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ABSTRACT: After utilization in operating theaters, medicalvitees (MDs) are sent to the sterilization servithe

sterilization process is made up of various stéffter pre-disinfection, different sets of MDs u$addifferent surgical
operations may be washed together, without excgettim washer capacity in the washing step. Ideatgisinfection
time is approximately 20 minutes, since longer giggnfection times may corrode MDs. Our aim is thasninimize
the pre-disinfection time exceeding the ideal pseadection time. Hence, the decisions for batchimg MD sets and
launching washing cycles are crucial in minimizithge waiting time of MDs in the washing stép.this paper, we
model the washing step as a batch scheduling pnoblghere MD sets are denoted as jobs with diffesergs and
different release dates, but with equal procesgings for washing. Although MD arriving times te thterilization

service may be estimated in advance regarding gerating room scheduling, it is not always possitienave the
exact information about their arrival within a dayhus, we develop a semi-online algorithm for tbading of

washers. After testing its efficiency for the pigirdection criterion, we develop a simulation mbideorder to test the
impact of this optimization on the whole sterilieatprocess.

KEYWORDS: Hospital sterilization service, batch schedulinggs-online algorithm, simulation.
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1 INTRODUCTION

Hospital sterilization services aim at minimizindl a
infectious risks due to the reutilization of medick-

vices in surgical operations. A medical device nisia
strument, apparatus, appliance, or any other ayticl
X &

which is used for medical purposes on patientsliag-

nosis, therapy or surgery. We are interested inicaéd
Figure 1: Sterilization cycle

Washing

devices which are used in surgeries, and which bave
be sterilized after utilization.

All MDs provided for a surgical operation must ters-
ized. It is more appropriate to refer to theserimaents
as reusable medical devices (or RMDs) as they exe r
used after sterilization. The sterilization processegu-
lated by some quality standards (see Standard AFNO
for French quality standards concerning RMD steaili
tion). Sterilization is a cyclic process (Fig.1)nssting

of several steps. After utilization in operatingdkers,
RMDs are sent to the sterilization service whereyth
pass through the following steps: pre-disinfections-
ing and washing, verification, packing, sterilizatj
storage and reutilization in operating theaters.

RRinsing is performed either manually or automalycad
automatic washers. After washing, RMDs are verified
and packed into appropriate boxes. All items muest b
packed individually or grouped into boxes priorster-
ilization. They are then sterilized in so-calledut@a
claves”, transferred to operating theaters andedtde-
fore reutilization.

In the sterilization services we investigated, nanu
rinsing is the norm, while automatic washers always
rinse prior to washing. One reason for this douisising

is that it allows RMDs to wait to be washed withauty
risk of corrosion due to the pre-disinfection liquiAs

After utilization for a surgical operation, RMDs ear
directly placed in a substance, allowing pre-disitibn,
and are transferred to the sterilization servicherg,
they are firstly rinsed and washed in automatichees
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the washing step is usually a bottleneck of theilizta-
tion process, the RMDs may have to wait a considera
time before being washed (e.g. more than 30 mihutes
Consequently, rinsing the RMDs manually as theivarr
removes any pre-disinfection liquid they may caomtai
thus meaning they can wait to be washed withoutafs
corrosion. Note that the corrosion effect of pre-
disinfection can shorten the life of RMDs. In ooveésti-
gations, we saw that the managers of sterilizatien
vices define an ideal pre-disinfection time whistegual

to 20 minutes, while a minimum of 15 minutes is im-
perative and 50 minutes is often considered asipiper
limit. Sterilization service managers consider tRMDs
are subject to corrosion from the beginning toghd of
pre-disinfection. While how quickly RMDs corrode
depends on the pre-disinfection substance, iteiardhat
the pre-disinfection liquid becomes more peneteativ
over time.

In fact, if RMD waiting time before automatic wasbi

is sufficiently short, ideal pre-disinfection tinwan be
ensured only with automatic rinsing. Consequently,
manual rinsing operators could be transferred teerot
workstations (for example to the packing statiohjol

is always manual). Considering that the ideal pre-
disinfection time is 20 minutes, we define the “pre
disinfection excess time” of an RMD as the diffaren
between its pre-disinfection time and the ideal- pre
disinfection time. Note that RMD pre-disinfectiorcess
time equals zero if it is less than (or equal to tdeal
time.

Our main aim in this study is thus to minimize thean
pre-disinfection excess time of RMD sets during the

may be of different sizes. For different reasonsgsry
start times and durations, pre-disinfection procedu
etc.), RMD set arrival times to the sterilizatioengce
are different within the same day. Even though atieg
room scheduling may be used to estimate in advtrce
arrival times of RMD sets, there may be many elemen
influencing their arrival (ex: duration of surgesjelisre-
spect to surgery beginnings, human effect for mhnua
step like pre-disinfection or transport of RMDshUE, it

is not always possible to estimate the arrival tiofe
RMD sets with exactitude of 100%. We assume in our
work that the arrival of RMD sets is known, althbug
some (or most) of the RMD sets will be arriving diref

or later than the estimated arriving times. Oumusoh
approach is thus a semi-online algorithm, whicgasg

to make different decisions according to the viokatof

the estimated RMD arriving times.

Concerning the automatic washers, they can beibescr
as identical batching machines. Moreover, washinmg-d
tions (including automatic rinsing) are also ideatifor
all RMD sets in any automatic washer. It is possital
put more than one RMD set into a washer, as loritsas
capacity is not reached. The decisions to takettae:
which RMD sets should be placed together in order t
constitute a batch for washing, and when to lauach
washing cycle. Note that in the washing step, RMB s
are not usually allowed to be split among severasiw
ers due to organizational and traceability reasbrsplit,

it then takes a long time to reassemble the bokekeo
RMD sets identically in the subsequent steps. Bssid
splitting may cause some mistakes in set reassegbli

According to a questionnaire held among severapihos

washing step, to ensure the best possible RMD pre-tals of Rhéne-Alpes region in France (EESS, 200i&;

disinfection times. One aim of this goal is to ddes the
advisability of removing manual rinsing.

The remainder of this paper is organized as follows
section 2, we describe the problem of loading aatam
washers, and show how this problem can be treated a
batch scheduling problem. In section 3, we provide
literature review on batch scheduling problemssé-
tion 4, a semi-online algorithm is presented for loatch
scheduling problem. Section 5 is dedicated to cdaipu
tional tests. Our aim in that section is also taleate the
impact of our optimization method on a completeilste
zation service.

2 PROBLEM DESCRIPTION

In a typical hospital, several surgical operatiomesy be
performed in the course of the day. All RMDs usedi
surgical operation constitute the RMD set for thiera-
tion. As you may suppose, there can be a large aumb
of different RMD sets in a hospital. Moreover, them-
ber of different types of RMDs is generally verear,
and for a typical hospital, there may be hundrefls o

disinfection duration is an important criterion ftre
performance of sterilization services. In our schied
problem, we consider there is no manual rinsing and
RMD are ready for washing once they arrive to ttee-s
ilization service. In case good pre-disinfectionations

are guaranteed with our semi-online algorithm, ehisr
going to be no need for a manual rinsing.

2.1 Identification with a batch scheduling problem

In our scheduling problem, RMD sets are denoted as
jobs and automatic washers as parallel batching ma-
chines. We make the following assumptions:

» There areN jobs to be processed. The release date and
the size of a given jopare denoted by andw;, respec-
tively. The pre-disinfection starting time of jgks de-
noted byt;. Since washing times are the same for all
RMD sets, job processing times are the same fqolad

and are denoted ky

» All machines have the same capadtyand the size of

a job cannot be greater than machine capacity.

» Several jobs can be batched together, complying wit

RMD references. Because each surgical operation mayhe machine capacity constraint.

require different numbers and types of RMDs, RMBs se
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» Once processing for a batch is started, it canmot b
interrupted (i.e. preemption is not allowed)

Objectives: Makespan: 1; total completion time: 2; total

weighted comp. time: 3

« We are not allowed to split a job into several hatc Group | Ref. Algorithm Obj
Uzsoy (1994) Heuristics, B&B 1, 2
Inspired by Graham’s notation [Grahamnal, 1979], we %(Llagsthizg\gg' and | Heuristics 2
propose the following notation for our problem:| p- D P t( dJ)I " Heurist 1
batch, r, p = p, w, B | (L/N)Sf. In this notation,P Hpom anc - ol | HeUnstes
FB=P W I Ghazvini (1998)
stands for identical parallel machingsbatchfor paral- Kempfet al (1998) | MILP, heuristics 1, 2
lel batching;rj andw; denote job release dates and sizes, Azizoglu and Web- | B&B 3
respectively,p; = p stands for equal processing times, ster (2001)
and B for machine capacity. Finally 1{N)*f; refers to Zhanget al (2001) | Approx. algo. 1
the objective function. This function penalizes esgive Dupont and Dhae- | B&B 1
waiting times before washing. More precisely, pre- 1 |nens-Flipo (2002)
disinfection times are penalized for every minuteeed- Kasharet d. (2006) | Genetic algo- |1
ing 20 minutes. Thus, the formula givifigs the follow- rithms
ing: “washing starting time for jop — pre-disinfection Zhang et al. (2007) | Approximation} 2
starting time for jolj - 20 minutes”. Negative values bf K algorithms _
will refer to 0. asharet al (2009) App(Oleatlon 1
algorithms
Parseet al. (2010) Branch and 1
Kasharet al.(2010) | Genetic algo- |1
The batch scheduling literature is really vast. §hwe rithms
focus here on batch scheduling literature congsideri Changet al.(2004) | Simulated an- |1
different job sizes. We start by articles studyoffjiine 2 nealing
batch scheduling (i.e. all data is known in advance Kasharet al. (2008) %?nﬂic algo- |1
rithnm
In parallel batching problems with different jokes, the Li et al.(2005) Approximation | 1
sum of job sizes that are put into a batch shooldex- aIgonthm -
. ) R . . Nonget al. (2008) Approximation | 1
ceed machines capacity. Each job is assigned tmpes 3 algorithm
batch. The processing time .of a batch is glvephly t Lu et al.(2010) Approximation | 1
longest processing time of jobs that are put irtat t algorithm
batch. In table 1, we give a brief classificatiohtloe Chunget al.(2009) | MILP, heuristics 1
literature dealing with parallel batch schedulinglp Damodararet al. meta-heuristic | 1
lems considering different job sizes. Accordingr& (2011)
lease dates and number of machines, we divideatuh b Damodaran and heuristics 1
scheduling literature into 4 groups: first groumsiders Velez Gallego
equal release dates and single machine, secong grou 4 [(2010) _
considers equal release dates and parallel magttinies Chenetal. (2010) | Genetic algo, | 1
group considers job release dates and single mechin ﬁghﬁglt?cny
finally, fourth group represents jobs with releakses Wang and Chou Genetic algo, |1
and parallel machines. (2010) simulated an-
nealing

The first column of table 1 represents the grouminer.
References are cited in the second column. Thel thir
column shows the solution method proposed by esicl
Finally, last column shows the objective functidiote

Table 1: A review for batch scheduling problems
with different job sizes

k ) ) - ) However, with the increasing number of jobs, the- pe
that in aI_I these articles, d|fferent job _procggstrmes formance of the MILP model decreases and thusoasith
are considered. Clearly, the articles cited in finerth  gevelop also two heuristic approaches in orderind f
group are more interesting for us, since we comside qyick and efficient solutions. In both of these Higtics,
different release dates and parallel machines. élene first batches are formed, and then they are affiette
focus on the fourth group and give some more detail machines. The batch creation procedure is common in
these articles below. both heuristics and is inspired from the DELAY algo
rithm proposed by Lee and Uzsoy (1999). It uses two
parametersa, for determining the time window in which
jobs are batchedb, for determining the fullness of

All articles in the fourth group consider makespaimi-
mization. Chunget al. (2009) are the first ones who
consider the problem with different job sizes, @ patches. They test their heuristic with differeatbina-
dates and processing times taking into accountllphra tions ofa andb. Because of these two parameters, the
machines. They develop first a MILP model which is peyristic of Chunget al. (2009) is only pseudo-
capable of solving instances containing 10 jobsain  polynomial. Damodaran and Velez Gallego (2010) de-
reasonable amount of time. velop also a heuristic approach. This heuristicraes
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by, first, finding jobs to be executed in the saméch by

time optimization. Below, we first remind the offé

solving a 0-1 knapsack problem. After forming all heuristic, and then explain how we derive a senfinen

batches, they are affected to machines using ashieur
approach. They report that their heuristic outpento
the ones given by Churgg al. (2009). Even though that
heuristic finds a solution in a small amount ofdiltless
than 10 seconds according to numerical tests ofddam

heuristic from that first one. Then, we test thigcefncy
of the semi-online heuristic on instances inspireth a
real case. In the last section, we present a stionla
model using ARENA. Our aim is to evaluate if thdiop
mization of pre-disinfection times with the semiioa

ran and Velez Gallego (2010)), it is also pseudo- algorithm has a good impact on the entire stetibiza
polynomial since it uses a pseudo-polynomial dymami service.

programming algorithm for the resolution of the pna
sack problem. Damodaraat al. (2011) develop a meta-

heuristic called Greedy Randomized Adaptive Search

4 SOLUTION APPROACH

(GRASP). They report that the GRASP approach guar-Before giving the semi-online algorithm, let ussfir

antees the optimal solution for small instances &nd
more effective than the heuristics proposed by @Qtatn
al. (2009). Chenret al. (2010) develop a genetic algo-
rithm and an ant colony optimization. For the baash
signment procedure, they propose a heuristic (ERT:L
earliest ready time-longest processing time) whigh
used in both meta-heuristics. For computationaleexp
mentations, they develop another heuristic consider

remind the offline algorithm: this heuristic opesitby
first deciding a time window [Ot] after which, within
each time window, a knapsack problem is solved wher
all jobs have the same weight (or importance) losisp
bly different sizes. For resolution of the knapsacb-
lem, we use a procedure derived from the “firsthéu-
ristic”, which is one of the classical bin-packiatgo-
rithms. However, we stop the first fit resolutiorope-

the batch creation procedure proposed by Dupont anddure when only one batch is created. This waynglei

Jolai Ghazvini (1998) where ERT-LPT is applied &afte
wards. Their results indicate that both meta-h&oss

batch is created, and assigned to the first aveilada-
chine. The procedure for creation of a batch ingiven

outperform the heuristic approach. Wang and Choutime horizon is as follows:

(2010) consider machines with different capacitidsey
develop a genetic and a simulated annealing algorit
and test their algorithms on the instances defibgd
Chung et al. (2009). It is reported that the pregos
meta-heuristics are more efficient than the heiossbf
Chung et al. (2009).

All articles cited above suppose that all data, jiobd

sizes, release dates, processing times and nunfber o

machines, is known is advance. Hence, those aliaeoff
approaches for the scheduling problem. Accordinguio
knowledge, there is only one work considering alinen
scheduling problem with different job sizes, retedates
and processing times (Yonggiang and Enyu, 2005y Th

first fit procedure (FFP)

1- Sort jobs in non-decreasing order of releasedd
a listL

2- Open a batch

3- Starting from the first element, run through tis¢
L: if the job fits the batch, put it in the batcHses
continue with the next element bof

Concerning determination of the time window, its
length,t, is defined by maxr{ ; first machine availabil-
ity among all machines) wherg, is thek™ earliest job
arrival time out of the unassigned jobs. Parametear-
ies from 1 toN, i.e. the number of jobs. The start of the

work on makespan minimization in presence of alsing time window is 0. Thus, the time window is [pwhere
machine and give an online algorithm with an asymp- t changes during execution of the heuristiis then the

totic competitive ratio of 22/9.

In our work, we have partial information about jatyi-

upper limit of the time window and also an instamthe
problem. The time complexity of the algorithm is
O(N3logN). For more information, we refer the reader to

val times. While some jobs arrivals are as expected Ozturket al. (2011).

some other job arrivals may be before or after éke

pected arrival time. Thus, our study is a semiranli
approach since, some information (but not all)riskn

is advance. Concerning the objective functionsitan

extension of theotal completion timelf we consider
that all pre-disinfection starting times and arkitimes

are equal, then our objective function is reducetbtal

completion time.

Note that the problem we treat is strongly NP-h&rak.
the offline version of our problem, we developedIaP
model and a heuristic, call@idH, whose performance is
quite good for the pre-disinfection time optimipeti

4.1 Semi-onlinealgorithm: TIH corrective

We develop a semi-online version of heurigtiel. This
heuristic supposes that all data is known in adsanc
With these data, a first schedule is calculate@scut-
ing heuristicTIH. Then, each time a job arrives to the
sterilization service, it checks if the arrival thiat job is
on time. If it is the case, the first calculatechestule
stays valid. Otherwise, i.e. if a job arrives irvadce or
later than the expected arrival time, the data ssing
that arrival times are known is updated. More djeaf
a job arrives earlier than expected, the arrivabtdf that

(Ozturket al 2011).We integrate here that heuristic in a jop js updated, and theRH is re-executed in order to

semi-online optimization model for the pre-disirifen

get a new schedule for washing.
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TimeInterval Heuristic (TIH)
1 Sort jobs in non-decreasing order of arrival 8mig:
Lo, and set; =L,
2 Set the initial solutionsol,, for the mean prg
disinfection excess time, equal to a large numberk
from 1 toN, setl =k
3.1 WhileL; is not empty,
3.1.1 If the number of elementslinis smaller
thamh, setl = number of elements in;
3.1.2 Define the lengttof the time windowast =
max (arrival time of tH& element of_;;
first machine availability out of ahachines)
3.1.3 ApplyFFP on jobs whose arrival times are
shorter tharand erase batched jobs fram
3.1.4 Among the batched jobs, find the jolpgé
pre disinfection start time is théektpreya
Sett’ = max prena+ 15; first machine
availability out of all machinesggtest job
release date in the batch)
3.1.5 Oncé is reached, launch a washing cycle
with the batch formed B¥P, and calculate
the new availability of the machore which
the batch is processed
End while
3.2 Letsol,,: be the obtained mean pre-disinfection
excess time
3.3 Ifsok, > SOk S€tS0ky = SOk
3.4 Set =L,
End for
4 Set the final solutiorsok,,, equal tosol,.

TIH correcTive
1 ExecuteTIH on data contained Hyprovisionin order
to get a first pre-assignment of jobs to batches.| F
each batchb, setstart, as the expected processing start
time.
2 When a job arrives,
2.1 If that job is earlier than its expectedwal; up
date its arrival time iinorovisionand re-execute
TIH with the new updated data lofrovisionin
order to determine new batches.
3 When a job is supposed to have arrived,
3.1 If it has not arrived yet, update its artisa that
it arrives with the succeeding job. Reaxe
TIH in order to determine new batches.
4 Each time a newstart, is reached, re-execukd-P in
order to create batdh and assign it to the first ava
able machine. Update the new availability of the
chine.

ma

If a job has still not arrived although its arritahe has
passed, it is supposed that the late job will arviith the
next job. Thus, the arrival time of the late johupdated

in this way, andl'H is re-executed to get a new sched-
ule. For the first execution ofIH, we have got a list,
Lrrovision CONtaining the expected arrival times. Each
time a job is early or late, its arrival time isdgped in
that list. The different steps of the algorithm gieen in
the next column:

In fact in TIHcorrectve TIH is used to make a pre-
assignment of jobs to batches. Because after eatue
tion of a batch on a machin€lH knows which machine
is available in which instant. Each time a startiinge is
reached for a batclEFP determines the jobs to be exe-
cuted in the same batch.

4.2 Implementation of TIH correcTIVE

We designed a simulation model for the implemeotati
of TIHcorrecTive The model is built on ARENA. At first
step, the model represents only the washing step of
sterilization service, in order to test the behavid
TIHcorrecTivefor pre-disinfection times. Let us briefly
talk about the simulation model.

The washing step is composed of a washing stocloaind
washers, which are easily represented using apptepr
modules of ARENA. For each RMD set/job, an entgy i
created for the representation of job arrival. Theation
of an entity means that a job enters to the was$iogk.
Thus, we have a first type of data for real arritades
for RMD sets. However TIHcorrecTive WOrks with a
second kind of data where expected arrival times ar
kept. In the simulation model, the main aim of théx-
ond kind of data is to see if a job is late (Inecagob is
not late but early, it will enter the washing stdokthe
simulation model before its expected arrival timbus,
there is no more need to keep an expected ariival t
for that job. But if it is late, the model needshiave the
information about the expected arrival time sincpla
may be late several times after each update oéxts
pected arrival time.). Thus, in the simulation mopaee
have an artificial clock that checks the expectet/a
times. According to expected job arrival, that & dells
TIHcorrecTivelf @n entity should have arrived, or not, to
the washing stock. The|HcorrecTivechecks the wash-
ing stock and updates the expected arrival time¢hef
late job. All these control operations for the axémn of
TIHcorrecTivE FEQUire an information flow which we
managed with the VBA module of ARENA. Thus, all
steps of the algorithm are coded in VBA which is re
sponsible for operations like updating arrival teme
deciding the jobs to be batched together and pstoogs
of batches on machines. Below, we show a smalfdigu
representing the washing step.

O

Horloge warningTIHorrective
for late jobs

Washing Washers
stock
Job arrival I:l
according to—p |:|
real data

]

Figure 2: Functioning of the washing step
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5 COMPUTATIONAL RESULTS

In this section first, we test the performance of
TIHcorrecTivefOr pre-disinfection times. Afterwards, we
complete the simulation model with the rest of sher-
ilization steps (verification, packing, sterilizat) in
order to see the impact @flHcorrecTiveON the whole
system. But first, let us explain the test instance

5.1.1 Test instances

The test instances are inspired from real datangbyea
French private hospital. There are 4 automatic esssim
the sterilization service. Washer capacities aeeséime
and equal to 6 DIN (DIN is a standard measuremgrg t
for the volume of automatic washers), and washimg t
(i.e. batch processing time) is 60 minutes. RMDs&zts
are multiples of 1/36 of machine capacity. Thus, we
estimate job sizes using a uniform distribution:
U[1,36]*machine capacity/36. We observed that inter
arrival times between two RMD sets may take anyeal

how earlier/later those jobs are, we have 4 cdsesjob

can be 0 tol5 minutes early/late, 2- a job can bz 3D
minutes early/late, 3- a job can be 0 to 60 minutes
early/late, 4- a job can be 0 to 30 minutes latly.om
order to calculate real arrival times, we addedfsuied
U[0, ma¥ minutes to/from expected arrival times where
max = 15, 30 or 60 minutes according to the 4 cases
above. Note that for each instance type, configumat
and case, 10 instances are created containingdS0 jo

5.1.2 Performance of TIHcorrecTive pre-disinfection
times

We compareTlHcorrecTivel0 @ natural strategy for the
loading of washers, which BIFOgi,, and also to the
lower bound value. The lower bourdB) is obtained by

a simple calculation. We suppose that each jolras-p
essed on a machine as soon as its arrival withaiting

in the washing stock. This way, we get the best pre
disinfection time for each job. RegardiRtf-Ogpjine, that
strategy supposes that no information is knowndn a

between 0 and 40 minutes. Therefore, we sampled jobvance about future arrivals of RMD sets. All infation

arrival times from a uniform distribution such thato
consecutive arriving jobs may have an inter-arriirake
equal to X minutes, where~U [0; 40]. We denote this
type of arrival as a “random RMD arrival”. Howevar,
some other sterilization services, regular coltectdf
RMD sets may take place in operating theatershis t
case, someone is in charge of collecting RMD gets f
operating theaters at fixed intervals all day lotigys,
RMD sets arrive at the sterilization service regylaNe
consider 2 different values for the regular intatval
times: 20 minutes and 40 minutes, and assume lteat t
number of jobs released in a collecting tour is [gaoh
from a uniform distribution which is U[0;2] for 2@in-
utes of regular collecting and U[1;3] for 40 minutef
regular collecting. We thus define 3 instance tyes
cording to RMD set arrivals. Let us refer to thesn13,

2" and & instance types for irregular arrivals, 20 min-
utes of regular collecting, and 40 minutes of ragul
collecting, respectively. For the start of pre-dfsction
times, it is observed that RMD sets arrive at teeiliza-
tion service at least 5 minutes and at most 30 tefu
after the beginning of their pre-disinfection. Anglues
between 5 and 30 minutes were equally observed
Hence, the pre-disinfection start time of a jolédined
as the difference between its arrival at the &tatibn
service and “the transfer timéd)” where td follows a
uniform distribution U[5; 30]. Again inspired frorhe
real data, instances contain 50 jobs.

We use the instructions above to create expectidilar
times of RMD sets. In order to create the realvatri
times of RMD sets, we make some modifications dn jo
arrival times. For the number of jobs arriving géalte,
we suppose three configurations: 1- 10% of jobs bmay
early/late, 2-50% of jobs may be early/late, 3-10606
jobs may be early/late. Thus, for the second condig
tion for example, 25 jobs over 50 may arrive eartie
later than the expected arrival time. In orderétedmine

about an RMD set is known as soon as it arrivetheo
sterilization service. The weak point of this st is
the loading of washers. Batches are created withesu
sive RMS sets. When there is an RMD set that doés n
enter a batch, batch is closed and assigned tdirte
available washer. Thu§|FOgine tries to maximize the
utilization of capacity usage of washers. Howevtbat
causes long RMD set waiting before washing, which
increases long pre-disinfection times. In the tdddow,

we compare=IFOgpjine to the LB and TIHcorrecTIVE fOF

the pre-disinfection criterion. For each type oftance,
configuration and case, tables 2, 3 and 4 showridne-
mum and average pre-disinfection excess times.uket
remind that a job has an excess for the pre-distiofie if

it is pre-disinfected more than 20 minutes. Pre-
disinfection times smaller than 20 minutes are lidbas
have no penalization for the objective function.

LB TIHCOR. I:”:Oonline
Inst
type. | Case max moy.] max moy.
1 0,74]| 10 1.9 99 23.1
2 0,8] 22 2.3 119 19.2
3 0,75| 24 1.98 82 12
1 4 1|40 4 97 11.4
1 1,2|14 4.9 75 21.4
2 1,1134 5.3 100 18.2
3 0,95| 30 5.1 102 18.1
2 4 1,21| 22 5.3 59 19.2
1 2,8/33 14.9 94 28.1
2 3,434 15.5 106 25.3
3 3,1/ 33 16.7 63 32.2
3 4 4,234 16.5 106 35
Table 2: Performance @fiHcor rectivedNdFIFOgpjine fOr

pre-disinfection excess times for configuration 1



MOSIM’12 - June 06-08, 2012 - Bordeaux - France

LB TlHCOR. I:”:Oonline
Inst

type. Case max moy{max moy.
1 0,638 3.5 | 59 10.9
2 0,532 2.8 | 69 10.9
3 0,726 21 | 91 15.2
1 4 0,631 12 | 91 14.5
1 1,1|114 4.3 | 59 17.1

2 12|14 4.3 | 58 19
3 2,131 6.4 | 92 20.9
2 4 19|14 59 | 101 231
1 41|32 13.3] 103 29.8
2 3,5(32 16.2] 130 25.6
3 3,8(33 16.6| 80 27.5
3 4 4 | 34 15.1| 84 33.7

Table 3: Performance dfHcor rective@NdFIFOgpinefor
pre-disinfection excess times for configuration 2

LB T“'bOR. I:”:Oonline
Inst

type. Cas¢ max maoy. max moy.
1 0,417 3.2 91 11.8
2 0,4/22 1.8 96 18.8
3 0,5/27 14 59 13.6
1 4 0,6/30 2.2 61 11.2
1 1,4(20 5.1 78 18.1
2 1,8(25 4.1 78 21.5
3 1,3/28 5.8 78 20.2

2 4 23|24 5.7 77 19
1 41|34 127 79 251
2 [41]34 1209 119 31.4
3 3,9/32 13.1 72 24.6
3 4 4 |34 135 117 331

Table 4: Performance dfHcor rective@NdFIFOgpinefor
pre-disinfection excess times for configuration 3

According to numerical test3IHcorrecTivedives quite
good results for pre-disinfection times in an ofiersl
point of view. Considering that 20 minutes is theal
pre-disinfection duration, the mean pre-disinfettio
times given byTIHcor recTivelS between 20-25 minutes
for 15 and 29 types of instances, independently from
different configurations and cases. Because theiragr
of jobs takes longer in thé®3ype of instance compared
to 15 and 2° types, pre-disinfection times are generally
longer than 30 minutes. But again comparedFte
FOuniine TIHcorrecTIVES More powerful. Another conse-
guence we get form the test results is that apjdicaf
aFIFO strategy gives rise to excessive job waiting @ th
washing stock. Hence, pre-disinfection times insega
depending on the waiting at the washing stock.

Until now, we only considered that a job may arlater
or earlier than expected. Thus, all other inforovatiike
job sizes and pre-disinfection beginning times were

supposed to be perfectly known in advance. For that
case, we have just seen tldHcor recTivEQIVES qUIitE
similar results for pre-disinfection times almost ach
different configuration and different case. However
what would happen if information on job sizes amd-p
disinfection beginning times were not sure eithér?
other words, a job may have a different size ars pr
disinfection beginning time than the expected ores.
order to see the performance DfHcorrecivefor that
new case, we create 20 instances for each oftha™
and 3 instance types, following the instructions givan i
the first paragraph of this section. We supposegézh
type, that the first 10 instances are the expedttd and
the second 10 instances are the real data. Thisweay
have a group of instances representing real anectaqh
data while all (or almost all) data are differemt b
sizes, arrival times and pre-disinfection begingsing
Thus, the responsibility of IHcorrecTivEiS Changed a
little bit. Each time a new job arrives, it checaiat only
the exactitude of the arrival time, but also if thepected
data on the job size and pre-disinfection beginnsnttpe
same as the real one. If not, it updates this inéion
with the real data andliH is re-executed. We give in the
table below the performance ®fHcorrecTiveOr the pre-
disinfection times where no expected informatioimeo
cides with the real one (let us call this case igométion
4).

Type Inst. | min max moy.
1 0 43 5.6
2 0 55 6.6
3 0 60 12.p

Table 5: Performance @fiHcor recTivefOr pre-
disinfection times for configuration 4

According to numerical results given in the tahbewze,
performance oflIHcorrectivefor pre-disinfection times
is not much influenced even though there is a figrd
ence between real and expected data. Table 3 ghaivs
good pre-disinfection times are obtained with
TIHcorrecTive €Ven when the real data is completely
different than the expected data. Because our mixin
jective is satisfied witi IHcorrecTivE OUr Second aim is
now to see the impact of this optimization on theole
service.

5.1.3 Impact of TIHcorrective 0N the performance of a
sterilization service

We have seen that good pre-disinfection times &e o
tained withTIHcorrecTive The main result of this obser-
vation is that there is no more need for a mannalng.
RMD waiting is low enough at the washing step, and
hence, after a small waiting, they are directlydied into
washers. In anyway, washing cycles start with ao-au
matic rinsing. Thus, manual rinsing is no more 3saey
and so the application &flHcorrecTivel€lS US remove
the manual rinsing operator to other steps of theliza-
tion service.
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In order to test the impact 0f1HcorrecTiveON the whole
service, we completed the simulation model created
the previous section 4. We added the other stepshwh
are verification, packing and sterilization. In tteriliza-
tion service we investigated, there are 4 packiogtp
(verification is included in this step). After paicg, 3
autoclaves are present for the sterilization. Beeaue
do not need a manual rinsing anymore, our proposif
to remove this step and to add a fifth working goshe
packing step (according to EESS (2007), packing ste
can be a bottleneck for some sterilization seryices

Once RMD sets are washed, they are transferredrio v
fication and packing posts. Verification is fastdais
considered as part of packing. After verificationpiack-
ing step, all RMD belonging to an RMD set are pthce
into bags and boxes. The number of bags and boxas i
RMD set is independent from the size of that RMB se
While an RMD set of 6 DIN contain 2 big boxes only,
another RMD set of size 4.2 DIN may contain 3 small
boxes and 2 bagsAccording to the observed data, the

by A, B, and C the results corresponding ¥ 2 and
3% instances types.

300

230

200

150

100

a0

Waiting time in minutes

1]

TIHe FIFD TiHe FIFO  TIHe FIFO

Figure 3: Maximum and mean waiting times in the
washing stock

number of bags in an RMD set vary uniformly between According to figure 3TIHcorrecTivEIS @ble to minimize

[0, 6] while the number of boxes vary uniformly Wween
[0, 5].

In the packing step, the composition of bags takes
proximately 0.7-0,8 minutes. The composition of &®x
takes approximately 20-21 minutes. After packingRM
into boxes and bags, these boxes and bags become
individual entity in our simulation model. The sizef
boxes and bags are calculated respecting the atigjire
of the RMD set in which they are contained till ted
of washing. The size of bags is fixed to 0.8 DINileh
box sizes are variable. In order to estimate tke sif
boxes in an RMD set, the total size of bags israchtd
from the size of the RMD set. Then, it is dividedthe
number of boxes in order to assign a size to each b
Box and bag sizes are important for launching lsteri
tion cycles in autoclaves. As said previously, veeen3
autoclaves. Their sizes are equal to 12 DIN. Thretesyy
for the launching of these machines is that thel use
pacity should be at least 80%. This way the degired-
sure is obtained, steam has a better contact Wi R
and thus the hygiene level is ensured.

The simulation is performed for instances testedeo-
tion 5.1.2. The average run time of an instan@bzut 5
seconds. We start by analyzing the waiting timediin
ferent stocks. These stocks are at washing, packinig
sterilization steps. Because
TIHcorrecTivedepends mainly on different instance types
(i.e. ' 2" and 3 instances typesif. section 5.2), we
analyze our results according to these instancestylpet
us start by waiting times in the washing stock. $kew

! Note that RMD sets are not standard. They are com

posed of boxes and bags according to needs of@sge
While a surgeon may need little RMD, another sungeo
may need many RMD for the same surgery.

the performance of

the waiting of RMD in the Washing step. We see also
that waiting times are smaller fof“2and 3 types of
instances. This observation is due to arrival ploce of
RMD sets. Because in these instances RMD setsearriv
in big quantities (not one by one as fdridstance type),

it is possible to benefit better from the washqraity.

an

Because packing of bags takes little time, waitofg
entities in the packing stock for bags is smallhbfatr
TIHcoRRECTIVE and FIFOgnine HoOwever, it is the rlght
opposite for the waiting times in the stock for kiag of
boxes. Figure 4 gives us mean and maximum waiting
times at this stock, again for 3 instance typesasitb
with A, B and C.

200 +—A B

O average

—— B e

g0

|E o
o o o
!

o - ' ' .

TIHc FIFD  TIHcFIFC  TIHc FIFD

Figure 4: Maximum and mean waiting times in the
packing stock for boxes

The difference betweemlHcorrecTiveand FIFOgpiine iS
‘less significant at the packing stock of boxes camag
to waiting times in the washing stock. This is hema
packing of boxes takes a long time. But again differ-
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ence between these two strategies is 10 to 15 esnut
which results to an average minimization of 20-2-m
utes for the time passed in the system consideiigd w
the gain at the washing stock.

RMD waiting at the sterilization stock is the sabmh
for TIHcorrecTive and FIFOgnine The average RMD
waiting is about 30 minutes.

According to results given above,TifHcorrecTivelS able
to minimize a little bit the time passed in therifitmation
service, then, it should also be able to increasertain
number of RMD sterilized per day. For that purposge,

ered good by managers of sterilization servicesrtter

to test the performance OFIHcorrecTive ON real life
inspired instances, we inserted it in a simulatioodel
built in ARENA. Because the MILP model (proposed in
a previous work) is efficient on small instances: (e
containing 10 to 15 jobs), we comparBHcorrecTivetO

a lower bound value and to a general strategy fdDR
washing which isFIFO,nine According to test results,
TIHcorrecTivEIS @ble to give good pre-disinfection times
in most cases. We tested also its impact on theofeke
sterilization process. Simulation results show titat
performs better thaRIFO,;, for waiting times in dif-
ferent stocks and the number of RMD sterilized gagy.

tested for each instance type, the average number o

boxes and bags prepared and sterilized at the fetitt o
day. In table 4, we show these quantities for ciffé
instance types.

Inst. type 1| Inst. type 2 Inst. Type 3
TIH cor. 186 178 162
FIFO on. 173 169 153

Table 6: Average box and bag numbers sterilizédeat
end of a day

According to the results given in table 4 for thigecion
of the number of boxes and bags sterilized,
TlHCORRECTIVEiS again better thdF\IFOon“ne.

6 CONCLUSION

In this study, we modeled the washing step of aligte
tion service as a batch scheduling problem. Ourigito
minimize the mean pre-disinfection excess time BIR
sets at the washing step, when there is no mamsahg
in the system.

For the objective of optimizing the mean pre-disition
time of RMD, we developed a MILP model and a heuris
tic in previous works. These methods supposed athat
information about RMD set arrivals, sizes and pre-
disinfection beginnings were known in advance. How-
ever, in most of the hospitals, there is littleoimhation
exchange between operating blocs and the steidlizat
services. Thus, it is not possible to know all infiation
about RMD arrivals in advance. Considering thatecas
we modified the previously developed heuristic idey
to have a semi-online version. We called

TIHCORRECTIVE

it

TIHcorrecTivESUPpPOSES that all data about RMD arrivals
are known in advance. It prepares a first schefiuléhe
washing of RMD sets. If there is an RMD set whish i
late or which arrives earlier to the sterilizatervice, it
updated the information of that RMD set, and thes p
pares a new schedule for RMD washing.

Considering that the ideal pre-disinfection time?2i@
minutes, 20 to 30 minutes of pre-disinfection ingid-

For the future work, the results of the simulatiaodel
can be enriched by making some more statisticdlyana
sis. It is also possible to extend this work bysidaring
purely online configurations, or some stochastidhme
ods. Moreover, the simulation model can be imprdwed
taking into account manpower representing thelizari
tion service operators.
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