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Asymptotic enumeration of Eulerian orientations

for graphs with strong mixing properties

M.I. Isaev and K.V. Isaeva

Abstract

We prove an asymptotic formula for the number of Eulerian orienta-
tions for graphs with strong mixing properties and with vertices having
even degrees. The exact value is determined up to the multiplicative error
O(n−1+ε), where n is the number of vertices.

1 Introduction

An Eulerian orientation of the graph G is an orientation of its edges such that
for every vertex the number of incoming edges and outgoing edges are equal.
We denote EO(G) the number of Eulerian orientations of graph G. It is easy
clear that EO(G) = 0, if the degree of at least one vertex of G is odd. An
Eulerian orientation of the complete graph Kn is called regular tournament.

The problem of counting the number of Eulerian orientations of an undi-
rected simple graph (i.e. graph without loops and multiple edges) is complete
for the class #P . Thus this problem is difficult in terms of complexity theory.
We recall also that this problem can be reduced to counting perfect matching
for some class of bipartite graphs for which it can be done approximately with
high probability in polynomial time, see [8].

In addition, for the case of loopless 2d-regular graph G with n vertices the
following estimates hold, see [6], [12]:

2d
(

(2d− 1)!!

d!

)n−1

≤ EO(G) ≤

(

(2d)!

d! · d!

)n/2

. (1.1)

An improvement of the upper bound for the regular graph case and some addi-
tional studies in this direction were fulfilled in [7].

Even for a complete graphKn the exact expression of the number of Eulerian
orientations is unknown and only the asymptotic formula was obtained (see [10]):
for odd n → ∞

EO(Kn) =

(

2n+1

πn

)(n−1)/2

n1/2e−1/2
(

1 +O(n−1/2+ε)
)

(1.2)

for any fixed ε > 0.
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In [2] the approach of [10] was generalized. In particular, the asymptotic
behaviour of the number of Eulerian orienations was determined for graphs
with large algebraic connectivity. This class of graphs we mean as the class of
graphs having strong mixing properties and it can be also defined as the class
of graphs having large Cheeger constant (isoperimetric number) or sufficiently
large spectral gap from 1 for the second largest eigenvalue of the transition
probability matrix of the random walk on the graph and large degree of each
vertex. The equivalence of these definitions was proved, for example, in [3].

In the present work we continue studies of [2], [3], [10]. We prove the asymp-
totic formula for the number of Eulerian orientations of graphs having strong
mixing properties. This result is presented in detail in Section 2 of the present
work and was given for the first time, but without proof, in [3].

Actually, the estimation of the number of Eulerian orientations was reduced
in [2] to estimating of an n-dimensional integral which is close to Gaussian-type.
In Sections 3, 5, 6 we develop an approach for estimating of integrals of such a
type.

We note also that in [1] the asymptotic behaviour of the number of Eulerian
circuits was determined for graphs having strong mixing properties. Apparently,
proceeding from the results of [1] and the estimates of the present work, it is
possible to prove the asymptotic formula for the number of Eulerian circuits
given in [3]. In a subsequent paper we plan to develop this approach.

2 Main result

Let G be an undirected simple graph with vertex set V G and edge set EG. We
define n× n matrix Q by

Qjk =







−1, {vj , vk} ∈ EG,
dj , j = k,
0, otherwise,

(2.1)

where n = |V G| and dj denotes the degree of vj ∈ V G. The matrix Q = Q(G)
is called the Laplacian matrix of the graph G. The eigenvalues λ1 ≤ λ2 ≤ . . . ≤
λn of the matrix Q are always non-negative real numbers and λ1 = 0. The
eigenvalue λ2 = λ2(G) is called the algebraic connectivity of the graph G. In
addition the following inequalities hold:

2min
j

dj − n+ 2 ≤ λ2 ≤
n

n− 1
min
j

dj . (2.2)

For more information on the spectral properties of graphs see, for example, [4]
and [11].

According to the Kirchhoff Matrix-Tree-Theorem, see [5], we have that

t(G) =
1

n
λ2λ3 · · ·λn = detM11, (2.3)
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where t(G) denotes the number of spanning trees of the graphG and M11 results
from deleting the first row and the first column of Q.

We call the graph G as γ-mixing graph, γ > 0, if

the algebraic connectivity λ2 = λ2(G) ≥ γ|V G|. (2.4)

In addition, we recall that (see, [3]):

• The class of γ-mixing graphs can be also defined as the class of graphs hav-
ing sufficiently large Cheeger constant (isoperimetric number) or spectral
gap from 1 for the second largest eigenvalue of the transition probability
matrix of the random walk on the graph and sufficiently large degree of
each vertex.

• Almost all graphs (asymptotically, in some probabilistic sense) are γ-
mixing.

The main result of the present work is the following theorem.

Theorem 2.1. Let G be an undirected simple graph with n vertices v1, v2, . . . , vn
having even degrees. Let G satisfy (2.4) for some γ > 0. Then

EO(G) = (1 + δ(G))



2|EG|+n−1
2 π−n−1

2
1

√

t(G)

∏

{vj ,vk}∈EG

Pjk



 ,

Pjk = 1−
1

4(dj + 1)2
−

1

2(dj + 1)(dk + 1)
−

1

4(dk + 1)2
,

(2.5)

where dj denotes the degree of vertex vj, t(G) denotes the number of spanning
trees of the graph G and for any ε > 0

|δ(G)| ≤ Cn−1+ε, (2.6)

where constant C > 0 depends only on γ and ε.

Proof of Theorem 2.1 is given in Section 4. This proof is based on results
presented in Section 3.

Remark 2.1. For the complete graph λ2(Kn) = n, EKn = n(n−1)
2 , t(Kn) =

nn−2,

∏

{vj ,vk}∈EKn

Pjk =

(

1−
1

4n2
−

1

2n2
−

1

4n2

)

n(n−1)
2

=

=
(

eln(1−
1
n2 )

)

n(n−1)
2

= e−1/2 +O(n−1).

(2.7)

The result of Theorem 2.1 for this case improve the error estimate in (1.2).
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3 Asymptotic estimates of an integral

We fix constants a, b, ε > 0. In this section we use notation f = O(g) meaning
that |f | ≤ c|g| for some c > 0 depending only on a, b and ε.

Let p ≥ 1 be a real number and ~x ∈ R
n. Let

‖~x‖p =





n
∑

j=1

|xj |
p





1/p

. (3.1)

For p = ∞ we have the maximum norm

‖~x‖∞ = max
j

|xj |. (3.2)

The matrix norm corresponding to the p-norm for vectors is

‖A‖p = sup
~x 6=0

‖A~x‖p
‖~x‖p

. (3.3)

One can show that for symmetric matrix A and p ≥ 1

‖A‖p ≥ ‖A‖2 . (3.4)

For invertible matrices one can define the condition number

µp(A) = ‖A‖p ·
∥

∥A−1
∥

∥

p
≥

∥

∥AA−1
∥

∥

p
= 1. (3.5)

Let I be identity n× n matrix and A = I +X be such a matrix that:

A is positive definite symmetric matrix,

|Xjk| ≤ a/n, Xjj = 0, ‖A−1‖2 ≤ b.
(3.6)

Note that

‖A−1‖−1
2 ≤ ‖A‖2 ≤ ‖A‖∞ = ‖A‖1 = max

j

n
∑

k=1

|Ajk| = O(1). (3.7)

We recall that (see Lemma 3.2 of [2] ), under assumptions (3.6),

µ∞(A) = µ1(A) = O(µ2(A)). (3.8)

Using (3.4), (3.6), (3.7) and (3.8), it is not difficult to prove the following propo-
sition.

Proposition 3.1. Let A satisfy (3.6). Then

‖A−1‖∞ = ‖A−1‖1 = O(1), (3.9)

|X ′
jk| = O(n−1), (3.10)

where
X ′ = A−1 − I = A−1(I −A) = −A−1X. (3.11)
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We use the following notation:

< g >F,Ω=

∫

Ω

g(~θ)eF (~θ)d~θ, (3.12)

For r > 0 let
< g >F,r=< g >F,Un(rnε), (3.13)

where

Un(ρ) = {(θ1, θ2, . . . , θn) ∈ R
n : |θj | ≤ ρ for all j = 1 . . . n}. (3.14)

Let
F (~θ) = −~θTA~θ +R(~θ), (3.15)

where A satisfy (3.6). We consider the following assumptions on function R:

R(~θ) ≤ c1
~θTA~θ

n
, (3.16)

∥

∥

∥

∥

∥

∂R(~θ)

∂~θ

∥

∥

∥

∥

∥

∞

≤ c2
‖~θ‖3∞
n

(3.17)

For R ≡ 0 we denote < g >Ω=< g >F,Ω, < g >r=< g >F,r, < g >=<
g >+∞.

Proposition 3.2. Let Ω ⊂ R
n be such that Un(r1n

ε) ⊂ Ω ⊂ Un(r2n
ε) for some

r2 > r1 > 0. Let A satisfy (3.6) and assumptions (3.16), (3.17) hold for some
c1, c2 > 0. Then

< 1 >Ω= (1 +O
(

exp(−c3n
2ε)

)

) < 1 >, (3.18)

< 1 >F,Ω= O (< 1 >) , (3.19)

< θ4k >F,Ω=
3

4
< 1 >F,Ω +O(n−1+7ε) < 1 > (3.20)

and, for k 6= l:
< θkθ

3
l >F,Ω= O(n−1+7ε) < 1 >, (3.21)

< θ2kθ
2
l >F,Ω=

1

4
< 1 >F,Ω +O(n−1+7ε) < 1 >, (3.22)

where F is defined by (3.15) and c3 = c3(r1, r2, c1, c2, a, b, ε) > 0.

Proof of Proposition 3.2 is given in Section 5.
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4 Proof of Theorem 2.1

The Laplacian matrix Q of the graph G has the eigenvector [1, 1, . . . , 1]T , cor-
responding to the eigenvalue λ1 = 0. Let Q̂ = Q + J , where J denotes the
matrix with every entry 1. Note that Q and Q̂ have the same set of eigenvec-
tors and eigenvalues, except for the eigenvalue corresponding to the eigenvector
[1, 1, . . . , 1]T , which equals 0 for Q and n for Q̂. Using (2.3), we find that

t(G) =
1

n
λ2λ3 · · ·λn =

det Q̂

n2
. (4.1)

Using (3.4), we get that

λn = ||Q||2 ≤ ||Q̂||2 ≤ ||Q̂||1 = max
j

n
∑

k=1

|Q̂jk| = n. (4.2)

Then, we find that

||Q̂−1||2 =
1

λ2
≤

1

γn
. (4.3)

Using (2.2), we get that

n− 1 ≥ dj ≥ λ2
n− 1

n
≥ γ(n− 1). (4.4)

We recall that under assumtions of Theorem 2.1 (see, Proposition 6.1 of [2])

EO(G) =
(

1 +O
(

n−1+6ε
))

2|EG|−1/2π−n+1/2n Int, (4.5)

where

Int =

∫

Un(n−1/2+ε)

exp



−
1

2
~ξT Q̂~ξ −

1

12

∑

{vj ,vk}∈EG

∆4
jk



 d~ξ,

∆jk = ξj − ξk.

(4.6)

Let
θk =

√

(dk + 1)/2 ξk. (4.7)

Then

∆4
jk =

4θ4j
(dj + 1)2

− 4
4θ3jθk

(dj + 1)3/2(dk + 1)1/2
+ 6

4θ2jθ
2
k

(dj + 1)(dk + 1)
−

−4
4θ3kθj

(dk + 1)3/2(dj + 1)1/2
+

4θ4k
(dk + 1)2

.

(4.8)

−
1

2
~ξT Q̂~ξ = −~θTA~θ, (4.9)

6



where

Ajk =
1

√

(dj + 1)(dk + 1)
Q̂jk. (4.10)

For a subset Θ of EG let

RΘ(~θ) = −
1

12

∑

{vj ,vk}∈Θ⊂EG

∆4
jk. (4.11)

Using (4.3), (4.4), (4.8) it is not difficult to find that the assumptions of Propo-
sition 3.2 for

Ω = {~θ ∈ R
n : ~ξ ∈ Un(n

−1/2+ε)} (4.12)

and
F (~θ) = FΘ(~θ) = −~θTA~θ +RΘ(~θ) (4.13)

hold with constants r1, r2, c1, c2, a, b depending only on γ.
Using (3.20), (3.21), (3.22) and (4.8), we get that

< ∆4
jk >FΘ,Ω=

(

3

4

4

(dj + 1)2
+

6

4

4

(dj + 1)(dk + 1)
+

3

4

4

(dk + 1)2

)

< 1 >FΘ,Ω +

+O(n−3+7ε) < 1 > .
(4.14)

Using (3.19), we get that

< e−
1
12∆

4
jk >FΘ,Ω= Pjk < 1 >FΘ,Ω +O(n−3+7ε) < 1 >, (4.15)

where

Pjk = 1−
1

4(dj + 1)2
−

1

2(dj + 1)(dk + 1)
−

1

4(dk + 1)2
. (4.16)

Note that

1−
1

n2
≤ Pjk ≤ 1. (4.17)

Using (3.19), (4.15), we can gradually remove all the edges in REG(~θ) and obtain
that

< 1 >FEG,Ω=
∏

{vj ,vk}∈EG

Pjk < 1 >Ω +O(n−1+7ε) < 1 > . (4.18)

Combining (3.18) and (4.18), we get that

< 1 >FEG,Ω=





∏

{vj ,vk}∈EG

Pjk +O(n−1+7ε)



 < 1 > . (4.19)

7



Then

Int =

∫

Un(n−1/2+ε)

exp



−
1

2
~ξT Q̂~ξ −

1

12

∑

{vj ,vk}∈EG

∆4
jk



 d~ξ =

=

∫

Un(n−1/2+ε)

exp
(

−~θTA~θ +REG(~θ)
)

d~ξ =

=





∏

(vj ,vk)∈EG

Pjk +O(n−1+7ε)





∫

Rn

exp
(

−~θTA~θ
)

d~ξ =

(

1 +O(n−1+7ε)
) (2π)n/2
√

det Q̂

∏

{vj ,vk}∈EG

Pjk.

(4.20)

Combining (4.1), (4.5), (4.20), we obtain (2.5).

5 Proof of Proposition 3.2

Let
~φ(~θ) = (φ1(~θ), φ2(~θ), . . . , φn(~θ)) = A~θ. (5.1)

According to (3.6), A = I +X , Xjj = 0, and so for some g1(~θ) = g1(θ2, . . . , θn)

~θTA~θ = φ2
1(
~θ) + g1(~θ). (5.2)

Using (3.6), (5.2) and estimating insignificant parts of Gaussian integral of the
following type:

∫

(max{|x|, k1})
s
e−(x−k2)

2

dx, (5.3)

we find that for r > 0, s ≥ 0

< ‖~θ‖s∞ > =

∫

Rn

‖~θ‖s∞e−
~θTA~θd~θ =

=

+∞
∫

−∞

· · ·

+∞
∫

−∞

e− g1(θ2,...,θn)





+∞
∫

−∞

‖~θ‖s∞e−φ1(~θ)
2

dθ1



 dθ2 . . . dθn

=
(

1 +O
(

exp(−c4n
2ε)

))

∫

|φ1(~θ)|≤rnε

‖~θ‖s∞e−
~θTA~θd~θ,

(5.4)

where c4 = c4(r, ε, s) > 0. Combining similar expressions for φ1, φ2, . . . φn, we
get that

∫

||~φ(~θ)||∞≤rnε

‖~θ‖s∞e−
~θTA~θd~θ =

(

1 +O
(

exp(−c5n
2ε)

))

< ‖~θ‖s∞ >, (5.5)
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where c5 = c5(r, ε, s) > 0. Combining (3.9), (5.1) and (5.5) with s = 0, we
obtain (3.18).

Using (3.16), we find that

| < 1 >F,Ω | ≤

∫

Ω

|eF (~θ)|d~θ ≤

∫

Rn

e−
~θTA~θ+

c1
n
~θTA~θd~θ = O(< 1 >). (5.6)

In order to prove (3.20) - (3.22) we use the following two lemmas. The proofs
of them are given in Section 6.

Lemma 5.1. Let Ω ⊂ R
n be such that Un(r1n

ε) ⊂ Ω ⊂ Un(r2n
ε) for some

r2 > r1 > 0. Let A satisfy (3.6) and assumptions (3.16) and (3.17) hold.

Let P = P (x) = O(|x|s) for some fixed s ≥ 0. Then for any T (~θ), |T (~θ)| ≤

P (‖~θ‖∞) :

< T (~θ) >Rn\Ω= O
(

exp(−c6n
2ε)

)

< 1 >, (5.7)

and for any T̃ (~θ) = T̃ (θ1, . . . , θk−1, θk+1, . . . , θn), T̃ (~θ) ≤ P (‖~θ‖∞):

< φ2
k(
~θ)T̃ (~θ) >F,Ω=

1

2
< T̃ (~θ) >F,Ω +O(n−1+4ε) < |T̃ (~θ)| >F,Ω +

+O
(

exp(−c6n
2ε)

)

< 1 >,
(5.8)

< φ4
k(
~θ)T̃ (~θ) >F,Ω=

3

4
< T̃ (~θ) >F,Ω +O(n−1+4ε) < |T̃ (~θ)| >F,Ω +

+O
(

exp(−c6n
2ε)

)

< 1 >,
(5.9)

< φk(~θ)T̃ (~θ) >F,Ω= O(n−1+4ε) < |T̃ (~θ)| >F,Ω +

+O
(

exp(−c6n
2ε)

)

< 1 >,
(5.10)

< φ3
k(
~θ)T̃ (~θ) >F,Ω= O(n−1+6ε) < |T̃ (~θ)| >F,Ω +

+O
(

exp(−c6n
2ε)

)

< 1 >,
(5.11)

where function F is defined by (3.15), vector ~φ(~θ) is defined by (5.1) and con-
stant c6 = c6(r1, r2, c1, c2, a, b, ε, P ) > 0.

Lemma 5.2. Let assumptions of Lemma 5.1 hold. Let s1, s2, . . . , sn ∈ N∪{0},

M(~x) = xs1
1 · · ·xsn

n ,

s = s1 + . . .+ sn > 0.
(5.12)

Let
sk = 0 and |{j : sj 6= 0}| ≤ 3. (5.13)

Then
< φk(~θ)M(~φ(~θ)) >F,Ω= O(sn−1+(s+4)ε) < 1 > . (5.14)
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Using (3.10), we find that

θk = φk + ~αT ~φ, ‖~α‖∞ = O(n−1). (5.15)

Combining (5.6), Lemma 5.1 and Lemma 5.2, we obtain that:

< δk(~θ)
2 >F,Ω= O(n−2)





∑

j

< φj(~θ)
2 >F,Ω +

∑

j1 6=j2

| < φj1(
~θ)φj2 (

~θ) >F,Ω |



 =

=
(

O(n−1) +O(n−1+5ε)
)

< 1 >= O(n−1+5ε) < 1 >,
(5.16)

< δk(~θ)
4 >F,Ω = O(n−4)

∑

j

< φj(~θ)
4 >F,Ω +

+O(n−4)
∑

j1 6=j2

< φj1 (
~θ)2φj2(

~θ)2 >F,Ω +

+O(n−4)
∑

j1 6=j2

| < φj1 (
~θ)φj2 (

~θ)3 >F,Ω |+

+O(n−4)
∑

j1 6=j2 6=j3

| < φj1 (
~θ)φj2 (

~θ)φj3(
~θ)2 >F,Ω |+

+O(n−4)
∑

j1 6=j2 6=j3 6=j4

| < φj1(
~θ)φj2 (

~θ)φj3 (
~θ)φj4 (

~θ) >F,Ω | =

= (O(n−3)+O(n−2+4ε) +O(n−3+7ε) +O(n−2+7ε) +O(n−1+7ε)) < 1 >=

= O(n−1+7ε) < 1 >,
(5.17)

where
δk(~θ) = θk − φk(~θ). (5.18)

According to (3.6), we have that

δk(~θ) = δk(θ1, . . . , θk−1, θk+1, . . . , θn) (5.19)

Using (5.6), (5.16), (5.17), (5.19) and Lemma 5.1, we obtain that:

< φk(~θ)δk(~θ)
3 >F,Ω= O(n−1+4ε) < |δk(~θ)|

3 >F,Ω +O
(

exp(−c6n
2ε)

)

< 1 >=

= O(n−1+7ǫ) < 1 >,
(5.20)

< φk(~θ)
2δk(~θ)

2 >F,Ω=

(

1

2
+O(n−1+4ε)

)

< δk(~θ)
2 >F,Ω +

+O
(

exp(−c6n
2ε)

)

< 1 >=

= O(n−1+5ǫ) < 1 >,

(5.21)

< φk(~θ)
3δk(~θ) >F,Ω= O(n−1+6ε) < |δk(~θ)| >F,Ω +O

(

exp(−c6n
2ε)

)

< 1 >=

= O(n−1+7ǫ) < 1 >,
(5.22)
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< θ4k >F,Ω=< (φk(~θ) + δk(~θ))
4 >F,Ω=< φk(~θ)

4 >F,Ω +O(n−1+7ǫ) < 1 >=

=
3

4
< 1 >F,Ω +O(n−1+7ǫ) < 1 > .

(5.23)
In a similar way as in (5.16), (5.17), we find that

< δk(~θ)
2θ2l >F,Ω = O(n−2)

∑

j

< φj(~θ)
2θ2l >F,Ω +

+O(n−2)
∑

j1 6=j2

| < φj1 (
~θ)φj2 (

~θ)θ2l >F,Ω | =

=
(

O(n−1+2ε) +O(n−1+7ε)
)

< 1 >= O(n−1+7ε) < 1 >,
(5.24)

< δk(~θ)θ
3
l >F,Ω = O(n−1)

∑

j 6=l

< φj(~θ)θ
3
l >F,Ω +O(n−1) < φl(~θ)θ

3
l >F,Ω=

=
(

O(n−1+7ε) +O(n−1+4ε)
)

< 1 >= O(n−1+7ε) < 1 > .
(5.25)

Using (5.6), (5.19), (5.24), (5.25) and Lemma 5.1, we obtain that:

< φk(~θ)δk(~θ)θ
2
l >F,Ω= O(n−1+4ε) < |δk(~θ)θ

2
l | >F,Ω +O

(

exp(−c6n
2ε)

)

< 1 >=

= O(n−1+7ǫ) < 1 >,
(5.26)

< θkθ
3
l >F,Ω=< (φk(~θ) + δk(~θ))θ

3
l >F,Ω= O(n−1+7ǫ) < 1 >, (5.27)

< θ2kθ
2
l >F,Ω=< (φk(~θ) + δk(~θ))

2θ2l >F,Ω=< φk(~θ)
2θ2l >F,Ω +O(n−1+7ǫ) < 1 >=

=
1

2
< φl(~θ) + δl(~θ))

2 >F,Ω +O(n−1+7ǫ) < 1 >=

=
1

4
< 1 >F,Ω +O(n−1+7ǫ) < 1 > .

(5.28)

6 Proofs of Lemma 5.1 and Lemma 5.2

Let
~θ(k) = (θ1, . . . , θk−1, 0, θk+1, . . . , θn). (6.1)

Proof of Lemma 5.1. Using (3.9), (5.1) and (5.5), we find that

| < T >Rn\Ω | ≤

∫

Rn\Ω

P (‖~θ‖s∞)e−
~θTA~θd~θ = O

(

exp(−c6n
2ε)

)

< 1 > . (6.2)
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For simplicity, let k = 1. Using (6.2), we get that

< φp
1(
~θ)T̃ (~θ) >F,Ω=

∫

Ω

φp
1(
~θ)T̃ (θ2, . . . , θn)e

−~θTA~θ+R(~θ)d~θ =

=

∫

Un(r2nε)

φp
1(
~θ)T̃ (θ2, . . . , θn)e

−~θTA~θ+R(~θ)d~θ +O
(

exp(−c6n
2ε)

)

< 1 >,

p = 1, 2, 3, 4.

(6.3)

Using (3.17), find that for ~θ ∈ Un(r2n
ε)

R(~θ)−R(~θ(1)) = O(n−1+4ε). (6.4)

Using (5.2), we get that

∫

Un(r2nε)

φp
1(
~θ)T̃ (θ2, . . . , θn)e

−~θTA~θ+R(~θ)d~θ +O
(

exp(−c6n
2ε)

)

< 1 >=

=

r2n
ε

∫

−r2nε

· · ·

r2n
ε

∫

−r2nε

T̃ e− g1(θ2,...,θn)+R(~θ(1))





r2n
ε

∫

−r2nε

φp
1e

−φ2
1(

~θ)+R(~θ)−R(~θ(1))dθ1



 dθ2 . . . dθn,

p = 0, 1, 2, 3, 4.

(6.5)

Combining (3.9) and (6.4), we find that for ~θ(1) ∈ Un(r2n
ε)

r2n
ε

∫

−r2nε

φp
1e

−φ2
1(

~θ)+R(~θ)−R(~θ(1))dθ1 =

=

+∞
∫

−∞

φp
1e

−φ2
1(

~θ)dθ1 +O
(

exp(−c7n
2ε)

)

+∞
∫

−∞

e−φ2
1(

~θ)dθ1+

+

∫

|φ1(~θ)|≤r3nε

φp
1e

−φ2
1(

~θ)
(

eR(~θ)−R(~θ(1)) − 1
)

dθ1,

p = 0, 1, 2, 3, 4,

(6.6)

where c7 = c7(r2, c1, c2, a, b, ε) > 0, r3 = r3(r2, c1, c2, a, b, ε) > 0.
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For p = 2, 4, we have that:

+∞
∫

−∞

φ2
1e

−φ2
1(

~θ)dθ1 =
1

2

+∞
∫

−∞

e−φ2
1(
~θ)dθ1,

+∞
∫

−∞

φ4
1e

−φ2
1(

~θ)dθ1 =
3

4

+∞
∫

−∞

e−φ2
1(
~θ)dθ1,

(6.7)

∫

|φ1(~θ)|<r3nε

φp
1e

−φ2
1(
~θ)
(

eR(~θ)−R(~θ(1)) − 1
)

dθ1 = O(n−1+4ǫ)

+∞
∫

−∞

φp
1e

−φ2
1(

~θ)dθ1 =

= O(n−1+4ǫ)

+∞
∫

−∞

e−φ2
1(

~θ)dθ1

for ~θ(1) ∈ Un(r2n
ε), p = 0, 2, 4.

(6.8)
Combining (6.2)-(6.8), we obtain (5.8) and (5.9).

For p = 1, 3, we have that:

+∞
∫

−∞

φp
1e

−φ2
1(

~θ)dθ1 = 0 (6.9)

∫

|φ1(~θ)|≤r3nε

φp
1e

−φ2
1(

~θ)
(

eR(~θ)−R(~θ(1)) − 1
)

dθ1 =

=

∫

0≤φ1(~θ)≤r3nε

|φ1|
pe−φ2

1(
~θ)
(

eR(~θ)−R(~θ(1)) − 1
)

dθ1−

−

∫

r3nε≤φ1(~θ)≤0

|φ1|
pe−φ2

1(
~θ)
(

eR(~θ)−R(~θ(1)) − 1
)

dθ1 =

= O(n−1+4ǫ)

∫

φ1≥0

|φ1|
pe−φ2

1(
~θ)dθ1 = O(n−1+4ǫ)

+∞
∫

−∞

e−φ2
1(

~θ)dθ1,

for ~θ(1) ∈ Un(r2n
ε), p = 1, 3.

(6.10)
Combining (6.2)-(6.6), (6.8), (6.9), (6.10), we obtain (5.8) and (5.9). �
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Proof of Lemma 5.2. Let T (~θ) satisfy

|T (~θ)| = O(‖~θ‖s∞),

∂T (~θ)

∂θk
= O(sn−1−ε) sup

~θ∈Ω

|T (~θ)|, ~θ ∈ Ω.
(6.11)

Combining (5.10) and (6.11), we get that

< φk(~θ)T (~θ) >F,Ω=< φk(~θ)T (~θ
(k)) >F,Ω + < φk(~θ)(T (~θ)− T (~θ(k)) >F,Ω=

=< φk(~θ)T (~θ
(k)) >F,Ω +O(sn−1−ǫ) < sup

~θ∈Ω

|φkθkT (~θ)| >F,Ω=

= O(sn−1+4ǫ) < sup
~θ∈Ω

|T (~θ)| >F,Ω +O
(

exp(−c6n
2ε)

)

< 1 > .

(6.12)

Using (3.6), we find that for ~θ ∈ Ω

∂M(~φ(~θ))

∂θk
= O(sn(s−1)ε)

∑

j:sj 6=0

∂~φj(~θ)

∂θk
= O(sn−1−ε) sup

~θ∈Ω

|M(~φ(~θ))|. (6.13)

Combining (5.6) and(6.12), we obtain (5.14) �
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