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KYBERNET IKA — MANUSCR IPT PREV IEW

EMPIRICAL ESTIMATOR OF THE REGULARITY
INDEX OF A PROBABILITY MEASURE

Alain Berlinet and Rémi Servien

The index of regularity of a measure was introduced by Beirlant, Berlinet and Biau
[1] to solve practical problems in nearest neighbour density estimation such as removing
bias or selecting the number of neighbours. These authors proved the weak consistency of
an estimator based on the nearest neighbour density estimator. In this paper, we study
an empirical version of the regularity index and give sufficient conditions for its weak and
strong convergence without assuming absolute continuity or other global properties of the
underlying measure.

Keywords: Regularity index, Lebesgue point, Small ball probability.

Classification: 62G05.

1. INTRODUCTION

The subject of this paper is related to the general problem of the estimation of small
ball probabilities. Beirlant et al. [1] introduced the notion of regularity index of
a measure to specify the rate at which the ratio of ball measures converges at a
Lebesgue point. Indeed, this index is the exponent appearing in the second order
term of the expansion of the small ball probability. Then, they defined an estimator
of this index based on the nearest neighbour density estimator and proved its weak
consistency. This estimator was applied to solve practical problems in nearest neigh-
bour density estimation such as removing bias or selecting the number of neighbours.
More recently Berlinet and Servien [3] proved that this regularity index was the key
parameter governing the limit distribution of nearest neighbour density estimators
so that its estimation may be crucial in the derivation of confidence intervals. In
the present paper, we study an empirical version of the regularity index and give
sufficient conditions for its weak and strong convergence. Unlike Beirlant et al. [1]
we do not assume absolute continuity of the underlying measure but only a pointwise
property of small ball probabilities. Notation and former results are given in the
next section. Section 3 gathers the definition of the estimator and its convergence
properties. Section 4 is devoted to the proofs of the theorems and examples are
given in Section 5.
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2. NOTATION AND FORMER RESULTS

Let µ be a probability distribution and λ be the Lebesgue measure on Rd equipped
with the Euclidean norm ||.||. We denote by Bδ(x) the open ball with center x and
radius δ. To evaluate the local behaviour of µ(Bδ(x)) in relation to λ(Bδ(x)) one
can consider the ratio of these two quantities. If, for fixed x, the following limit

`(x) = lim
δ→0

µ(Bδ(x))

λ(Bδ(x))
(1)

exists and is finite, then x is called a Lebesgue point of the measure µ (see Dudley
[5] and Rudin [6]). This notion of Lebesgue point is essential to state elegant results
with few restrictions on the functions to be estimated. In Berlinet and Levallois
[2], examples where the density has a bad local behaviour at Lebesgue points are
examined. To evaluate rates of convergence or investigate asymptotic normality of
estimators, not only the convergence of the ratio of ball measures is required but also
information on its higher order behaviour. In this context, Berlinet and Levallois [2]
define a ρ-regularity point of the measure µ as any Lebesgue point x of µ satisfying∣∣∣∣µ(Bδ(x))

λ(Bδ(x))
− `(x)

∣∣∣∣ ≤ ρ(δ), (2)

where ρ is a measurable function such that limδ↓0 ρ(δ) = 0. To specify an exact rate
of convergence of the ratio of ball measures, Beirlant et al. [1] assumed that a more
precise relation than (2) holds at the Lebesgue point x; namely

µ(Bδ(x))

λ(Bδ(x))
= `(x) + Cxδ

αx + o(δαx) as δ ↓ 0, (3)

where Cx is a non-zero constant and αx is a positive real number. It is easy to
show that Equation (3) implies ρ-regularity at the point x with ρ(δ) = Dxδ

αx and
Dx > Cx. The constants Cx and αx are unique (provided they exist). Examples are
provided in Section 5 with an absolute continuous measure and a measure with dis-
crete part. The index αx is a regularity index that controls the degree of smoothness
of the symmetric derivative of µ with respect to λ. The larger the value of αx, the
smoother the derivative of µ is at the point x. Beirlant et al. [1] showed the interest
of estimating the regularity index to solve practical problems in nearest neighbour
density estimation, such as removing bias or selecting the number of neighbours.
More recently Berlinet and Servien [3] analyzed the effect of the value of αx on
limit distributions of nearest neighbour density estimators. They gave a necessary
and sufficient condition involving αx and the number of neighbours to have a limit
distribution for the estimator.
The link with the small ball probability is clear since Equation (3) is equivalent to
the expansion

P (‖X − x‖ ≤ δ) = Vdδ
d (`(x) + Cxδ

αx + o(δαx))

where X has probability distribution µ and Vd = πd/2/Γ(1+d/2) denotes the volume
of the unit ball in Rd. In other words, the second order term in the expansion of the
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small ball probability of radius δ at x is equal, up to a multiplicative constant, to
δd+αx .
Hence it appears that to estimate αx one needs some information on the behaviour
of µ(Bδ(x)) as a function of δ. This is why the following theorem, proved by Beirlant
et al. [1] will be useful in the sequel.

Theorem 2.1. Suppose that x ∈ Rd is a Lebesgue point of µ with regularity index
αx. Then, for any τ > 1,

lim
δ→0

ϕτ2δ(x)− ϕτδ(x)

ϕτδ(x)− ϕδ(x)
= ταx

where we denote, for δ > 0,

ϕδ(x) =
µ(Bδ(x))

λ(Bδ(x))
.

Now let X1, . . . , Xn denote n independent random variables with distribution µ
on Rd, µ being unknown. Using the kn-nearest neighbour density estimator

fkn(x) =
kn

nVd
∥∥X(kn)(x)− x

∥∥d
where X(kn)(x) is the kthn -nearest neighbour of x and Vd is the volume of the unit

ball in Rd, Beirlant et al. [1] introduced an estimator ᾱn,x of the regularity index
inspired by the above theorem by setting, for τ > 1,

ᾱn,x =
d

ln τ
ln
fbτ2knc(x)− fbτknc(x)

fbτknc(x)− fbknc(x)
, (4)

if [fbτ2knc(x) − fbτknc(x)]/[fbτknc(x) − fbknc(x)] > 1 and ᾱn,x = 0 otherwise, and
proved the weak consistency of ᾱn,x.
In the paper by Beirlant et al. [1] most results are stated under the assumption of ab-
solute continuity of the measure µ with respect to Lebesgue measure. This is required

for instance to get a beta distribution for the random variable µ
(
B[X(kn)(x)−x](x)

)
.

Our goal in the present paper is to define an empirical estimator inspired by the
same theorem. For this, we simply replace in the expression of ϕδ(x) the unknown
quantity µ(Bδ(x)) by its empirical counterpart. We prove the weak and strong
consistency of the resulting estimator under the sole assumption that Equation (3)
holds true. The present paper stays at a theoretical level, giving conditions on the
deterministic sequence (δn) to get consistency. This is a first step. Further work
should lead to an automatic choice of this sequence from the observed data.

3. THE EMPIRICAL ESTIMATOR AND ITS CONVERGENCE

Let (Xi)i≥1 be a sequence of independent real d-dimensional random vectors with
distribution µ. The empirical measure µn associated with X1, . . . , Xn is defined by

µn(A) =
1

n

n∑
i=1

I(Xi∈A), A ⊆ Rd,
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where

I(Xi∈A) =

{
1 if Xi ∈ A
0 otherwise

and the associated empirical estimator of ϕδ(x) by

ϕn,δ(x) =
µn(Bδ(x))

λ(Bδ(x))
.

The following theorems state the weak and strong consistency of the empirical esti-
mator defined by

α̂n,x =
1

ln τ
ln
ϕn,τ2δn(x)− ϕn,τδn(x)

ϕn,τδn(x)− ϕn,δn(x)
(5)

if
[
ϕn,τ2δn(x)− ϕn,τδn(x)

]
/ [ϕn,τδn(x)− ϕn,δn(x)] > 1 and α̂n,x = 0 otherwise, (δn)

being a sequence of positive numbers which will be assumed to tend to zero.

Theorem 3.1. (Weak consistency) Suppose that x ∈ Rd is a Lebesgue point of
µ with regularity index αx. Then, under the conditions

lim
n→∞

δn = 0 and lim
n→∞

nδd+2αx
n =∞

the empirical estimator α̂n,x converges to αx in probability.

As is usually the case almost sure consistency is obtained under stronger condi-
tions on the sequence (δn).

Theorem 3.2. (Strong consistency) Suppose that x ∈ Rd is a Lebesgue point
of µ with regularity index αx. Then, under the conditions

lim
n→∞

δn = 0 and lim
n→∞

nδ
2(d+αx)
n

lnn
=∞

the empirical estimator α̂n,x converges to αx almost surely.

4. PROOFS

The weak (respectively strong) consistency of α̂n,x is equivalent to the weak (resp.
strong) consistency, for any τ > 0, of the ratio

Rn(δn) =
ϕn,τ2δn(x)− ϕn,τδn(x)

ϕn,τδn(x)− ϕn,δn(x)

to ταx . Let us fix τ > 0 and set

Sn(δn) =
ϕn,τδn(x)− ϕn,δn(x)

ϕτδn(x)− ϕδn(x)
.
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We can write

ϕn,τ2δn(x)− ϕn,τδn(x)

ϕn,τδn(x)− ϕn,δn(x)
=
ϕτ2δn(x)− ϕτδn(x)

ϕτδn(x)− ϕδn(x)

ϕn,τ2δn(x)− ϕn,τδn(x)

ϕτ2δn(x)− ϕτδn(x)

×
(
ϕn,τδn(x)− ϕn,δn(x)

ϕτδn(x)− ϕδn(x)

)−1
or equivalently

Rn(δn) =
ϕτ2δn(x)− ϕτδn(x)

ϕτδn(x)− ϕδn(x)

Sn(τδn)

Sn(δn)
.

Let us first look at the variance of Sn(δn). For this let us write

Sn(δn) = 1 +
An(τδn)−An(δn)

∆n

where

An(δn) = ϕn,δn(x)− ϕδn(x) and ∆n = ϕτδn(x)− ϕδn(x).

The following lemma gives the asymptotic variance of An(δn), the asymptotic co-
variance of (An(τδn), An(δn)) and the asymptotic variance of Sn(δn).

Lemma 4.1. Suppose that x ∈ Rd is a Lebesgue point of µ with regularity index
αx. Then, under the condition

lim
n→∞

δn = 0

we have

lim
n−→∞

n δdn E
[
(An(δn))

2
]

=
`(x)

Vd
,

lim
n−→∞

n δdn E [An(τδn)An(δn)] =
`(x)

τdVd
and

lim
n−→∞

n δd+2αx
n E

[
(Sn(δn)− 1)

2
]

=
`(x)

(
τd − 1

)
τdVd C2

x(ταx − 1)2
.

Proof of Lemma 4.1 First note that Equation (3) implies that

∆n = ϕτδn(x)− ϕδn(x) = Cxδ
αx
n (ταx − 1) + o(δαx

n )

and

lim
n−→∞

δ2αx
n

∆2
n

=
1

C2
x(ταx − 1)2

.

Now, using the fact that the random variable nµn(Bδn(x)) has the binomial distri-
bution B(n, µ(Bδn(x))) we get

n δdn E
[
(An(δn))

2
]

=
δdn µ(Bδn(x))(1− µ(Bδn(x)))

[λ(Bδn(x))]
2

= [1− µ(Bδn(x))]
µ(Bδn(x))

λ(Bδn(x))

1

Vd
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which gives the asymptotic variance of An(δn).

As Bδn(x) ⊂ Bτδn(x) the covariance

E ([µn(Bτδn(x))− µ(Bτδn(x))] [µn(Bδn(x))− µ(Bδn(x))])

is equal to
1

n
(1− µ(Bτδn(x))) µ(Bδn(x))

and therefore

n δdn E [An(τδn)An(δn)] =
δdn (1− µ(Bτδn(x))) µ(Bδn(x))

λ(Bτδn(x)) λ(Bδn(x))

= [1− µ(Bτδn(x))]
µ(Bδn(x))

λ(Bδn(x))

1

τdVd

which gives the asymptotic covariance of (An(τδn), An(δn)).
Changing δn into τδn as argument of An(.) gives

lim
n−→∞

n (τδn)
d
E
[
(An(τδn))

2
]

=
`(x)

Vd
.

Gathering the above results one gets

lim
n−→∞

n δd+2αx
n E

[
(Sn(δn)− 1)

2
]

= lim
n−→∞

n δd+2αx
n E

[(
An(τδn)−An(δn)

∆n

)2
]

=
`(x)

(
τd − 1

)
τdVd C2

x(ταx − 1)2
.

This ends the proof of the lemma. �

Remark. Note that under the assumptions

lim
n→∞

δn = 0 and `(x) > 0

the condition
lim
n→∞

nδd+2αx
n =∞

is not only sufficient but also necessary for the L2 convergence of (Sn(δn)) .

Proof of Theorem 3.1
Under the conditions of Theorem 3.1, (Sn(δn)) and (Sn(τδn)) converge to the con-
stant 1 in the L2 sense and therefore also in probability. Thus, their ratio tends to
1 in probability. By Theorem 2.1 (Rn(δn)) tends to ταx in probability. This ends
the proof. �
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Proof of Theorem 3.2.
As already said the conclusion of Theorem 3.2, is equivalent to the following property:
For any τ > 1,

lim
n→∞

ϕn,τ2δn(x)− ϕn,τδn(x)

ϕn,τδn(x)− ϕn,δn(x)
= ταx almost surely.

From Hoeffding’s inequality (see [4]) for a binomial distribution we have

∀t > 0, P
(
|µn(Bδn(x))− µ(Bδn(x))| ≥ t

)
≤ 2 exp

(
−2nt2

)
.

Taking
ε > 0 and t = ελ(Bδn(x)) |∆n| ,

we get,

∀ε > 0, P
(∣∣∣∣An(δn)

∆n

∣∣∣∣ ≥ ε) ≤ 2 exp
(
−2n [ελ(Bδn(x))∆n]

2
)
.

By Borel-Cantelli lemma, we have the convergence

An(δn)

∆n
−→0 almost completely

if

∀ε > 0,

∞∑
n=1

exp
(
−2n [ελ(Bδn(x))∆n]

2
)
<∞. (6)

Now, set

γn =
V 2
d ∆2

n

δ2αx
n

.

As we have from Equation (3)

∆2
n = δ2αx

n (C2
x (ταx − 1)2 + o(1))

we have
γn = V 2

d (C2
x (ταx − 1)2 + o(1))

and the summand in Condition (6) writes

exp
[
−nδ2(d+αx)

n γn ε
2
]

= exp

[
−nδ

2(d+αx)
n

lnn
γn ε

2 lnn

]
=

1

nun

with (γn) tending to
γ = V 2

d C2
x (ταx − 1)2 > 0

as n tends to infinity and

un =
nδ

2(d+αx)
n

lnn
γn ε

2.
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The condition imposed on the sequence (nδ
2(d+αx)
n / lnn) implies that for any ε > 0,

the sequence (un) tends to infinity and therefore Condition (6) is satisfied. Thus
(An(δn)/∆n) converges to 0 almost completely. In the same way one proves that
(An(τδn)/∆n) converges to 0 almost completely. It follows that

Sn(δn) = 1 +
An(τδn)−An(δn)

∆n

and (Sn(τδn)) converge to 1 almost completely. Finally, using Theorem 2.1, we get
the conclusion that α̂n,x converges to αx almost surely. �

5. EXAMPLES

5.1. An example with an absolutely continuous measure

First consider the measure µ, absolutely continuous with respect to the Lebesgue
measure on R, with density

f(x) = 1−
√

2

3
+
√
|x| 1(−1/2,1/2)(x).

The distribution function F of µ is given by

F (x) =


0 if x ≤ −1/2

(1/2) + (1−
√

2/3) x+ (2/3)x
√
|x| if −1/2 ≤ x ≤ 1/2

1 if x ≥ 1/2

For x ∈ (0, 1/2) and δ > 0, δ small enough, one has

F (x+ δ)− F (x− δ) = 2δ(1−
√

2/3) + (2/3)
[
(x+ δ)

(3/2) − (x− δ)(3/2)
]
.

For x ∈ (−1/2, 0) and δ > 0, δ small enough, one has

F (x+ δ)− F (x− δ) = 2δ(1−
√

2/3) + (2/3)
[
−(−x− δ)(3/2) + (−x+ δ)(3/2)

]
= 2δ(1−

√
2/3) + (2/3)

[
(−x+ δ)(3/2) − (−x− δ)(3/2)

]

Now, for 0 < |u| < 1,

(1 + u)
(3/2)

= 1 +
3

2
u+

3

8
u2 − 1

16
u3 +

3

128
u4 + o(u4),

hence
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(1 + u)
(3/2) − (1− u)

(3/2)
= 3u− 1

8
u3 + o(u4)

and, for x 6= 0,

(x+ δ)
(3/2) − (x− δ)(3/2) = x(3/2)

[(
1 +

δ

x

)(3/2)

−
(

1− δ

x

)(3/2)
]

= x(3/2)

[
3
δ

x
− 1

8

(
δ

x

)3

+ o(δ4)

]

if x > 0 and δ small enough,

F (x+ δ)− F (x− δ)
2δ

= (1−
√

2/3) + x(3/2)
[

1

x
− 1

24

1

x3
δ2
]

+ o(δ3)

F (x+ δ)− F (x− δ)
2δ

= (1−
√

2/3) +
√
x− 1

24

1

x(3/2)
δ2 + o(δ3)

if x < 0 and δ small enough,

F (x+ δ)− F (x− δ)
2δ

= (1−
√

2/3) + (−x)(3/2)
[

1

−x
− 1

24

1

(−x)3
δ2
]

+ o(δ3)

F (x+ δ)− F (x− δ)
2δ

= (1−
√

2/3) +
√
−x− 1

24

1

(−x)(3/2)
δ2 + o(δ3).

Thus, for x 6= 0,

F (x+ δ)− F (x− δ)
2δ

− f(x) = − 1

24

1

|x|(3/2)
δ2 + o(δ3).

This implies Equation (3) with

αx = 2 and Cx = − 1

24

1

|x|(3/2)
.

Note that
lim
x−→0

Cx = −∞.

At the point x = 0 one uses the fact that for δ ∈ (0, 1) one has

F (δ)− F (−δ)
2δ

− f(0) =
2

3

√
δ

to conclude that Equation (3) holds with

α0 =
1

2
and C0 =

2

3
.
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5.2. An example with a measure having a discrete part

Now, consider the discrete probability measure ν supported by the sequence

xi =
1

i
, i ∈ N∗,

with masses

ν ({xi}) =
1

i(i+ 1)
.

For any δ ∈ (0, 1) , there exists a unique positive integer k(δ) such that

1

k(δ) + 1
≤ δ < 1

k(δ)
(7)

and we have

ν [B(0, δ)] =
∑
i>k(δ)

1

i(i+ 1)
=

1

k(δ) + 1

and
ν [B(0, δ)]

λ [B(0, δ)]
=

1

2δ (k(δ) + 1)

From the definition of k(δ) it follows that

lim
δ−→0+

k(δ) =∞ and lim
δ−→0+

δk(δ) = 1−

thus

lim
δ−→0+

ν [B(0, δ)]

λ [B(0, δ)]
=

1

2
.

Now,
ν [B(0, δ)]

λ [B(0, δ)]
− 1

2
=

1− δ (k(δ) + 1)

2δ (k(δ) + 1)

and, from (7), we have

− 1

k(δ)
< 1− δ (k(δ) + 1) ≤ 0

and therefore

− δ
1−α

δk(δ)
<

1− δ (k(δ) + 1)

δα
≤ 0, α ∈ (0, 1).

Finally, gathering the above results, one gets

∀α ∈ (0, 1),
ν [B(0, δ)]

λ [B(0, δ)]
=

1

2
+ o(δα).
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The probability measure η = (µ+ ν)/2 satisfies

η [B(0, δ)]

λ [B(0, δ)]
=

3

4
−
√

2

6
+

1

3
δ1/2 + o(δ1/2).

So, the measure η, which is clearly not absolutely continuous, satisfies Equation
(3) at the point x = 0 with

l(0) =
9− 2

√
2

12
, C0 =

1

3
and α0 =

1

2
.
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