16) and (3.17) hold. Let P = P (x) = O(|x| s ) for some fixed s ≥ 0. Then for any

Lemma 5.1. Let Ω ⊂ R n be such that U n (r 1 n ε ) ⊂ Ω ⊂ U n (r 2 n ε ) for some r 2 > r 1 > 0. Let A satisfy
T ( θ), |T ( θ)| ≤ P ( θ ∞ ) : < T ( θ) > R n \Ω = O exp(-c 6 n 2ε ) < 1 >, (5.7) 
and for any

T ( θ) = T (θ 1 , . . . , θ k-1 , θ k+1 , . . . , θ n ), T ( θ) ≤ P ( θ ∞ ): < φ 2 k ( θ) T ( θ) > F,Ω = 1 2 < T ( θ) > F,Ω +O(n -1+4ε ) < | T ( θ)| > F,Ω + +O exp(-c 6 n 2ε ) < 1 >, (5.8) 
< φ 4 k ( θ) T ( θ) > F,Ω = 3 4 < T ( θ) > F,Ω +O(n -1+4ε ) < | T ( θ)| > F,Ω + +O exp(-c 6 n 2ε ) < 1 >, (5.9) 
< φ k ( θ) T ( θ) > F,Ω = O(n -1+4ε ) < | T ( θ)| > F,Ω + +O exp(-c 6 n 2ε ) < 1 >, (5.10) 
< φ 3 k ( θ) T ( θ) > F,Ω = O(n -1+6ε ) < | T ( θ)| > F,Ω + +O exp(-c 6 n 2ε ) < 1 >, (5.11) 
where function F is defined by (3.15), vector φ( θ) is defined by (5.1) and constant c 6 = c 6 (r 1 , r 2 , c 1 , c 2 , a, b, ε, P ) > 0.

Lemma 5.2. Let assumptions of Lemma 5.1 hold. Let s 1 , s 2 , . . . , s n ∈ N ∪ {0},

M ( x) = x s1 1 • • • x sn n , s = s 1 + . . . + s n > 0.
(5.12)

Let s k = 0 and |{j : s j = 0}| ≤ 3.

(5.13)

Then < φ k ( θ)M ( φ( θ)) > F,Ω = O(sn -1+(s+4)ε ) < 1 > .
(5.14) Using (3.10), we find that

θ k = φ k + α T φ, α ∞ = O(n -1
).

(5.15)

Combining (5.6), Lemma 5.1 and Lemma 5.2, we obtain that:

< δ k ( θ) 2 > F,Ω = O(n -2 )   j < φ j ( θ) 2 > F,Ω + j1 =j2 | < φ j1 ( θ)φ j2 ( θ) > F,Ω |   = = O(n -1 ) + O(n -1+5ε ) < 1 >= O(n -1+5ε ) < 1 >, (5.16) < δ k ( θ) 4 > F,Ω = O(n -4 ) j < φ j ( θ) 4 > F,Ω + + O(n -4 ) j1 =j2 < φ j1 ( θ) 2 φ j2 ( θ) 2 > F,Ω + + O(n -4 ) j1 =j2 | < φ j1 ( θ)φ j2 ( θ) 3 > F,Ω |+ + O(n -4 ) j1 =j2 =j3 | < φ j1 ( θ)φ j2 ( θ)φ j3 ( θ) 2 > F,Ω |+ + O(n -4 ) j1 =j2 =j3 =j4 | < φ j1 ( θ)φ j2 ( θ)φ j3 ( θ)φ j4 ( θ) > F,Ω | = = (O(n -3 )+O(n -2+4ε ) + O(n -3+7ε ) + O(n -2+7ε ) + O(n -1+7ε )) < 1 >= = O(n -1+7ε ) < 1 >,
(5.17) where δ k ( θ) = θ k -φ k ( θ).

(5.18)

According to (3.6), we have that

δ k ( θ) = δ k (θ 1 , . . . , θ k-1 , θ k+1 , . . . , θ n ) (5.19)
Using (5.6), (5.16), (5.17), (5.19) and Lemma 5.1, we obtain that:

< φ k ( θ)δ k ( θ) 3 > F,Ω = O(n -1+4ε ) < |δ k ( θ)| 3 > F,Ω +O exp(-c 6 n 2ε ) < 1 >= = O(n -1+7ǫ ) < 1 >, (5.20) 
< φ k ( θ) 2 δ k ( θ) 2 > F,Ω = 1 2 + O(n -1+4ε ) < δ k ( θ) 2 > F,Ω + +O exp(-c 6 n 2ε ) < 1 >= = O(n -1+5ǫ ) < 1 >, (5.21) < φ k ( θ) 3 δ k ( θ) > F,Ω = O(n -1+6ε ) < |δ k ( θ)| > F,Ω +O exp(-c 6 n 2ε ) < 1 >= = O(n -1+7ǫ ) < 1 >, (5.22) 
For simplicity, let k = 1. Using (6.2), we get that

< φ p 1 ( θ) T ( θ) > F,Ω = Ω φ p 1 ( θ) T (θ 2 , . . . , θ n )e -θ T A θ+R( θ) d θ = = Un(r2n ε ) φ p 1 ( θ) T (θ 2 , . . . , θ n )e -θ T A θ+R( θ) d θ + O exp(-c 6 n 2ε ) < 1 >, p = 1, 2 , 3, 4. 
(6.3)

Using (3.17), find that for θ ∈ U n (r 2 n ε ) R( θ) -R( θ (1) ) = O(n -1+4ε ). ( 6.4) 
Using (5.2), we get that

Un(r2n ε ) φ p 1 ( θ) T (θ 2 , . . . , θ n )e -θ T A θ+R( θ) d θ + O exp(-c 6 n 2ε ) < 1 >= = r2n ε -r2n ε • • • r2n ε -r2n ε T e -g1(θ2,...,θn)+R( θ (1) )   r2n ε -r2n ε φ p 1 e -φ 2 1 ( θ)+R( θ)-R( θ (1) ) dθ 1   dθ 2 . . . dθ n , p = 0, 1, 2, 3, 4. (6.5) 
Combining (3.9) and (6.4), we find that for θ (1) ∈ U n (r 2 n ε )

r2n ε -r2n ε φ p 1 e -φ 2 1 ( θ)+R( θ)-R( θ (1) ) dθ 1 = = +∞ -∞ φ p 1 e -φ 2 1 ( θ) dθ 1 + O exp(-c 7 n 2ε ) +∞ -∞ e -φ 2 1 ( θ) dθ 1 + + |φ1( θ)|≤r3n ε φ p 1 e -φ 2 1 ( θ) e R( θ)-R( θ (1) ) -1 dθ 1 , p = 0, 1, 2, 3, 4, (6.6) 
where

c 7 = c 7 (r 2 , c 1 , c 2 , a, b, ε) > 0, r 3 = r 3 (r 2 , c 1 , c 2 , a, b, ε) > 0.
For p = 2, 4, we have that: for θ (1) ∈ U n (r 2 n ε ), p = 0, 2, 4. (6.8) Combining (6.2)-(6.8), we obtain (5.8) and (5.9).

+∞ -∞ φ 2 1 e -φ 2 1 ( θ) dθ 1 = 1 2 +∞ -∞ e -φ 2 1 ( θ) dθ 1 , +∞ -∞ φ 4 1 e -φ 2 1 ( θ) dθ 1 = 3 4 +∞ -∞ e -φ 2 1 ( θ) dθ 1 , (6.7 
For p = 1, 3, we have that: for θ (1) ∈ U n (r 2 n ε ), p = 1, 3. (6.10) Combining (6.2)-(6.6), (6.8), (6.9), (6.10), we obtain (5.8) and (5.9). Combining (5.6) and(6.12), we obtain (5.14) 

. 8 )

 8 Using (3.4), (3.6), (3.7) and (3.8), it is not difficult to prove the following proposition.Proposition 3.1. Let A satisfy(3.

) |φ1( θ)|<r3n ε φ p 1 e -φ 2 1 ( 1 e -φ 2 1 (

 1111 θ) e R( θ)-R( θ (1) ) -1 dθ 1 = O(n -1+4ǫ ) θ) dθ 1 = = O(n -1+4ǫ ) +∞ -∞ e -φ 2 1 ( θ) dθ 1

ε φ p 1 e -φ 2 1 (

 11 θ) e R( θ)-R( θ (1) ) -1 dθ 1 = = 0≤φ1( θ)≤r3n ε |φ 1 | p e -φ 2 1 ( θ) e R( θ)-R( θ (1) ) -1 dθ 1 --r3n ε ≤φ1( θ)≤0 |φ 1 | p e -φ 2 1 ( θ) e R( θ)-R( θ (1) ) -1 dθ 1 = = O(n -1+4ǫ ) φ1≥0 |φ 1 | p e -φ 2 1 ( θ) dθ 1 = O(n -1+4ǫ ) +∞ -∞ e -φ 2 1 ( θ) dθ 1 ,

Proof of Lemma 5 . 2 .

 52 Let T ( θ) satisfy |T ( θ)| = O( θ s ∞ ), ∂T ( θ) ∂θ k = O(sn -1-ε ) sup θ∈Ω |T ( θ)|, θ ∈ Ω. (6.11)Combining (5.10) and (6.11), we get that< φ k ( θ)T ( θ) > F,Ω =< φ k ( θ)T ( θ (k) ) > F,Ω + < φ k ( θ)(T ( θ) -T ( θ (k) ) > F,Ω = =< φ k ( θ)T ( θ (k) ) > F,Ω +O(sn -1-ǫ ) < sup θ∈Ω |φ k θ k T ( θ)| > F,Ω = = O(sn -1+4ǫ ) < sup θ∈Ω |T ( θ)| > F,Ω +O exp(-c 6 n 2ε ) < 1 > .(6.12) Using (3.6), we find that for θ ∈ Ω∂M ( φ( θ)) ∂θ k = O(sn (s-1)ε ) j:sj =0 ∂ φ j ( θ) ∂θ k = O(sn -1-ε ) supθ∈Ω |M ( φ( θ))|. (6.13)
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(5.23) In a similar way as in (5.16), (5.17), we find that

(5.25) Using (5.6), (5.19), (5.24), (5.25) and Lemma 5.1, we obtain that:

(5.28)

6 Proofs of Lemma 5.1 and Lemma 5.2

Let θ (k) = (θ 1 , . . . , θ k-1 , 0, θ k+1 , . . . , θ n ). (6.1)

Proof of Lemma 5.1. Using (3.9), (5.1) and (5.5), we find that