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In density estimation, a number of convergence results can be stated with
no restriction on the function to be estimated. Unlike these universal proper-
ties, the asymptotic normality of estimators often requires hypotheses on the
derivatives of the underlying density together with additional conditions on
the smoothing parameter. Yet, in spite of possible bad local behaviour of the
density (it is not continuous or has infinite derivative), the convergence in law
of the nearest neighbour estimator can still occur and provide confidence bands
for the estimated density. Therefore a natural question arises: Is it possible to
give a necessary and sufficient condition for the existence of a limit distribu-
tion of the nearest neighbour estimator? We answer this question by means
of the regularity index recently introduced by Beirlant, Berlinet and Biau (1).
As expected the limit distribution, when existing, is gaussian. Its mean and
variance are given explicitly in terms of coefficients related to the regularity
index. The second order exponent in the expansion of the small ball proba-
bility is shown to be the crucial parameter. In contrast to former results on
sufficiency of conditions for asymptotic normality no hypothesis is needed on
the continuity of the underlying density.
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1. Introduction

Sufficient conditions for convergence and asymptotic normality of nearest neighbour den-
sity estimators have been given a long time ago. A classical result (Loftsgaarden and
Quesenberry (8)) states the pointwise convergence in probability of this estimator at
points where the density is positive and continuous. It can be extended to any Lebesgue
point (Bosq and Lecoutre (3)). Moore and Yackel (10) proved the asymptotic normality
under additional conditions on the smoothing parameter and on the derivatives of the
density. Their results were extended to multivariate nearest neighbour estimators with
weight function by Mack (9). It seems that no author reconsidered this question until the
paper by Berlinet and Levallois (2) who proved the asymptotic normality of the nearest
neighbour density estimator in cases where the density has bad local behaviour. Indeed
what is important is the local behaviour of the associated measure, more precisely the
rate at which the derivative of the underlying measure is approximated by ratios of ball
measures. We establish in Section 2 a necessary and sufficient condition on the number
of neighbours for the existence of a limit distribution of the nearest neighbour estimator.
As expected, the limit distribution when existing is gaussian. Its parameters are given
explicitly in terms of coefficients appearing in the expansion of small ball probabilities. In
Section 3, some simulations are presented in a case where the density has no derivative.

2. Definitions and results

We consider a sequence (Xn)n≥1 of d−dimensional independent random vectors with
probability distribution µ and density f with respect to the Lebesgue measure λ on R

d

equipped with the Euclidean norm ‖.‖. We denote by B(x, δ) (resp. B(x, δ)) the open
(resp. closed) ball with center at x and radius δ.

The problem of estimating the probability density has received considerable attention
in the litterature. A lot of methods have been developped like histograms, kernel estima-
tors and their variants. We shall consider in this paper the nearest neighbour estimator
fkn

of f based on (Xn)n≥1. It is defined by

fkn
(x) =

kn

nλ(Bn(x))

where Bn(x) = B(x, Rn(x)) is the smallest closed ball with center x containing at least
kn sample points. The integer kn plays the role of a smoothing parameter: when kn is
chosen too large the data are oversmoothed; they are undersmoothed in the opposite case.
The estimate fkn

(x) is the ratio of the frequency of sample points falling into Bkn
(x) to

the Lebesgue measure of Bkn
(x).

Berlinet and Levallois studied the asymptotic normality of this estimator and pointed
out the key role of the local behaviour of the probability measure associated with the
density, more precisely the role of the rate at which the derivative of the measure is
approximated by the ratios of ball measures. If, for fixed x, the following limit

ℓ(x) = lim
δ→0

µ(B(x, δ))

λ(B(x, δ))
(1)

exists, then x is called a Lebesgue point of the measure µ. This notion of Lebesgue
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point is essential to state elegant results with few restrictions on the functions to be
estimated. In Berlinet and Levallois (2), examples where the density has a bad local
behaviour at Lebesgue points are examined. Yet, to evaluate rates of convergence or
investigate asymptotic normality of estimators, we require not only the convergence of
the ratio of ball measures but also information on higher order behaviour. In this context,
Berlinet and Levallois define a ρ-regularity point of the measure µ as any Lebesgue point
x satisfying

∣

∣

∣

∣

µ(B(x, δ))

λ(B(x, δ))
− ℓ(x)

∣

∣

∣

∣

≤ ρ(δ), (2)

where ρ is a measurable function such that limδ↓0 ρ(δ) = 0.
As it will be seen below, Berlinet and Levallois used this notion to extend previous
asymptotic normality results of Moore and Yackel.

To specify an exact rate of convergence of the ratio of ball measures, Beirlant, Berlinet
and Biau (1) assumed that a more precise relation than (2) holds at the Lebesgue point
x, namely

µ(B(x, δ))

λ(B(x, δ))
= f(x) + Cxδαx + o(δαx) as δ → 0, (3)

where Cx is a non-zero constant and αx is a positive real number. It is easy to show
that relation (3) implies ρ-regularity at the point x with ρ(δ) = Dxδαx and Dx > Cx.
The constants Cx and αx are uniquely determined (provided they exist). The index αx is
a regularity index which controls the degree of smoothness of the symmetric derivative
of µ with respect to λ. The larger the value of αx, the smoother the derivative of µ is
at the point x. Beirlant, Berlinet and Biau used this regularity index to solve practical
problems in nearest neighbour density estimation, such as removing bias or selecting the
number of neighbours.
Equation (3) is clearly equivalent to the small ball probability expansion

P (‖X − x‖ ≤ δ) = Vdδ
d (f(x) + Cxδαx + o(δαx))

where X has density f and Vd = πd/2/Γ(1 + d/2) denotes the volume of the unit ball in
R

d. In other words, the second order term in the expansion of the small ball probability
of radius δ at x is equal, up to a multiplicative constant, to δd+αx .

2.1. Sufficient conditions of convergence

In discriminatory analysis, Fix and Hodges (6) introduced the classification rule based on
nearest neighbour (see also Devroye, Györfi and Lugosi (4)). As to the nearest neighbour
estimator, it was first studied by Loftsgaarden and Quesenberry (8) at points where the
density is positive and continuous. These authors proved that the conditions

lim
n→∞

kn = ∞ and lim
n→∞

kn

n
= 0 (4)

ensure the convergence in probability of fkn
(x) to f(x). This result can be extended to

any Lebesgue point (3).
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Moore and Yackel proved the following asymptotic normality result.

Theorem 2.1 : Under the convergence conditions (4), if

lim
n→∞

kn

n2/3
= 0,

if f is continuous at x and has bounded derivatives in a neighbourhood of x and if
f(x) > 0, then

Tn(x) =
√

kn
fkn

(x) − f(x)

f(x)

tends in distribution to the standard normal N (0, 1) as n tends to infinity.

In practice, we have no information on the existence of derivatives. It is less restrictive
to suppose ρ-regularity. Assuming ρ-regularity and a suitable rate of convergence for
ρ(Rn(x)), Berlinet and Levallois obtained the following theorem.

Theorem 2.2 : Suppose that the convergence conditions (4) hold, that x is a ρ-
regularity point of the measure µ and that f(x) > 0. If, as n tends to infinity,

√

knρ(Rn(x)) (5)

tends to 0 in probability then

Tn(x) =
√

kn
fkn

(x) − f(x)

f(x)

tends in distribution to N (0, 1).

When the function f satisfies a Lipschitz condition of order α > 0 at x, i.e.

|f(x) − f(y)| ≤ Cx ‖x − y‖α (6)

for any y in some neighbourhood of x, it is possible to give a condition on the sequence
(kn) implying condition (5). This corollary of Theorem 2.2 was given in the univariate
case by Berlinet and Levallois but a quick inspection of their proof easily yields to the
d-dimensional version given in Corollary 2.3 below. This proof essentially relies on the
fact that condition (6) implies ρ-regularity at the point x with

ρ(δ) = Dx δα.

Hence Theorem 2.2 gives the result.

Corollary 2.3: Suppose that the convergence conditions (4) hold, that f satisfies con-
dition (6) and that f(x) > 0. If

lim
n→∞

k
1+d/(2α)
n

n
= 0
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then

Tn(x) =
√

kn
fkn

(x) − f(x)

f(x)

tends in distribution to N (0, 1).

2.2. Main results

Now we consider the question of existence of a limit distribution for the nearest neighbour
density estimator.

Theorem 2.4 : Suppose that the convergence conditions (4) hold, that x is a Lebesgue
point in R

d where (3) is satisfied with f(x) > 0. Then, as n tends to infinity,

Tn(x) =
√

kn
fkn

(x) − f(x)

f(x)

converges in distribution if and only if the sequence

(

k
1+d/(2αx)
n

n

)

n≥1

has a finite limit κ. When this last condition is satisfied, the asymptotic law of Tn(x) is

N
(

Cxκαx/d

V
αx/d
d

(

1

f(x)

)1+αx/d

, 1

)

.

Theorem 2.4 provides a necessary and sufficient condition for the existence of a limit
distribution and gives explicitly this distribution when it does exist.

2.3. Proofs

Proof of Theorem 2.4
Theorem 2.4 is a straightforward consequence of Lemma 2.7 and 2.8 below. �

The proof of the lemmas relies on the following decomposition:

Tn(x) = an(bn + cn)
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where

an =
kn

nµ(Bn(x))
,

bn =
√

kn
1

f(x)

(

µ(Bn(x))

λ(Bn(x))
− f(x)

)

and cn =
n√
kn

(

kn

n
− µ(Bn(x))

)

.

Moore and Yackel (10) proved the following result.

Lemma 2.5: For the sequences of random variables (an) and (cn) defined above in the
decomposition of Tn(x), we have, under the convergence conditions (4),

an
P→ 1 and cn

L→ N (0, 1)

as n tends to infinity.

Let us now turn to the asymptotic behaviour of the third quantity bn introduced in
the decomposition of Tn(x).

Lemma 2.6: Under the convergence conditions (4), and if (3) is satisfied, we have

lim
n→∞

(

n

kn

)αx/d 1√
kn

bn =
Cx

V
αx/d
d

(

1

f(x)

)1+αx/d

.

Proof :

From (3) we obtain that the function

Φ(δ) =

(

µ(Bδ(x))

λ(Bδ(x))
− f(x)

)

1

δαx

is such that

lim
δ→0+

Φ(δ) = Cx.

Using this function Φ in the expression of bn, we have

bn = Φ(Rn)

(

nVdR
d
n

kn

)αx/d
1

V
αx/d
d f(x)

k
αx/d+1/2
n

nαx/d

and

(

n

kn

)αx/d 1√
kn

bn = Φ(Rn)

(

nVdR
d
n

kn

)αx/d
1

V
αx/d
d f(x)

.
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Then, under the convergence conditions (4), we observe that

Rn
P→ 0 and

kn

nVdRd
n

= fkn
(x)

P→ f(x).

The convergence in probability of (Rn) to zero implies that

Φ(Rn)
P→ Cx.

This, together with the convergence in probability of fkn
(x) to f(x), gives the result. �

Lemma 2.7: Sufficient condition.

Under the conditions of Theorem 2.4, if

lim
n→∞

k
1+d/2αx
n

n
= κ

then

Tn(x)
D→ N

(

Cxκαx/d

V
αx/d
d

(

1

f(x)

)1+αx/d

, 1

)

.

Proof : Conditions of Theorem 2.4 and Lemma 2.6 lead us to

lim
n→∞

bn =
Cxκαx/d

V
αx/d
d

(

1

f(x)

)1+αx/d

in probability

and Lemma 2.5 allows to conclude. �

Lemma 2.8: Necessary condition.

Under the conditions of Theorem 2.4, if the sequence
(

k
1+d/(2αx)
n

n

)

does not converge then

the sequence of random variables

Tn(x) =
√

kn
fkn

(x) − f(x)

f(x)

does not converge in distribution.

Proof : If the sequence
(

k
1+d/2αx
n

n

)

is not bounded, then there exists a subsequence
(

k
1+d/2αx
q(n)

q(n)

)

which tends to infinity. So

∀M > 0, P
(∣

∣bq(n)

∣

∣ > M
)

→
n→∞

1

and (bn), and consequently (Tn(x)), do not converge in distribution.

If the sequence
(

k
1+d/2αx
n

n

)

is bounded and do not converge, then we can extract two

subsequences which converge to two differents limits l1 and l2. Using Lemma 2.5, the
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corresponding subsequences of (Tn(x)) converge in distribution respectively to N (l1, 1)
and N (l2, 1). Therefore, (Zn) does not converge in distribution. �

3. An example

We illustrate the above considerations with the probability density f defined on (−1, 1)
by

f(x) =
5

2

(

1 − |x|1/4
)

.

The associated distribution function satisfies

F (x) =







(1/2) + (5/2) x + 2 (−x)5/4 if −1 ≤ x ≤ 0

(1/2) + (5/2) x − 2 x5/4 if 0 ≤ x ≤ 1.

Simple calculations show that for 0 < x− h < x + h < 1, the small ball probability with
radius h at x is given by

F (x + h) − F (x − h) = 5 h − 5 h x1/4 +
5

32

h3

x7/4
+ O(h5)

= 2h (f(x) + Cxhαx + o(hαx))

with

{

Cx = (5/64) x−7/4

αx = 2

and that for 0 < h < 1, one has

F (h) − F (−h) = 5 h − 4 h5/4

= 2h (f(0) + C0h
α0)

with

{

C0 = −2
α0 = 1/4.

If kn is chosen as c nβ where c and β are two positive constants (β < 1), we know from
Theorem 2.4 that for x 6= 0, (Tn(x)) converges in distribution if and only if β ≤ 4/5. The

asymptotic distribution is N
(

5−22−1/4c5/2

(2−23/4)3 , 1
)

if β = 4/5 and N (0, 1) if 0 < β < 4/5.

From the same theorem we know that (Tn(0)) converges in distribution if and only if
β ≤ 1/3. The asymptotic distribution is N (−4 c3/45−5/4, 1) if β = 1/3 and N (0, 1) if
0 < β < 1/3.
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Figure 1. kn equal to the integer part of n1/2.

-10 -8 -6 -4 -2 2 4

0.1

0.2

0.3

0.4

0.5

0.6

Figure 2. kn equal to the integer part of n4/5.

Since f is uniformly continuous the choice kn = c nβ, 0 < β < 1, implies the strong
uniform consistency conditions of Devroye and Wagner (5)

lim
n→∞

kn

log n
= ∞ and lim

n→∞

kn

n
= 0.

Note also that the optimal kn in the sense of pointwise asymptotic mean square er-
ror at any point x of (−1, 1) different from 0 is of the form c n4/5 (see Fukunaga and
Hostetler (7)) and that this imply the convergence of Tn(x) to a non centered gaussian
distribution.

A rule of thumb for kn was early proposed by Loftsgaarden and Quesenberry (8). It
consists in taking kn as an integer close to

√
n. This rule ensures that the conditions of
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-6 -4 -2 2 4 6

0.1

0.2

0.3

0.4

Figure 3. kn equal to the integer part of n1/3.

-10 -5 5 10

0.1

0.2

0.3

0.4

Figure 4. kn equal to the integer part of n1/4.

convergence

lim
n−→∞

kn = ∞ and lim
n−→∞

kn

n
= 0

are satisfied. It also ensures that the sufficient condition of Theorem 2.1

lim
n−→∞

kn

n2/3
= 0
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is fulfilled. Therefore the distribution of the statistic

Tn(x) =
√

kn
fkn

(x) − f(x)

f(x)

tends to N (0, 1) as n tends to infinity whenever the conditions of Theorem 2.1 on f and
its derivatives are satisfied. This is why the rule “kn close to

√
n”is popular in nearest

neighbour density estimation (Figure 1 described below was built with such kn).
To illustrate the behaviour of the statistic Tn(x) (x = 0 and x = 0.5) we simulated m

times a set Si (1 ≤ i ≤ m) of n pseudo-random variables with density f by means of
the rejection method. Each set Si of n variables was used to compute fkn

(x), kn being
equal to the integer part of nγ , γ ∈

{

1
4 , 1

3 , 1
2 , 4

5

}

. Then Tn(x) was computed by using the
exact value of f(x). In this way we got m values of Tn(x) and used them to estimate its
distribution by a kernel estimate with gaussian kernel

K(t) =
1√
2π

exp

(

− t2

2

)

and window-width

hm =

(

4

3m

)1/5

sm

where sm is the standard deviation of the sample (see Bosq and Lecoutre (3)).
The resulting eight estimators (with n = m = 1000) are drawn in Figures 1 to 4

together with the density of N (0, 1). The estimated density of Tn(1/2) (resp. Tn(0)) is
in dotted (resp. dashed) line and the density of N (0, 1) is in solid line. The choice of kn

implies the following situations.
Figure 1.

The distribution of Tn(1/2) converges to N (0, 1).
The distribution of Tn(0) does not converge.

Figure 2.
The distribution of Tn(1/2) converges to N (1.043..., 1).
The distribution of Tn(0) does not converge.

Figure 3.
The distribution of Tn(1/2) converges to N (0, 1).
The distribution of Tn(0) converges to N (−0.534..., 1).

Figure 4.
The distribution of Tn(1/2) and the distribution of Tn(0) converge to N (0, 1).

The lesson to draw for the practitioner is that the choice of kn should be made locally
with great care (this is known but deserves reminder) and that whenever the set of data
is large enough a preliminary estimation of αx, as proposed by Beirlant, Berlinet and
Biau (1), may act as a safeguard against hasty conclusions.
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