
HAL Id: hal-00730503
https://hal.science/hal-00730503

Submitted on 10 Sep 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fast positive deconvolution of hyperspectral images
Simon Henrot, Charles Soussen, David Brie

To cite this version:
Simon Henrot, Charles Soussen, David Brie. Fast positive deconvolution of hyperspectral images.
IEEE Transactions on Image Processing, 2013, 22 (2), pp.828-833. �10.1109/TIP.2012.2216280�. �hal-
00730503�

https://hal.science/hal-00730503
https://hal.archives-ouvertes.fr


1

Fast Positive Deconvolution of Hyperspectral Images

Simon Henrot, Charles Soussen, David Brie

Abstract—In this correspondence, we provide an efficient scheme for
performing deconvolution of large hyperspectral images under a positivity
constraint, while accounting for spatial and spectral smoothness of the
data.

Index Terms—Image restoration, hyperspectral images, regularized
least squares, positivity, cross-spectral prior information

I. INTRODUCTION

In many imaging applications, the acquisition process induces var-
ious degradations on the collected image which can prevent accurate
post-processing of the data of interest. For instance, the image of a
biological sample by a microscope is blurred due to diffraction and
corrupted by stochastic noise mainly caused by photon-to-electron
conversion [1]. Restoration methods such as deconvolution are thus
used whenever post processing requires it.

Dealing with hyperspectral images (that is, a stack of images
representing the same scene captured at many wavelengths) adds
the challenge of accounting for cross-spectral information within the
restoration process [2], [3]: the intensity values of a given pixel at
two neighboring wavelengths should be close. When the data size
is large, advanced deconvolution methods become computationally
prohibitive and linear methods such as Tikhonov or Wiener-filtering
can be used to process the set of images [4], [5]. Within this
framework, the problem is formulated as the minimization of a
compound criterion which possesses a closed-form solution. Up to
the circular approximation of the observation matrix, this solution can
be efficiently computed in the Fourier domain using 2D Fast Fourier
Transforms (FFTs) [6].

A drawback of these methods is their inability to restore the
original object’s high frequency components beyond the PSF band-
width. This typically results in ringing artifacts around edges which
can generate negative-valued pixels in the deconvolved image [7].
When the image is known to be positive (e.g., acquired by a photon
counting process), a positivity constraint needs to be applied to yield a
physically meaningful estimate. In [8], the authors use the augmented
Lagrangian method to solve this constrained optimization problem
for 2D images ; another fast 2D restoration method using variable
splitting is given in [9]. Other popular algorithms are the Image Space
Reconstruction Algorithm (ISRA) in the case of Gaussian noise and
the Richardson-Lucy algorithm for Poisson noise: these methods can
be applied to the hyperspectral positive restoration problem but do
not lead to fast computations [10].

To the best of our knowledge, no hyperspectral restoration algo-
rithm accounts for both cross-spectral information and positivity in
a fast manner. The main contribution of this paper is to propose
an algorithm that incorporates these two priors while remaining
computationally efficient.

The remainder of this paper is organized as follows. Section II
introduces the observation model and notations used throughout the
paper. The deconvolution problem is formulated in section III. In
section IV, we detail the procedure we use to solve the problem.
Section V presents experimental results on synthetic data and some
insight into the influence of the hyperparameters. Finally, we conclude
in section VI.

This work was supported by the French Agence Nationale de la Recherche,
with reference number ANR-09-BLAN-0336-04. The authors are with the
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II. OBSERVATION MODEL AND NOTATIONS

The hyperspectral image to be restored X is assumed to be a
stack of N matrices {X`, ` = 1, . . . , N} of size M × M (we
use square matrices for simplicity and without loss of generality),
where subscript ` refers to the wavelengths or channels. Using
lexicographical order, the stack can be reshaped into a collection
of M2 × 1 vectors {x`, ` = 1, . . . , N} or a single M2N × 1 vector
x with xt = [xt

1, . . . ,x
t
N ] and we use similar notations for other

images.

A. Within-channel observation model

Within a given channel `, X` generates data Y` according to the
two-dimensional (2D) observation model (see for instance [11])

Y` = H` ∗
2D

X` + N` (1)

where H` is the M ×M convolution kernel (possibly comprising
null entries) encoding the `-th channel Point-Spread Function (PSF):

H` =

H
`
11 . . . H`

1M

...
. . .

...
H`

M1 . . . H`
MM

 , (2)

∗2D denotes the discrete 2D convolution product carried out in the
image domain, yielding an output of size M ×M and N` is a noise
term assumed to be independent and identically distributed (i.i.d) and
Gaussian. Equation (1) rewrites as a linear system:

y` = H`x` + n` (3)

where H` is a M2×M2 block-Toeplitz matrix with M×M Toeplitz
blocks, e.g. for M = 3, H` reads

H` =

H`
2 H`

1 0

H`
3 H`

2 H`
1

0 H`
3 H`

2

 with H`
i =

H`
2i H`

1i 0

H`
3i H`

2i H`
1i

0 H`
3i H`

2i

 .

Working assumption: We impose periodic boundary conditions on
PSFs H`’s. This approximation allows H` to be rewritten as a block-
circulant matrix with circulant blocks [5], a structure we will denote
by circulant-block-circulant (CBC):

H` =

H`
2 H`

1 H`
3

H`
3 H`

2 H`
1

H`
1 H`

3 H`
2

 with H`
i =

H`
2i H`

1i H`
3i

H`
3i H`

2i H`
1i

H`
1i H`

3i H`
2i

 .

A well-known property of CBC matrices is that they can be diago-
nalized by a two-dimensional discrete Fourier transform (2D-DFT):
this property is used in section IV.

B. Hyperspectral observation model

The hyperspectral observation model reads y = Hx+n where the
NM2×NM2 observation matrix H is block-diagonal since imaging
in a given channel ` does not interfere with other channels `′ 6= `:

H =


H1 0 . . . 0

0
. . .

. . .
...

...
. . .

. . . 0
0 . . . 0 HN

 . (4)

We further assume that the noise process n` for a given channel is
independent of the other channels `′ 6= `, and that the noise variance
is common to all channels. Using this assumption, the noise process
n (accounting for all channels together) obeys an i.i.d. Gaussian
distribution.
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III. PROBLEM FORMULATION

A. Linear restoration problem

The deconvolution problem can be formulated as the estimation
of x given data y and the system response H. In the framework of
least square restoration [5], it is usually written as the unconstrained
minimization of a composite criterion

J (x) = ‖y −Hx‖2 + µ‖Dx‖2 + ν‖Ex‖2 (5)

where the first term measures the goodness of fit between the data
y and the observation model for a candidate solution x and the
second and third term regularize the solution, e.g. by penalizing
large differences between spatially and/or spectrally adjacent pixels.
Hyperparameters µ and ν are positive and balance the relative
strength of the three terms of J (depending on the application and
the level of blur, one of the parameters may be zero). D and E
are respectively the spatial and spectral regularization matrices with
M2N columns:
• For each channel `, spatial regularization is performed by

selecting a convolution kernel D` representing some kind of
difference operator, e.g. the Laplacian filter: 0 −1 0

−1 4 −1
0 −1 0

 . (6)

One can then construct the corresponding M2×M2 CBC block
D` similar to the procedure given in section II-A. The hyper-
spectral spatial regularization matrix D has a block-diagonal
structure:

D =


D1 0 . . . 0

0
. . .

. . .
...

...
. . .

. . . 0
0 . . . 0 DN

 . (7)

• Spectral regularization occurs across channels, so matrix E is
not block-diagonal. A simple choice to penalize large amplitude
differences at adjacent wavelengths is to use a first order deriva-
tive filter E0 1 in the wavelength domain, e.g. E0 = (1,−1),
which yields the 1D convolution matrix:

E0 =


−1 1 0 . . . 0

0 −1
. . .

. . .
...

...
. . .

. . .
. . . 0

0
. . .

. . . −1 1

 (8)

of size (N − 1)×N . The spectral regularization matrix reads

E = E0 ⊗ IM (9)

where IM is the identity matrix of size M×M , and ⊗ stands for
the Kronecker product between matrices, consisting in replacing
the 0’s and 1’s in (8) by 0 and IM , respectively.

The method proposed hereafter is not specific to the regularization
operators defined in (7 - 9); it can be applied to any convolution
operators D`’s with periodic boundary conditions and to any E0
(without imposing specific boundary conditions). Although matrices
D and E are very large, they are mainly introduced for formal
reasons. As we will see in Section IV, they are not explicitly stored
in practice because the terms ‖Dx‖2 and ‖Ex‖2 can be efficiently
computed using two-dimensional Fourier transforms [12].

1Convolution kernel E0 is written with a subscript to remain coherent with
other kernels D`.

B. Positive restoration problem

The positive deconvolution problem is formulated in the framework
of constrained optimization

min
x
J (x) s.t. x ≥ 0 (10)

This is a classic constrained minimization problem which has no
closed-form solution. Constrained optimization methods are usually
classified as interior point, active set and exterior penalty meth-
ods [13]. The quadratic penalty method belongs to the latter class
and is often used in computations for its simplicity [13, chapter 17].
The rationale for choosing this technique is that it allows us to use a
slightly modified implementation of the unconstrained minimization
of J , based on fast computations in the Fourier domain, in order
to yield the constrained estimate. This results in an algorithm with a
relatively low complexity, which is especially useful when processing
large hyperspectral images. The minimization procedure is detailed
in section IV.

IV. NUMERICAL OPTIMIZATION

The quadratic penalty method simply consists in replacing the
constraints by quadratic penalty terms in the objective function. Han-
dling inequality constraints can be done by introducing M2N slack
variables si and replacing the inequalities {xi ≥ 0, i = 1 . . .M2N}
by {xi−si = 0, si ≥ 0, i = 1 . . .M2N}. The original problem (10)
is replaced by the surrogate problem:

min
x,s
K(x, s) s.t. s ≥ 0 (11)

where the new objective function reads

K(x, s) = ‖y −Hx‖2 + µ‖Dx‖2 + ν‖Ex‖2 + ξ‖x− s‖2. (12)

When ξ tends to infinity, the entries of x identify with the correspond-
ing entries of s: the constraint x ≥ 0 is asymptotically fulfilled. The
surrogate problem is unconstrained w.r.t. x and involves the constraint
s ≥ 0. However, the positivy constraint is much easier to handle than
in the original problem since the objective function is quadratic and
separable w.r.t. s. Minimization of K w.r.t. (x, s) is performed by
alternating unconstrained minimization w.r.t. x (§IV-A), constrained
minimization w.r.t. s (§IV-B) and increasing ξ (§IV-C). The three
steps are done once per iteration until some appropriate stopping
criterion is met (§IV-D).

A. Unconstrained minimization

At a given iteration, the first step consists in solving the uncon-
strained quadratic minimization problem:

min
x
K(x, s) (13)

We first rewrite the objective function in terms of its channel
components:

K(X,S) =
N∑
`=1

(‖Y` −H` ∗
2D

X`‖2 + µ‖D` ∗
2D

X`‖2

+ ν‖{E0 ∗
1D

X}`‖2 + ξ‖X` − S`‖2) (14)

where ∗1D denotes the discrete 1D convolution product carried out
in the spectral (wavelength) domain, i.e., there are as many 1D
convolution products as the number of image pixels, and ‖ . ‖ is the
matrix Frobenius norm. Using the 2D-DFT (denoted by the usual hat
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notation) and Parseval’s Theorem, criterion (14) reads

K′(X̂, Ŝ) =
N∑
`=1

(‖Ŷ` − Ĥ` × X̂`‖2 + µ‖D̂` × X̂`‖2

+ ν‖{E0 ∗
1D

X̂}`‖2 + ξ‖X̂` − Ŝ`‖2) (15)

where × denotes entry-wise multiplication, ‖ . ‖ now refers to the
matrix Frobenius norm in the spatial frequency domain and ∗1D
still refers to the 1D convolution in the wavelength domain. To
obtain (15), we have exploited that for a given `, {E0 ∗1D X}` is a
linear combination of images {X`′ , `

′ = 1 . . . N} weighted by the
nonzero values of E0. Thus, the 2D-DFT of {E0∗1D X}` is the linear
combination of images X̂`′ ’s with identical weights.

To ensure that all images X`’s are real-valued, it is necessary to
impose that X̂`’s are Hermitian matrices. Thus, it can readily be
shown that the problem reduces to the minimization of K′ over half
the 2D spatial frequency plane, e.g. the right-half plane and the whole
minimizer is deduced using Hermitian symmetry.

We remark that in (15), each squared norm reads as a sum over
the spatial frequencies f of the related matrix elements (e.g., the
first term is the sum over f of |Ŷ`(f) − Ĥ`(f)X̂`(f)|2). Because
the convolution {E0 ∗1D X}` is done in the wavelength domain,
the objective function K′(X̂, Ŝ) is separable with respect to each
spatial frequency f . To be more specific, the problem may be recast
as a collection of bM2N/2c independent quadratic problems, each
corresponding to a point f in the right space frequency half-plane,
with N unknowns:

min
xf

{‖yf−∆H(f)xf‖2+µ‖∆D(f)xf‖2+ν‖E0xf‖2+ξ‖xf−sf‖2}
(16)

where complex vectors xf , yf and sf and complex diagonal matrices
∆H(f) and ∆D(f) index the following quantities

xf , {X̂`(f), ` = 1 . . . N}
yf , {Ŷ`(f), ` = 1 . . . N}
sf , {Ŝ`(f), ` = 1 . . . N}

∆H(f) , diag{Ĥ`(f), ` = 1 . . . N}
∆D(f) , diag{D̂`(f), ` = 1 . . . N}

and E0 is the 1D convolution matrix induced by kernel E0. For each
f in the right half-plane, the solution of (16) is then simply given by

xf = Tf
−1(∆H(f)

′yf + ξsf ) (17)

where ′ stands for the complex conjugate and Tf is the real N ×N
matrix given by

Tf = ∆H(f)
′∆H(f) + µ∆D(f)

′∆D(f) + νEt
0E0 + ξIN . (18)

Choosing E0 = (1,−1) leads to (8) which implies that Tf is a
tridiagonal matrix.

B. Constrained minimization

The second step consists in solving the following separable
quadratic minimization problem:

min
s≥0
K(x, s) (19)

where the positivity constraint on s is easy to handle since the only
term of K in which s is involved is the last term ‖x−s‖2. This term
is separable with respect to si’s and the solution reads

si = max (0, xi). (20)

C. Update of ξ

Increasing ξ at each iteration ensures that the algorithm converges
to the constrained minimizer of J . A broad range of schemes is
available and a common choice is to use a linear rule ξ(k+1) = αξ(k)

where α > 1 [13, p. 493].

D. Proposed algorithm

The algorithm procedure can be summed up as follows (τ is a
stopping parameter):

1) for ` = 1 . . . N , compute the 2D-DFTs of data Y` and PSFs
H` (H`’s are usually theoretically known or experimentally
measured);
set ξ(1) = 1 and α > 1 and τ < 0; initialize s = 0;

2) repeat
a) for each `, compute S` from s` using 2D-FFTs;
b) for each f in the right-half plane, compute {X̂`(f), ` =

1 . . . N} using (17) and (18);
c) for each f in the left-half plane, deduce X̂`(f)’s using

Hermitian symmetry;
d) for each `, compute x` from X̂` using inverse 2D-FFTs;
e) compute s from (20);
f) update coefficient ξ(k+1) = αξ(k).

until the stopping criterion is met, e.g. the lowest-valued pixel
of X is superior to some tolerance threshold τ .

E. Computational complexity

Using the FFT, the complexity of a 2D-DFT is O(M2 log2(M)).
The complexity of each iteration is dominated by FFTs since each
N×N tridiagonal linear inversion reduces to O(N) using the Crout’s
LU decomposition algorithm [14]. Hence, each iteration is done in
O(NM2 log2(M)) operations.

Additionally, no expensive storage is required since the largest
matrix involved in computation Tf is sparse and of size N ×N .

V. EXPERIMENTAL RESULTS

We illustrate the performance of the algorithm with experimental
results on synthetic data. We use a linear mixing model to generate
a multichannel cube of data representing simulated objects against a
uniform background, captured at several wavelengths. In this model,
the spectrum of one pixel (i, j) is given by

X`(i, j) = a1(i, j)u1(`) + a2(i, j)u2(`) (21)

where endmember u1 is the segment [0, 1] sampled on N points and
u2 is the vector obtained by flipping u1 in the left - right direction.
By setting the corresponding abundances a1 and a2 to an arbitrary
M ×M spatial pattern, one may synthesize objects that respectively
fade in and out when the channel index ` increases from 1 to N .
Blurring is simulated by convolving each channel of the image by a
M ×M Airy disc computed by the 2D DFT of a disk whose radius
linearly depends on the channel `. The stack is further corrupted by
an additive white Gaussian noise term so as to obtain a SNR of 15
dB. The resulting M×M×N images are not meant to be realistic but
provide a simple way to evaluate the performance of the algorithm
from a computational standpoint.

A. Comparison with other constrained optimization methods

In this section we investigate constrained optimization methods to
solve problem (10). Nonnegativity constraints are most commonly
handled by the log-barrier interior point method [15], [13]. We use
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M N Variables Proposed method fmincon quadprog Unc. estimate
25 3 1 875 .6 s 510.9 s 1.6 s .1 s
50 5 12 500 1.9 s 3863.6 s 11.6 s .2 s

100 10 100 000 9.2 s manually stopped after 2 hours memory limitation 1.0s

TABLE I
COMPARISON OF THE COMPUTATION TIMES OF THE DIFFERENT OPTIMIZATION METHODS

the MATLAB optimization toolbox to write two different implemen-
tations of this technique, using either matrices with the quadprog
function and a Fourier domain formulation with fmincon. We also
compare these results with the unconstrained estimate [12]. A pair
of hyperparameters is arbitrarily selected and results are given for a
2.4 Ghz Intel Core 2 Duo processor with a RAM of 4 gigabytes.

The unconstrained estimate performs worse in terms of MSE
(defined as ‖xtrue−xest‖22) : see figure 1. We observe that all three
constrained optimization methods do converge to the same estimate,
yielding very similar objective values and identical reconstruction
errors. However, our method strongly outperforms the others in terms
of computation time and memory requirements, as shown in table I.

The main reason for the increased computation time is that the
log-barrier objective function is not quadratic, hence its gradient
is nonlinear and thus minimizing the objective w.r.t. to x must be
done in an iterative fashion, e.g. using a quasi-Newton step. When
the data size is large, closed-form minimizations at each iteration
make the restoration problem tractable. Furthermore, we observe that
computing convolution matrices quickly reaches memory limitations.

B. Sensitivity to the choice of hyperparameters

Running the algorithm involves choosing the hyperparameter pair
(µ, ν). Because of the tradeoff between spatial and spectral regu-
larization and their interplay with the positivity constraint, this is
not a trivial problem and its analytical resolution is still an open
problem. Furthermore, the choice strongly depends on the application,
e.g. the restored image should minimize the reconstruction error
as a preprocessing step to spectral unmixing, but applying more
smoothing (hence selecting higher parameters) is often desirable for
visual inspection. In this section we select the MSE as the relevant
criterion. We attribute a [10−4, 104] range to each hyperparameter
and discretize it on a 2D grid with logarithmic scales. For each grid
point, we restore the data using the proposed method and we compute
the MSE. The results corresponding to the least MSEs are presented
in figure 1 for M = 25 and N = 3.

We observe that the best constrained estimate in the MSE sense
is obtained for lower hyperparameters, i.e. requires less smoothing
than the best unconstrained estimate: see for instance [16]. In this
simulation, the estimation is not very sensitive to the variation of
hyperparameters, the ratio between maximum and minimum MSEs
on the grid being 1.3 for the constrained and 1.6 for the unconstrained
estimate. What is more, the former has a lower reconstruction error
than the latter and presents slightly less restoration artifacts: see figure
1. Notice how more ringing artifacts are located near the edges of the
unconstrained estimate as opposed to the more ”uniform” distribution
of errors for the constrained estimate.

In practical applications we obviously do not have access to the true
image and hyperparameters may best be selected by trial and error.
However, this process remains tractable in practice since the proposed
method remains fast even for large data and numerous hyperparameter
candidate values.

C. 3D + λ Fluorescence microscopy simulation

In this section we demonstrate the performance of the algorithm
on synthetic data resembling actual fluorescence microscopy images
for visual inspection and to get an idea of the processing time of
4D data for a MATLAB implementation. We create 3D abundance
maps of physical size 25µm× 25µm× 5µm to mimic the random
spatial distribution of bacteria using spheres of 1µm radius, yielding
255 × 255 × 5 data cubes. Pseudo fluorescent spectra modeled as
sums of Gaussian signals in the 300 − 600nm range are fed into
the linear mixing model to create the 255 × 255 × 5 × 30 data
stack. We use the scalar diffraction-limited Stokseth model [17] to
generate a widefield microscopy point-spread function with a 63X/1.4
oil immersion objective and a CCD camera pixel size of 0.1µm. The
image is blurred and an additive white Gaussian noise term is added
to obtain a SNR of 15 dB: in widefield microscopy, the SNR is high
enough so that the Poisson distributed photo-counting noise term can
be accurately approximated by a Gaussian process [17]. Results are
presented in figure 2. Due to the use of 4D tensors, the running
time has increased to 15 min for ten iterations of the restoration
algorithm. Deconvolution achieves a 77% decrease of the MSE and
the proposed estimate thus has a significantly greater resolution. By
using information from neighboring wavelengths, our method can
restore severely degraded image planes which cannot be tackled by
simpler schemes such as PSF fitting.

VI. CONCLUSION

This paper presents a method to solve a hyperspectral image
deconvolution problem where one needs to jointly account for spatial,
spectral and non-negativity information. The problem is formulated
as the minimization of a regularized least-squares criterion under
a positivity constraint. While a closed-form solution to the uncon-
strained problem is known, we provide an intuitive implementation
based on FFTs. We show how to easily incorporate a positivity
constraint into the estimate. The main advantages of the method
are its ease of implementation since it does not require computation
of large matrices and its speed, mainly due to the use of 2D-
FFTs and low-complexity tridiagonal inversions. Furthermore, the
algorithm can make use of parallel processing on each pixel of
the stack of spectra using Graphics Processing Units (GPUs) [18]
with no additional implementation issues. The method can also
be extended to hyperspectral images with three spatial dimensions
in a straightforward manner. Future investigations might include
accounting for Poisson noise in accordance with confocal microscopy
observation models.
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