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Abstract

In this paper, the problem of transient heat transfer in sliding contact is studied analytically and numerically.

The heat source is represented as a uniform heat strip moving over a half-space with and without cooling outside

the contact zone. The finite element method, implemented using a commercial code, was used in numerically

solving this problem. An analytical solution taken from the literature was adapted to obtain the presented model

and used to check the capabilities of the commercial code. After the validation of the resolution method, the work

was completed by studying the influence of the Peclet number (source speed) and the Biot number (presence of

cooling) on the temporal and spatial evolution of the surface temperature of the half-space. Finally, the transient

constriction function is estimated and analyzed for the presented test cases. Correlations were also derived to (i)

evaluate the time interval within which the steady state is reached, and (ii) estimate the constriction parameter as

a function of Peclet and Biot numbers in the steady state case.

Keywords: dimensionless constriction, thermal resistance, heat flux channel, surface temperature, moving strip

heat source.

∗Corresponding author

*Manuscript
Click here to view linked References

http://ees.elsevier.com/ate/viewRCResults.aspx?pdf=1&docID=6427&rev=3&fileID=141546&msid={AE79A38B-A4A3-4772-920A-2C8DBAE5405C}


M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

Nomenclature

a half strip width m

Ac contact area m2

A0 half space surface m2

b half medium width m

Bi Biot number

c strip length m

Fo Fourier number

h heat convection coefficient W/m2K

k thermal conductivity W/mK

L reference length m

Pe Peclet number

q applied heat flux W/m2

Q(t) heat flow rate W

Rc (t) constriction resistance k/W

T (x, z, t) temperature field K

T̄0(t), T̄c (t) average temperature K

t , t ′ time s

V sliding speed m/s

x, z space coordinates m

Greek symbols

α thermal diffusivity m2/s

ǫ constriction ratio

ψ dimensionless constriction resistance

Subscript

c contact

i initial

r reference

ss steady state

∞ far from the contact

Superscript

+ dimensionless variable
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Introduction

Generated heat at the surface of one body or at the contact interface between two bodies in industrial processes,

such as laser welding, braking systems, friction between two mediums and so on, is often modeled by using the

concept of moving heat source in stationary or transient case. Most of this heat is expended on the increases in

the temperature of the contact interface. This local temperature increase can strongly affect the surface properties

of materials. Thus, the temperature level plays an important role in various applications and should be carefully

controlled.

Although this is a very old subject, it remains scientifically important and at the microscopic scale, difficult to

master in some configurations, such as transitional arrangements and the presence of heat convection. The study

of heating due to friction has been the subject of many research works during the last century. Indeed, several

publications have reported attempts at finding the transient temperature rise or the heat transfer rate within a

circular disk (contact area) which is moving on the surface of an isotropic half-space. These solutions are presented

for (i) the transient heat flow rate from the contact area when the contact area is isothermal, and (ii) the temperature

rise of the contact area when the area is subjected to any heat flux profile. Several studies based on the moving heat

source theory have been developed in order to calculate the average temperature over the contact area [1–7].

The previous investigations can be divided into two categories: (i) analytical solutions which are possible in some

special cases of geometry and boundary conditions giving unlimited information over the entire range of dimen-

sionless time [2, 4, 8–14], and (ii) numerical methods that provide results for practically any combination of geom-

etry and boundary conditions, but the results of which must be presented as a correlation to be useful [15–19].

Most authors have thoroughly investigated the case of a semi-infinite solid heated by a spot or strip moving source

and insulated outside the contact zone [1–5, 7–11]. A few studies have been conducted on the problem presented

here, but they used cooling at the surface of the half-space [16,20–26]. All these studies consisted of calculating the

temperature in a semi-infinite body subjected to a spot or a strip of heat flux on its surface and where the funda-

mental reference of Jaeger et al. [1, 2] is the starting point in all of the theoretical developments. Up to now, some

practical and very interesting problems remain unresolved. For most of them, analytical methods are unpracticable

and the use of numerical tools is the only way to solve these important cases.

The work proposed in this paper aims at analytically and numerically predicting the evolution of the temperature

and thermal constriction resistance of a semi-infinite body subjected to a moving band heat source in transient and

steady state with and without heat convection outside the contact area. Knowledge of these quantities is essential

to define the partition of the heat flux generated at the interface by the friction between two sliding solids.

The paper contains four sections, including the present introduction. Section two presents the statement of the

problem with a physical dimension and, for generality, also in a dimensionless form. In section three, analytical

solutions (in transient and steady state cases) for the temperature distribution in this particular case are devel-

oped from the classical solution established by Jaeger and Carslaw [1]. To complete this investigation, numerical

solutions are developed (finite element method) to determine the temperature distribution with and without con-

vection outside the contact area. The numerical values will be presented in tables, and when possible, correlation

equations will be given. The provided solutions can be used for static and sliding contact cases, as well as for the

analysis of the presence of cooling on the temperature distribution.

Problem formulation

Consider a strip heat source of width 2a moving along the surface of a semi-infinite body initially at a uniform

temperature Ti . This source is moving opposite of x-direction with a constant speed, see figure (1). The moving

source generates a transient temperature field in the semi-infinite medium described by the following model:

∂2T

∂x2
+

∂2T

∂z2
−

V

α

∂T

∂x
=

1

α

∂T

∂t
(1)
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Figure 1: Geometric configuration and coordinate system.

−k
∂T

∂z
=











q −a ≤ x ≤+a

h
[

T∞ − T
]

x <−a and x >+a

z = 0 (2)

∂T

∂x

∣

∣

∣

∣

x=−b

=
∂T

∂x

∣

∣

∣

∣

x=+b

= 0 for 0 < z <∞ (3)

T (x, z, t) = Ti when z −→∞ (4)

T (x, z, t) = Ti to t = 0 (5)

The initial temperature Ti and the ambient temperature T∞ are both assumed constant and equal to zero.

In the present problem, heat enters the half-space, supposed to be isotropic, over the contact area (strip). The

constriction resistance arises due to the fact that the contact width is smaller than the width of the semi-infinite

solid which results in forcing the heat flow lines to spread out into the semi-infinite solid. As the source is infinite in

the y-direction, the temperature field in the half-space is two dimensional, transient, and termed T (x, z, t). In order

to calculate the transient thermal constriction resistance Rc (t), we use the following definition given by Carslaw [1],

Yovanovich [27, 28], Negus [29], and Madhusudana [30]:

Rc (t) =
T̄c (t) − T̄0(t)

Q(t)
(6)

where T̄c (t) is the average temperature over the contact area Ac = 2a and T̄0(t) is the average temperature over the

infinite contact plan z = 0 named A0 in this case. The infinite length of the y-direction requires the use of one length

unit in this direction for computation. Mathematically speaking, both of these temperatures are computed by the

following two integrals:

T̄c (t) =
1

Ac

∫+a

−a
T (x,0, t)d x and T̄0(t) =

1

A0

∫+∞

−∞
T (x,0, t)d x (7)

Quantity Q(t) is the total heat flow rate across the contact area (Q = q Ac ). In the half space configuration, the

average temperature T̄0(t) is assumed to be zero (equal to the initial temperature).

For the sake of generality, we introduce the following dimensionless variables:

x+ =
x

L
z+ =

z

L
a+ =

a

L
b+ =

b

L
t+ =

αt

L2
, t ′+ =

αt ′

L2
T + =

T − Ti

Tr
(8)

Fo =
α(t − t ′)

L2
, Pe =

V L

α
, Bi =

hL

k
, ǫ =

a

b
, Tr =

qL

k
Qr = qL (9)

where L is the reference length, which can be a, 2a, a/2 or any other suitable reference length. The above system

of equations in dimensionless form becomes (signs + are omitted for better presentation):
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∂2T

∂x2
+

∂2T

∂z2
− Pe

∂T

∂x
=

∂T

∂t
(10)

−
∂T

∂z
=











1 −1 ≤ x ≤+1

−Bi T x <−1 and x >+1

z = 0 (11)

∂T

∂x

∣

∣

∣

∣

x=−1/ǫ

=
∂T

∂x

∣

∣

∣

∣

x=+1/ǫ

= 0 for 0< z <∞ (12)

T (x, z, t) = 0 when z −→∞ (13)

T (x, z, t) = 0 at t = 0 (14)

where constants Pe and Bi represent the Peclet and Biot numbers, respectively, and ǫ the constriction parameter.

For the dimensionless transient spreading resistance of an isoflux (uniform heat flux distribution over the strip) strip

of width 2a within a two-dimensional channel of width 2b, unit length, constant thermal properties were reported

as [27, 31–33]:

ψ(t) = kRc (t) (15)

The constriction resistance depends on the heat flux distribution over the source area and the shape and aspect

ratio of the contact area.

Choice of mesh: To validate our numerical results with the available analytical solution given in the literature

for some special cases and to get as close as possible to the semi-infinite configuration, we have taken a constric-

tion ratio (or constriction parameter) ǫ = a/b = 0.0001. The accurate determination of temperature distribution

and constriction resistance for the study of moving contacts, and particularly for small values of epsilon, requires

meticulous attention to the choice of the space mesh. For these purposes, a study consisting of choosing the ap-

propriate mesh was undertaken. To best follow the spatial evolution of temperature fields, in the vicinity of the

contact zone, we chose a very small mesh along the path of the heat source and gradually increased it away from

the contact area. Similarly for the dimension time, a very small step was adopted to reduce and limit the numerical

instabilities associated with this numerical resolution. The choice of the space and time steps is very important for

the accuracy of the numerical results of this type of problem. The present study uses the finite element package

COMSOL MULTIPHYSICS SOFTWAREr [34] with the following technical details: (i) number of nodes 4467 (ii) number

of elements 21485, (iii) minimum element quality 0.696, (iv) triangular element, (v) Lagrange quadratic element,

(vi) GMRES solver, and (vii) logarithmic time increment starting from tmin = 10−5 to tmax = 104 with 910 time steps.

Results and discussion

The temperature field from the passage of the moving heat source is studied in the linear case where the constituent

material is assumed isotropic, uniform, and has constant thermophysical parameters. In the first part of this work,

the problem is solved in the case of adiabatic conditions, i.e. without cooling outside the contact area. For this

special case, Bi = 0, an analytical solution exists in the literature [1, 2] , but it is presented in a different dimen-

sionless form which makes the comparison slightly difficult to conduct and to understand. The required analytical

developments and transformations conducted on the existing analytical solution are summarized in what follows.

The starting point is the classical rectangular source solution, given in Jaeger [2], equation (19) page 209, and re-

ported here:

T (x, y, z, t) =
αq

4k(απ)3/2

∫t

0

d t ′

(t − t ′)3/2

∫+a

−a

[∫+c

−c
exp

[

−
[

x − x′−V (t − t ′)
]2 + (y − y ′)2 + z2

4α(t − t ′)

]

d y ′
]

d x′ (16)

It represents the solution of a rectangular source with sides 2a parallel to the x-axis and 2c parallel to the y-axis at

time t . This source is moving with a finite velocity V along the x-axis in the plane z = 0 with no heat losses outside
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the contact area. By introducing the dimensionless quantities given in equations (8) and (9) into the above equation

(16), and defining C = c/L as the dimensionless distance along the y-axis, we obtain the following dimensionless

solution for the moving rectangular heat source:

T (x, y, z, t) =
1

4
p
π

∫t

0
exp

[

−
z2

4Fo

]

×
[

erf
[x + a − PeFo

2
p

Fo

]

− erf
[x − a − PeFo

2
p

Fo

]

]

×
[

erf
[C + y

2
p

Fo

]

+ erf
[C − y

2
p

Fo

]

]

dFo
p

Fo

(17)

This solution is given in Laraqi [9]. The analytical solution of our two-dimensional geometric configuration is

immediately obtained by letting C −→∞ which gives:

T (x, z, t) =
1

2
p
π

∫t

0
exp

[

−
z2

4Fo

]

[

erf
[x + a − PeFo

2
p

Fo

]

− erf
[x − a − PeFo

2
p

Fo

]

]

dFo
p

Fo
(18)

The surface temperature of the semi-infinite medium is obtained by putting z = 0 in the previous equation which

reduces to:

T (x,0, t) =
1

2
p
π

∫t

0

[

erf
[x + a − PeFo

2
p

Fo

]

− erf
[x − a − PeFo

2
p

Fo

]

]

dFo
p

Fo
(19)

The average contact temperature is obtained analytically by the following integration:

T̄c (t) =
1

2a

∫+a

−a
T (x,0, t)d x

=
1

2a
p
π

∫t

0

[

φ(u) + φ(v) − 2φ(w)
]

dFo

(20)

where the function φ is defined by:

φ(s) = s erf(s) +
1
p
π

exp
[

− s2
]

(21)

and the dummy variables u, v , and w are given by:

u =
−PeFo + 2a

2
p

Fo
v =

−PeFo − 2a

2
p

Fo
and w =

−PeFo

2
p

Fo

Surface temperature T(x,0,t) and average temperature T̄c (t), given respectively in equations (19) and (20), are more

general than those given in reference [2] in the sense that they give the temperature level over the contact zone and

the plane z = 0 in both cases: static Pe = 0 and dynamic Pe 6= 0 for transient and steady states.

Static heat source: In the static contact case, the source is stationary which corresponds to Peclet number Pe = 0.

In this case, the analytical integration of equations (19) and (20) gives the following expressions:

T (x,0, t) =
√

t

π

[

erf

(

a + x
p

4t

)

+ erf

(

a − x
p

4t

)

−
(

a + x
p

4πt

)

Ei

(

−
(a + x)2

4t

)

−
(

a − x
p

4πt

)

Ei

(

−
(a − x)2

4t

)]

(22)

T̄c (t) =
1

2a
p
π

[

2
p

terf

(

a
p

t

)

+
t

p
π

(

exp
[

−
a

t

]

− 1

)

+
a
p
π

Ei

(

−
a

t

)

−
2a
p
π

Ei

(

−
a2

t

)]

(23)

In our case, the characteristic length was taken as L = a, i.e. the half width of the heating source which significantly

reduces the above equations. From its definition given in equation (15), the dimensionless thermal constriction

resistance is computed by:

ψ(t) =
T̄c (t)

2
(24)

This analytical solution will first be used to test the capabilities of the finite element method in handling this prob-

lem.



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

t 10−4 10−3 10−2 10−1 10+0 10+1 10+2 10+3 10+4

Numerically 0.005 0.017 0.054 0.160 0.406 0.751 1.115 1.483 1.846

Analytically 0.005 0.017 0.054 0.162 0.409 0.754 1.118 1.485 1.851

Table 1: Comparison of constriction resistance between analytical and numerical solutions. These values are dis-

played graphically in Figure (2).
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Figure 2: Transient constriction resistance in semi-infinite strip for different Peclet numbers.

Figure (2) shows the evolution of the dimensionless thermal constriction resistance as a function of the dimen-

sionless time computed analytically by equation (24) and obtained numerically by the finite element method when

Pe = 0. The comparison of these results shows good correlation between the two solutions. As is well-known, the

transient resistance in the static case (Pe = 0) does not reach the steady state [27]. Some of the numerical values

of both results are displayed in Table (1). The presented numerical values correspond well with the analytical ones

and the numerical estimation of the thermal constriction resistance is easily obtained.

Moving heat source: In a second stage, the finite element method is used to solve the problem when the heat source

is not stationary i.e. Pe 6= 0 without cooling at the surface. Figure (2) displays both numerical and analytical solu-

tions for some of the values of Peclet number Pe. The analytical solution is obtained successively from equations

(20) and (24), while the second one is computed by the finite element code. Figure (2) shows the results of three

tests: Pe = 0.1, Pe = 1, and Pe = 10.

As displayed by Figure (2), the numerical solution precisely matches the analytical one over the whole time domain.

As the Peclet number increases, the steady state constriction resistance decreases and the steady state is quickly

reached. When the Peclet number changes from 0.1 to 10, i.e. the speed of the heat source is increased 100 times,

the constriction resistance reduces from 1.246 to 0.170 which is approximately 7 times less. From the analysis of

the steady state behavior of the constriction resistance, the time for which the steady state is reached is computed

and can be roughly estimated by the following formula:

tss = 69.14Pe−1.91 (25)

for a Peclet number in the range 0.1 ≤ Pe ≤ 20. This steady state time tss was established by analyzing the asymp-
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totic behavior of the constriction resistance and using a nonlinear least square fit. In other words, when the varia-

tion between two successive values of this resistance is less than 0.1 % the steady state is supposed to be achieved.

This formula has the advantage of giving the limit time for which the thermal constriction is established, as well as

the kind of simplifying assumptions that can be applied.
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Figure 3: Evolution of surface temperature as a function of time and for different Peclet number values.

Figure (3) displays the surface temperature of the semi-infinite medium, over and outside the contact zone, for

two values of the Peclet number at three specific time steps. The last and greatest time step corresponds to the

establishment of the steady state regime for both Peclet numbers. For Pe = 0.1, there is no substantial change in

the space distribution of the surface temperature of the half-space when the time is equal to or greater than 104. To

make the paper self contained, the analytical solution of the steady state, according to the previous dimensionless

variables, is given below:

T (x, z) =
1

π

∫+a

−a
exp

(

Pe

2
(x − s)

)

K0

(

Pe

2

√

(x − s)2 + z2

)

d s (26)

where K0(x) is the modified Bessel function of the second kind of order zero. As expected and as can be observed

in Figure (3), the highest temperature occurs in the contact zone −1 < x/a < +1. The maximum temperature in

the contact area decreases when the Peclet number increases. In other words, when the speed of the heat source

increases, the heat has less time to diffuse in the half-space.

The temperature distribution along the sliding direction passing through the center of the heat source at different

Peclet numbers is shown in Figure (4). Indeed, in the immediate passage of the source, the heat flux received by the

solid is redistributed by diffusion and transport in the half-space. This figure shows that the peak of the maximum

temperature reached on the contact zone moves towards the boundary of the latter with the increase in the Peclet

number. This result is well known in the literature [1]. By observing the curves of the temperature distribution, it

can be noted that the surface temperature in the contact area (−a < x < +a) is significantly affected by the heat

flux distribution. While the shape of the heat flux distribution has little effect on the temperature distribution

outside the area of the heat source. For low velocities, the temperature is distributed almost symmetrically with

a maximum in the vicinity of the center of contact. As the sliding velocity increases, the maximum shifts in the

direction opposite of the sliding direction, and it occurs at the outlet from contact at high velocities.

Figure (5) represents the spatial distribution of temperature in the semi-infinite solid as a function of x/a for dif-

ferent values of Pe and depth z. The most important variations for the temperature arise in the plane of the source

z = 0. The maxima of the curves are seen to move steadily to the right as z increases. This effect is caused by

diffusion and transport of heat from the contact surface inwards after the source has passed.
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Figure 4: Surface steady state temperature as a function of Peclet number.
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Figure 5: Steady state temperature as a function of depth and Peclet number
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Figure 6: Steady state constriction resistance as a function of Peclet number

In all the previous figures (2)-(5), both analytical and numerical results are displayed simultaneously. This com-

parison can be done because analytical solutions are available in the literature when the source is moving over an

adiabatic surface (no heat convection outside the contact area). The numerical results correlate very well with the

analytical ones and the error between them is less than 0.1 % for all of the presented test cases. As a conclusion, the

finite element method gives practically the same results and can therefore be used to analyse cases in which the

analytical tool proves very difficult to manipulate or are even impracticable.

To determine the steady state constriction resistance, in the case of a moving heat source, we use equations (20)

and (24) for time t going to infinity. Figure (6) shows the evolution of steady state constriction ψss as a function of

the Peclet number. By examining this figure, one can observe that the value of ψss cannot be evaluated at Pe = 0

when t −→∞ (no limit for equation (20) in this case).

The constriction resistance at Pe = 0.5 is approximately ψss = 0.718. From Figure (6), the constriction resistance

decreases very quickly in the Peclet number range 0 < Pe ≤ 25. In fact, when the Peclet number increases from

0.5 to 25, ψss decreases from 0.718 to 0.107 which is approximately a drop of 87.5 %. From Pe ≈ 25 to 100, the

constriction resistance continues to decrease, but very slowly to reach the final value 0.053. In the absence of

convection, an analytical solution does exist that can be used to verify the numerical solution. Indeed, Figure (6)

shows both analytical and numerical steady state constriction resistance. Except for the small values of the Peclet

number (Pe ≤ 0.8 ), the numerical results precisely match the analytical ones and the error between them is less

than 0.5 %.

Constriction with cooling: The cooling at the surface of the half-space is expressed with the Biot number. The

meaning of the Biot number mentioned here lies slightly outside its theoretical definition in the sense that it does

not represent the ratio of the internal resistance to the resistance of the external film resistance. This paper deals

with a semi-infinite medium, thus making the choice of the characteristic length within z-direction difficult. In the

definition of Biot number, given in equation (9), the characteristic length was taken as L = a, where a is the half

width of the moving strip.

Analytical solutions for transient and steady state cases are very difficult to obtain for this case which explains the
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Figure 7: Validation of the finite element method in the case of cooling at the surface.

small number of available analytical solutions in the literature [20, 21]. In the steady state case, Ref. [35] presents

the following analytical solution for the surface temperature of semi-infinite medium (z = 0), corresponding to the

configuration of this paper

T (x) = −Bi

∫−a

−∞
T (s)K (x, s)d s +

∫a

−a
K (x, s)d s − Bi

∫∞

a
T (s)K (x, s)d s (27)

where the kernel K (x, s) is given

K (x, s) =
1

π
exp

(

Pe

2
(x − s)

)

K0

(

Pe

2
|x − s|

)

(28)

As one can observe, this solution is presented in the form of an integral equation and the use of numerical integra-

tion is the only way to obtain the surface temperature profile. The temperature profile T (x) can easily be obtained

from the above equation by application of a gaussian quadrature integration and then the LU decomposition al-

gorithm [36]. This analytical solution is used in this paper to check the solution obtained by the finite element

code. Figure (7) displays both analytical and numerical solution for Pe = 1 and Bi = 1. The error between these two

solutions is less than 1 % which confirms the capabilities of the numerical code in solving this problem.

Figure (8) represents the evolution of the dimensionless constriction resistance as a function of time for differ-

ent values of the Peclet and Biot numbers. The main conclusion of this figure is the decrease of the constriction

resistance with the growth of the Peclet and Biot numbers (speed and cooling effect). Specifically, at a low Peclet

number (Pe < 5), the presence of cooling is significant and affects the surface temperature. At a high Peclet number

(Pe > 10), the effect of cooling becomes insignificant and can then be neglected.

Figure (9) shows the distribution of temperature at the surface of the half-space with cooling for some time steps

and two Peclet numbers, Pe = 0.1 and Pe = 10. It is interesting in this case to compare the temperature profiles

to study the influence of cooling on heat transfer at the surface of the solid. For a low speed, Pe ≤ 0.5, the surface

temperature, outside the contact area, decreases sharply by increasing the convection coefficient which shows the

effect of cooling. On the other hand, for higher velocities Pe ≥ 10, cooling does not present any significant influence

on the surface temperature variation. In Figure (9), the maximal surface temperature is observed in the case of an

adiabatic surface (no cooling) for all considered time steps and Peclet numbers.
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Figure 8: Variation of constriction resistance as a function of time, Peclet number, and cooling (Biot number).

By inspecting the time for which the steady state is established, we see that the surface temperature becomes sta-

tionary in less time for high speed generating which is known as "thermal skin". The thermal skin effect becomes

more significant with the increase of the source speed and, as a consequence, the heat does not have enough time

to diffuse inside the solid. The temperature gradient is confined within a very thin layer in the vicinity of the mov-

ing source. The transport term and thermal gradient are of such importance that they require a very fine mesh in

and around the contact area. Figure (9) shows the usual curvature of the temperature profile due to the moving

heat source, and that the maximum temperature moves to the exit of the contact area when the value of the Peclet

number increases.

Figure (10) represents the surface steady state temperature (z = 0) for four Peclet numbers (0.1, 1, 10, and 100). In

each subfigure, results are shown for different values of Biot 0, 1, and 10. For small Peclet numbers (0.1 and 1), the

entire computation region is significantly affected by the convection and the surface temperature distribution is

substantially reduced. When the source is moving with high speed (a large Peclet number), the effect of convection

varies according to location: before, in, and after the contact zone. The convection has little effect on the tempera-

ture at points inside the surface-heating region −a < x <+a, but significantly reduces the temperature at all other

points.

Figure (11) shows the steady state constriction resistance as a function of Peclet number Pe and for different values

of Bi representing the effect of cooling at the interface. All presented curves show a decrease tendency and the

highest point is observed with Bi = 0 and a very small value of Peclet (Pe = 0.1). On the other hand, all the displayed

curves come together at a high Peclet number (Pe ≥ 5). At a low Peclet number, the change of Bi from 0 to 0.5

causes a drop of 44 % of the steady state constriction resistance. At a very high Peclet number (Pe ≈ 100), there is

no difference between the steady state constriction resistances regardless of the value of Bi . This means that the

cooling becomes insignificant at a high moving speed.

The influence of cooling (Bi ) on the steady state constriction resistance, for different values of the source speed,

is displayed in Figure (12). Except for the window Bi × Pe ≈ [0, 4] × [0.1 3] in which an appreciable change in the

steady state constriction resistance can be observed, the above figure shows that the cooling effect is very limited



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

-4 -2 0 2 4

0

1

2

3
 

 

Su
rfa

ce
 te

m
pe

ra
tu

re

x/a

 Bi = 0
 Bi = 1
 Bi = 10

   Pe = 0.1    t = 10-2

-4 -2 0 2 4

0

1

2

3

 

 

Su
rfa

ce
 te

m
pe

ra
tu

re

x/a

 Bi = 0
 Bi = 1
 Bi = 10

   Pe = 0.1    t = 102

-4 -2 0 2 4

0

1

2

3

 

 

Su
rfa

ce
 te

m
pe

ra
tu

re

x/a

 Bi = 0
 Bi = 1
 Bi = 10

  Pe = 0.1  t = 104

-4 -2 0 2 4

0

1

2

3
 

 

Su
rfa

ce
 te

m
pe

ra
tu

re

x/a

 Bi = 0
 Bi = 1
 Bi = 10

  Pe = 10  t = 10-2

-4 -2 0 2 4

0

1

2

3

 

 

Su
rfa

ce
 te

m
pe

ra
tu

re

x/a

 Bi = 0
 Bi = 1
 Bi = 10

   Pe = 10   t = 10

-4 -2 0 2 4

0

1

2

3
 

 

Su
rfa

ce
 te

m
pe

ra
tu

re

x/a

 Bi = 0
 Bi = 1
 Bi = 10

  Pe = 10  t = 103

Figure 9: Surface temperature as a function of time for two Peclet numbers and three cooling cases (transient state).
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Figure 10: Stationary surface temperature for four Peclet numbers and three cooling cases (steady state).
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Figure 11: Constriction resistance as a function of Peclet for different Biot numbers.
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outside the previously mentioned window. At a high Peclet number, the presented curves run parallel as a function

of Bi and clearly show no effect of cooling on the constriction resistance. The constriction parameter is a function

of two variables Bi and Pe, i.e. ψ(Bi ,Pe), and a three dimensional graphic representation is better in this case.

Case Eq. Bi A B C R-square

0 0.547 -0.468 -0.012 0.998

ψss = APeB + C (29) 1 0.508 -0.359 -0.047 0.992

10 0.486 -0.257 -0.099 0.988

ψss = ABBi PeC (30) 0.418 0.964 -0.237 0.888

Table 2: Least square fitting of ψss as a function of Bi and Pe. Equation (29) gives the steady state value of ψ for

different values of Bi . Equation (30) gives the steady state ψ as a function of Bi and Pe at the same time.

A nonlinear least square fitting is conducted to derive analytical formulae, which are ready for use in approximat-

ing the steady state constriction resistance as a function of both Bi and Pe with and without cooling. Table (2)

summarizes the obtained fitted parameters for two different cases :

• The first and simplest interpolation concerns the approximation of ψss as a function of Pe without incor-

porating the cooling effect and this is accomplished through equation (29). For each value of Bi a set of

parameter (A, B and C ) is deduced from the fitting. As shown by the R-square value R, the approximation in

this case is excellent.

• The second fitting model is expressed by equation (30). This is the most difficult case to conduct due to the

strong nonlinearity of steady state constriction resistance ψss as a function of Bi and Pe simultaneously. The

fitting quality is acceptable but need an extra work to be improved.

The constriction rise at the origin is obtained for different values of Bi and shown in Figure (12) as a function of the

Peclet number. The constriction at the origin is found to be substantially reduced with the increasing of Bi when

the Peclet number is less than three.
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Conclusions

A general analytical solution for the temperature rise at any point due to a stationary or moving band heat source

with uniform heat intensity distribution was developed based on Jaeger’s classical heat source method. This solu-

tion can be used for both transient and steady state conditions without convection outside the contact area. It can

also be used to determine the surface temperature distribution and dimensionless constriction resistance in the

half-space. For a moving heat source, the location of the point of maximum steady state temperature rise is shown

to be different for different Peclet numbers.

A numerical solution has been developed to study the influence of cooling on the evolution of surface temperature

and the constriction resistance. This solution was first validated by the analytical solution for adiabatic bound-

ary conditions where an error of 0.10 % was observed. The numerical results obtained from the developed model

highlighted the inter-related roles of three parameters considered in the present work: the velocity, the heat con-

vection coefficient, and the thermal constriction resistance. This study shows an appreciable effect of cooling on

the temperature field in the half space at a low Peclet number resulting in weak constriction resistance. This effect

is minimized by the increase of the heat strip source speed.

The analysis of the obtained results shows that the increase of the velocity reduces the penetration of the thermal

heat in the half space. The cooling increase significantly reduces the temperature gradient, in particular in the

vicinity of the frictional surface. Finally, some correlations are given to evaluate the time interval for which the

steady state is reached, and to estimate the constriction parameter as a function of Peclet and Biot numbers in

the steady state case. The establishment of constriction resistance is affected by the heat source velocity. The

establishment time is short when the speed is high and vice-versa.
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