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In this paper, the problem of transient heat transfer in sliding contact is studied analytically and numerically.

The heat source is represented as a uniform heat strip moving over a half-space with and without cooling outside the contact zone. The finite element method, implemented using a commercial code, was used in numerically solving this problem. An analytical solution taken from the literature was adapted to obtain the presented model and used to check the capabilities of the commercial code. After the validation of the resolution method, the work was completed by studying the influence of the Peclet number (source speed) and the Biot number (presence of cooling) on the temporal and spatial evolution of the surface temperature of the half-space. Finally, the transient constriction function is estimated and analyzed for the presented test cases. Correlations were also derived to (i) evaluate the time interval within which the steady state is reached, and (ii) estimate the constriction parameter as a function of Peclet and Biot numbers in the steady state case.
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Introduction

Generated heat at the surface of one body or at the contact interface between two bodies in industrial processes, such as laser welding, braking systems, friction between two mediums and so on, is often modeled by using the concept of moving heat source in stationary or transient case. Most of this heat is expended on the increases in the temperature of the contact interface. This local temperature increase can strongly affect the surface properties of materials. Thus, the temperature level plays an important role in various applications and should be carefully controlled.

Although this is a very old subject, it remains scientifically important and at the microscopic scale, difficult to master in some configurations, such as transitional arrangements and the presence of heat convection. The study of heating due to friction has been the subject of many research works during the last century. Indeed, several publications have reported attempts at finding the transient temperature rise or the heat transfer rate within a circular disk (contact area) which is moving on the surface of an isotropic half-space. These solutions are presented for (i) the transient heat flow rate from the contact area when the contact area is isothermal, and (ii) the temperature rise of the contact area when the area is subjected to any heat flux profile. Several studies based on the moving heat source theory have been developed in order to calculate the average temperature over the contact area [START_REF] Carslaw | Conduction of Heat in Solids[END_REF][START_REF] Jaeger | Moving sources of heat and the temperature at sliding contacts[END_REF][START_REF] Archard | The temperature of rubbing surfaces[END_REF][START_REF] Bardon | Physical bases of the imperfect thermal contact conditions between two bodies in relative motion[END_REF][START_REF] Laraqi | Températures de contact et coefficient de partage de flux généré par frottement sec entre deux solides. Approche nouvelle de la génération de flux. (Contact temperature and flux partition coefficient of heat generated by dry friction between two solids. New approach to flux generation)[END_REF][START_REF] Laraqi | Tempertaure and thermal resistance in frictional devices[END_REF][START_REF] Kounas | The distribution of friction heat between a stationary pin and rotating cylinder[END_REF].

The previous investigations can be divided into two categories: (i) analytical solutions which are possible in some special cases of geometry and boundary conditions giving unlimited information over the entire range of dimensionless time [START_REF] Jaeger | Moving sources of heat and the temperature at sliding contacts[END_REF][START_REF] Bardon | Physical bases of the imperfect thermal contact conditions between two bodies in relative motion[END_REF][START_REF] Laraqi | Velocity and relative contact size effect of the thermal constriction resistance in sliding solids[END_REF][START_REF] Laraqi | Phénomène de constriction thermique dans les contacts glissants. (Thermal constriction phenomenon in sliding contacts)[END_REF][START_REF] Laraqi | Thermal impedance and transient temperature due to a spot of heat on a half space[END_REF][START_REF] Cameron | Contact temperature in rolling sliding surfaces[END_REF][START_REF] Hou | General solutions for stationary/moving plane heat source problems in manufacturing and tribology[END_REF][START_REF] Yevtushenko | Temperature and thermal stresses in the pad/disc during braking[END_REF][START_REF] Grzes | Analysis of disc brake temperature distribution during single braking under nonaxisymmetric load[END_REF], and (ii) numerical methods that provide results for practically any combination of geometry and boundary conditions, but the results of which must be presented as a correlation to be useful [START_REF] Salti | 3-D numerical modelling of heat transfer between two sliding bodies: temperature and thermal contact resistance[END_REF][START_REF] Jing | Temperature distribution in workpiece during scratching and grinding[END_REF][START_REF] Tian | Temperature rise at the sliding contact interface for a coated semi-infinite body[END_REF][START_REF] Rostami | Parametric study of thermal constriction resistance[END_REF][START_REF] Hamraoui | Thermal behaviour of rollers during the rolling process[END_REF].

Most authors have thoroughly investigated the case of a semi-infinite solid heated by a spot or strip moving source and insulated outside the contact zone [START_REF] Carslaw | Conduction of Heat in Solids[END_REF][START_REF] Jaeger | Moving sources of heat and the temperature at sliding contacts[END_REF][START_REF] Archard | The temperature of rubbing surfaces[END_REF][START_REF] Bardon | Physical bases of the imperfect thermal contact conditions between two bodies in relative motion[END_REF][START_REF] Laraqi | Températures de contact et coefficient de partage de flux généré par frottement sec entre deux solides. Approche nouvelle de la génération de flux. (Contact temperature and flux partition coefficient of heat generated by dry friction between two solids. New approach to flux generation)[END_REF][START_REF] Kounas | The distribution of friction heat between a stationary pin and rotating cylinder[END_REF][START_REF] Laraqi | Velocity and relative contact size effect of the thermal constriction resistance in sliding solids[END_REF][START_REF] Laraqi | Phénomène de constriction thermique dans les contacts glissants. (Thermal constriction phenomenon in sliding contacts)[END_REF][START_REF] Laraqi | Thermal impedance and transient temperature due to a spot of heat on a half space[END_REF][START_REF] Cameron | Contact temperature in rolling sliding surfaces[END_REF]. A few studies have been conducted on the problem presented here, but they used cooling at the surface of the half-space [START_REF] Jing | Temperature distribution in workpiece during scratching and grinding[END_REF][START_REF] Shuangbiao | Solutions for temperature rise in staionary/moving bodies caused by surface heating with surface convection[END_REF][START_REF] Ruisseaux | Temperature in semi-infinite and cylindrical bodies subjected to moving heat sources and surface cooling[END_REF][START_REF] Gecim | Transient temperatures in the vicinity of an asperity contact[END_REF][START_REF] Talaat | Analytical solution for the 3-D steady state conduction in a solid subjected to a moving rectangular heat source and surface cooling[END_REF][START_REF] Garcia | Steady state temperature of two layer bodies subjected to a moving heat source and convected cooling[END_REF][START_REF] Bairi | Three-dimensional stationnary thermal behavior of bearing ball[END_REF][START_REF] Laraqi | Temperature and division of heat in a pin-on-disc frictional device -Exact analytical solution[END_REF]. All these studies consisted of calculating the temperature in a semi-infinite body subjected to a spot or a strip of heat flux on its surface and where the fundamental reference of Jaeger et al. [START_REF] Carslaw | Conduction of Heat in Solids[END_REF][START_REF] Jaeger | Moving sources of heat and the temperature at sliding contacts[END_REF] is the starting point in all of the theoretical developments. Up to now, some practical and very interesting problems remain unresolved. For most of them, analytical methods are unpracticable and the use of numerical tools is the only way to solve these important cases.

The work proposed in this paper aims at analytically and numerically predicting the evolution of the temperature and thermal constriction resistance of a semi-infinite body subjected to a moving band heat source in transient and steady state with and without heat convection outside the contact area. Knowledge of these quantities is essential to define the partition of the heat flux generated at the interface by the friction between two sliding solids.

The paper contains four sections, including the present introduction. Section two presents the statement of the problem with a physical dimension and, for generality, also in a dimensionless form. In section three, analytical solutions (in transient and steady state cases) for the temperature distribution in this particular case are developed from the classical solution established by Jaeger and Carslaw [START_REF] Carslaw | Conduction of Heat in Solids[END_REF]. To complete this investigation, numerical solutions are developed (finite element method) to determine the temperature distribution with and without convection outside the contact area. The numerical values will be presented in tables, and when possible, correlation equations will be given. The provided solutions can be used for static and sliding contact cases, as well as for the analysis of the presence of cooling on the temperature distribution.

Problem formulation

Consider a strip heat source of width 2a moving along the surface of a semi-infinite body initially at a uniform temperature T i . This source is moving opposite of x-direction with a constant speed, see figure [START_REF] Carslaw | Conduction of Heat in Solids[END_REF]. The moving source generates a transient temperature field in the semi-infinite medium described by the following model: 

∂ 2 T ∂x 2 + ∂ 2 T ∂z 2 - V α ∂T ∂x = 1 α ∂T ∂t (1)
-k ∂T ∂z =      q -a ≤ x ≤ + a h T ∞ -T x < -a and x > + a z = 0 (2) ∂T ∂x x=-b = ∂T ∂x x=+b = 0 for 0 < z < ∞ (3) 
T (x, z, t ) = T i when z -→ ∞ (4) T (x, z, t ) = T i to t = 0 (5) 
The initial temperature T i and the ambient temperature T ∞ are both assumed constant and equal to zero.

In the present problem, heat enters the half-space, supposed to be isotropic, over the contact area (strip). The constriction resistance arises due to the fact that the contact width is smaller than the width of the semi-infinite solid which results in forcing the heat flow lines to spread out into the semi-infinite solid. As the source is infinite in the y-direction, the temperature field in the half-space is two dimensional, transient, and termed T (x, z, t ). In order to calculate the transient thermal constriction resistance R c (t ), we use the following definition given by Carslaw [START_REF] Carslaw | Conduction of Heat in Solids[END_REF],

Yovanovich [START_REF] Turyk | Transient constriction resistance for elemental flux channels heated by uniform flux sources. 22nd Heat Transfer Conference[END_REF][START_REF] Muzychka | Thermal resistance models for non-circular moving heat sources on a half space[END_REF], Negus [START_REF] Negus | On the Nondimensionalization of Constriction Resistance for Semiinfinite Heat Flux Tubes[END_REF], and Madhusudana [START_REF] Madhusudana | Thermal contact conductance[END_REF]:

R c (t ) = Tc (t ) -T0 (t ) Q(t ) (6) 
where Tc (t ) is the average temperature over the contact area A c = 2a and T0 (t ) is the average temperature over the infinite contact plan z = 0 named A 0 in this case. The infinite length of the y-direction requires the use of one length unit in this direction for computation. Mathematically speaking, both of these temperatures are computed by the following two integrals:

Tc (t ) = 1 A c +a -a T (x, 0, t )d x and T0 (t ) = 1 A 0 +∞ -∞ T (x, 0, t )d x (7)
Quantity Q(t ) is the total heat flow rate across the contact area (Q = q A c ). In the half space configuration, the average temperature T0 (t ) is assumed to be zero (equal to the initial temperature).

For the sake of generality, we introduce the following dimensionless variables:

x + = x L z + = z L a + = a L b + = b L t + = αt L 2 , t ′+ = αt ′ L 2 T + = T -T i T r (8) Fo = α(t -t ′ ) L 2 , Pe = V L α , Bi = hL k , ǫ = a b , T r = qL k Q r = qL ( 9 
)
where L is the reference length, which can be a, 2a, a/2 or any other suitable reference length. The above system of equations in dimensionless form becomes (signs + are omitted for better presentation):

M A N U S C R I P T A C C E P T E D ACCEPTED MANUSCRIPT ∂ 2 T ∂x 2 + ∂ 2 T ∂z 2 -Pe ∂T ∂x = ∂T ∂t (10) - ∂T ∂z =      1 -1 ≤ x ≤ + 1 -Bi T x < -1 and x > + 1 z = 0 (11) ∂T ∂x x=-1/ǫ = ∂T ∂x x=+1/ǫ = 0 for 0 < z < ∞ (12) T (x, z, t ) = 0 when z -→ ∞ (13) T (x, z, t ) = 0 at t = 0 ( 14 
)
where constants Pe and Bi represent the Peclet and Biot numbers, respectively, and ǫ the constriction parameter.

For the dimensionless transient spreading resistance of an isoflux (uniform heat flux distribution over the strip) strip of width 2a within a two-dimensional channel of width 2b, unit length, constant thermal properties were reported as [START_REF] Turyk | Transient constriction resistance for elemental flux channels heated by uniform flux sources. 22nd Heat Transfer Conference[END_REF][START_REF]Chap: Thermal spreading and contact resistances[END_REF][START_REF] Yovanovich | Handbook of Heat Transfer[END_REF][START_REF] Yovanovich | Spreading resistance of isoflux rectangles and strips on compound flux channels[END_REF]:

ψ(t ) = kR c (t ) (15) 
The constriction resistance depends on the heat flux distribution over the source area and the shape and aspect ratio of the contact area.

Choice of mesh: To validate our numerical results with the available analytical solution given in the literature for some special cases and to get as close as possible to the semi-infinite configuration, we have taken a constriction ratio (or constriction parameter) ǫ = a/b = 0.0001. The accurate determination of temperature distribution and constriction resistance for the study of moving contacts, and particularly for small values of epsilon, requires meticulous attention to the choice of the space mesh. For these purposes, a study consisting of choosing the appropriate mesh was undertaken. To best follow the spatial evolution of temperature fields, in the vicinity of the contact zone, we chose a very small mesh along the path of the heat source and gradually increased it away from the contact area. Similarly for the dimension time, a very small step was adopted to reduce and limit the numerical instabilities associated with this numerical resolution. The choice of the space and time steps is very important for the accuracy of the numerical results of this type of problem. The present study uses the finite element package COMSOL MULTIPHYSICS SOFTWARE [34] with the following technical details: (i) number of nodes 4467 (ii) number of elements 21485, (iii) minimum element quality 0.696, (iv) triangular element, (v) Lagrange quadratic element, (vi) GMRES solver, and (vii) logarithmic time increment starting from t min = 10 -5 to t max = 10 4 with 910 time steps.

Results and discussion

The temperature field from the passage of the moving heat source is studied in the linear case where the constituent material is assumed isotropic, uniform, and has constant thermophysical parameters. In the first part of this work, the problem is solved in the case of adiabatic conditions, i.e. without cooling outside the contact area. For this special case, Bi = 0, an analytical solution exists in the literature [START_REF] Carslaw | Conduction of Heat in Solids[END_REF][START_REF] Jaeger | Moving sources of heat and the temperature at sliding contacts[END_REF] , but it is presented in a different dimensionless form which makes the comparison slightly difficult to conduct and to understand. The required analytical developments and transformations conducted on the existing analytical solution are summarized in what follows.

The starting point is the classical rectangular source solution, given in Jaeger [START_REF] Jaeger | Moving sources of heat and the temperature at sliding contacts[END_REF], equation [START_REF] Hamraoui | Thermal behaviour of rollers during the rolling process[END_REF] page 209, and reported here:

T (x, y, z, t ) = αq 4k(απ) 3/2 t 0 d t ′ (t -t ′ ) 3/2 +a -a +c -c exp - x -x ′ -V (t -t ′ ) 2 + (y -y ′ ) 2 + z 2 4α(t -t ′ ) d y ′ d x ′ (16) 
It represents the solution of a rectangular source with sides 2a parallel to the x-axis and 2c parallel to the y-axis at time t . This source is moving with a finite velocity V along the x-axis in the plane z = 0 with no heat losses outside
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the contact area. By introducing the dimensionless quantities given in equations ( 8) and ( 9) into the above equation ( 16), and defining C = c/L as the dimensionless distance along the y-axis, we obtain the following dimensionless solution for the moving rectangular heat source:

T (x, y, z, t ) = 1 4 π t 0 exp - z 2 4Fo × erf x + a -PeFo 2 Fo -erf x -a -PeFo 2 Fo × erf C + y 2 Fo + erf C -y 2 Fo dFo Fo ( 17 
)
This solution is given in Laraqi [START_REF] Laraqi | Phénomène de constriction thermique dans les contacts glissants. (Thermal constriction phenomenon in sliding contacts)[END_REF]. The analytical solution of our two-dimensional geometric configuration is immediately obtained by letting C -→ ∞ which gives:

T (x, z, t ) = 1 2 π t 0 exp - z 2 4Fo erf x + a -PeFo 2 Fo -erf x -a -PeFo 2 Fo dFo Fo ( 18 
)
The surface temperature of the semi-infinite medium is obtained by putting z = 0 in the previous equation which reduces to:

T (x, 0, t ) = 1 2 π t 0 erf x + a -PeFo 2 Fo -erf x -a -PeFo 2 Fo dFo Fo ( 19 
)
The average contact temperature is obtained analytically by the following integration:

Tc (t ) = 1 2a +a -a T (x, 0, t )d x = 1 2a π t 0 φ(u) + φ(v) -2φ(w) dFo ( 20 
)
where the function φ is defined by:

φ(s) = s erf(s) + 1 π exp -s 2 (21) 
and the dummy variables u, v, and w are given by:

u = -PeFo + 2a 2 Fo v = -PeFo -2a 2 Fo and w = -PeFo 2 Fo
Surface temperature T(x,0,t) and average temperature Tc (t ), given respectively in equations ( 19) and [START_REF] Shuangbiao | Solutions for temperature rise in staionary/moving bodies caused by surface heating with surface convection[END_REF], are more general than those given in reference [START_REF] Jaeger | Moving sources of heat and the temperature at sliding contacts[END_REF] in the sense that they give the temperature level over the contact zone and the plane z = 0 in both cases: static Pe = 0 and dynamic Pe = 0 for transient and steady states.

Static heat source:

In the static contact case, the source is stationary which corresponds to Peclet number Pe = 0.

In this case, the analytical integration of equations ( 19) and [START_REF] Shuangbiao | Solutions for temperature rise in staionary/moving bodies caused by surface heating with surface convection[END_REF] gives the following expressions:

T (x, 0, t ) = t π erf a + x 4t + erf a -x 4t - a + x 4πt Ei - (a + x) 2 4t - a -x 4πt Ei - (a -x) 2 4t ( 22 
)
Tc (t ) = 1 2a π 2 t erf a t + t π exp - a t -1 + a π Ei - a t - 2a π Ei - a 2 t ( 23 
)
In our case, the characteristic length was taken as L = a, i.e. the half width of the heating source which significantly reduces the above equations. From its definition given in equation ( 15), the dimensionless thermal constriction resistance is computed by:

ψ(t ) = Tc (t ) 2 (24) 
This analytical solution will first be used to test the capabilities of the finite element method in handling this problem. Figure [START_REF] Jaeger | Moving sources of heat and the temperature at sliding contacts[END_REF] shows the evolution of the dimensionless thermal constriction resistance as a function of the dimensionless time computed analytically by equation ( 24) and obtained numerically by the finite element method when Pe = 0. The comparison of these results shows good correlation between the two solutions. As is well-known, the transient resistance in the static case (Pe = 0) does not reach the steady state [START_REF] Turyk | Transient constriction resistance for elemental flux channels heated by uniform flux sources. 22nd Heat Transfer Conference[END_REF]. Some of the numerical values of both results are displayed in Table [START_REF] Carslaw | Conduction of Heat in Solids[END_REF]. The presented numerical values correspond well with the analytical ones and the numerical estimation of the thermal constriction resistance is easily obtained.
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Moving heat source:

In a second stage, the finite element method is used to solve the problem when the heat source is not stationary i.e. Pe = 0 without cooling at the surface. As the Peclet number increases, the steady state constriction resistance decreases and the steady state is quickly reached. When the Peclet number changes from 0.1 to 10, i.e. the speed of the heat source is increased 100 times, the constriction resistance reduces from 1.246 to 0.170 which is approximately 7 times less. From the analysis of the steady state behavior of the constriction resistance, the time for which the steady state is reached is computed and can be roughly estimated by the following formula:

t ss = 69.14Pe -1.91 (25) 
for a Peclet number in the range 0.1 ≤ Pe ≤ 20. This steady state time t ss was established by analyzing the asymp-
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totic behavior of the constriction resistance and using a nonlinear least square fit. In other words, when the variation between two successive values of this resistance is less than 0.1 % the steady state is supposed to be achieved.

This formula has the advantage of giving the limit time for which the thermal constriction is established, as well as the kind of simplifying assumptions that can be applied. the space distribution of the surface temperature of the half-space when the time is equal to or greater than 10 4 . To make the paper self contained, the analytical solution of the steady state, according to the previous dimensionless variables, is given below:

T (x, z) = 1 π +a -a exp Pe 2 (x -s) K 0 Pe 2 (x -s) 2 + z 2 d s ( 26 
)
where K 0 (x) is the modified Bessel function of the second kind of order zero. As expected and as can be observed in Figure (3), the highest temperature occurs in the contact zone -1 < x/a < +1. The maximum temperature in the contact area decreases when the Peclet number increases. In other words, when the speed of the heat source increases, the heat has less time to diffuse in the half-space.

The temperature distribution along the sliding direction passing through the center of the heat source at different Peclet numbers is shown in Figure [START_REF] Bardon | Physical bases of the imperfect thermal contact conditions between two bodies in relative motion[END_REF]. Indeed, in the immediate passage of the source, the heat flux received by the solid is redistributed by diffusion and transport in the half-space. This figure shows that the peak of the maximum temperature reached on the contact zone moves towards the boundary of the latter with the increase in the Peclet number. This result is well known in the literature [START_REF] Carslaw | Conduction of Heat in Solids[END_REF]. By observing the curves of the temperature distribution, it can be noted that the surface temperature in the contact area (-a < x < +a) is significantly affected by the heat flux distribution. While the shape of the heat flux distribution has little effect on the temperature distribution outside the area of the heat source. For low velocities, the temperature is distributed almost symmetrically with a maximum in the vicinity of the center of contact. As the sliding velocity increases, the maximum shifts in the direction opposite of the sliding direction, and it occurs at the outlet from contact at high velocities. In all the previous figures ( 2)-( 5), both analytical and numerical results are displayed simultaneously. This comparison can be done because analytical solutions are available in the literature when the source is moving over an adiabatic surface (no heat convection outside the contact area). The numerical results correlate very well with the analytical ones and the error between them is less than 0.1 % for all of the presented test cases. As a conclusion, the finite element method gives practically the same results and can therefore be used to analyse cases in which the analytical tool proves very difficult to manipulate or are even impracticable.

To determine the steady state constriction resistance, in the case of a moving heat source, we use equations [START_REF] Shuangbiao | Solutions for temperature rise in staionary/moving bodies caused by surface heating with surface convection[END_REF] and ( 24) for time t going to infinity. Figure [START_REF] Laraqi | Tempertaure and thermal resistance in frictional devices[END_REF] shows the evolution of steady state constriction ψ ss as a function of the Peclet number. By examining this figure, one can observe that the value of ψ ss cannot be evaluated at Pe = 0 when t -→ ∞ (no limit for equation [START_REF] Shuangbiao | Solutions for temperature rise in staionary/moving bodies caused by surface heating with surface convection[END_REF] in this case).

The constriction resistance at Pe = 0.5 is approximately ψ ss = 0.718. From Figure [START_REF] Laraqi | Tempertaure and thermal resistance in frictional devices[END_REF], the constriction resistance decreases very quickly in the Peclet number range 0 < Pe ≤ 25. In fact, when the Peclet number increases from 0.5 to 25, ψ ss decreases from 0.718 to 0.107 which is approximately a drop of 87.5 %. From Pe ≈ 25 to 100, the constriction resistance continues to decrease, but very slowly to reach the final value 0.053. In the absence of convection, an analytical solution does exist that can be used to verify the numerical solution. Indeed, Figure [START_REF] Laraqi | Tempertaure and thermal resistance in frictional devices[END_REF] shows both analytical and numerical steady state constriction resistance. Except for the small values of the Peclet number (Pe ≤ 0.8 ), the numerical results precisely match the analytical ones and the error between them is less than 0.5 %.

Constriction with cooling:

The cooling at the surface of the half-space is expressed with the Biot number. The meaning of the Biot number mentioned here lies slightly outside its theoretical definition in the sense that it does not represent the ratio of the internal resistance to the resistance of the external film resistance. This paper deals with a semi-infinite medium, thus making the choice of the characteristic length within z-direction difficult. In the definition of Biot number, given in equation ( 9), the characteristic length was taken as L = a, where a is the half width of the moving strip.

Analytical solutions for transient and steady state cases are very difficult to obtain for this case which explains the small number of available analytical solutions in the literature [START_REF] Shuangbiao | Solutions for temperature rise in staionary/moving bodies caused by surface heating with surface convection[END_REF][START_REF] Ruisseaux | Temperature in semi-infinite and cylindrical bodies subjected to moving heat sources and surface cooling[END_REF]. In the steady state case, Ref. [START_REF] Ling | Fundamentals of Surface Mechanics with Applications[END_REF] presents the following analytical solution for the surface temperature of semi-infinite medium (z = 0), corresponding to the configuration of this paper

T (x) = -Bi -a -∞ T (s)K (x, s)d s + a -a K (x, s)d s -Bi ∞ a T (s)K (x, s)d s ( 27 
)
where the kernel K (x, s) is given

K (x, s) = 1 π exp Pe 2 (x -s) K 0 Pe 2 |x -s| (28) 
As one can observe, this solution is presented in the form of an integral equation and the use of numerical integration is the only way to obtain the surface temperature profile. The temperature profile T (x) can easily be obtained from the above equation by application of a gaussian quadrature integration and then the LU decomposition algorithm [START_REF] Press | Numerical Recipes in Fortran[END_REF]. This analytical solution is used in this paper to check the solution obtained by the finite element code. Figure ( 7) displays both analytical and numerical solution for Pe = 1 and Bi = 1. The error between these two solutions is less than 1 % which confirms the capabilities of the numerical code in solving this problem. (Pe > 10), the effect of cooling becomes insignificant and can then be neglected.

Figure [START_REF] Laraqi | Phénomène de constriction thermique dans les contacts glissants. (Thermal constriction phenomenon in sliding contacts)[END_REF] shows the distribution of temperature at the surface of the half-space with cooling for some time steps and two Peclet numbers, Pe = 0.1 and Pe = 10. It is interesting in this case to compare the temperature profiles to study the influence of cooling on heat transfer at the surface of the solid. For a low speed, Pe ≤ 0.5, the surface temperature, outside the contact area, decreases sharply by increasing the convection coefficient which shows the effect of cooling. On the other hand, for higher velocities Pe ≥ 10, cooling does not present any significant influence on the surface temperature variation. In Figure [START_REF] Laraqi | Phénomène de constriction thermique dans les contacts glissants. (Thermal constriction phenomenon in sliding contacts)[END_REF], the maximal surface temperature is observed in the case of an adiabatic surface (no cooling) for all considered time steps and Peclet numbers. By inspecting the time for which the steady state is established, we see that the surface temperature becomes stationary in less time for high speed generating which is known as "thermal skin". The thermal skin effect becomes more significant with the increase of the source speed and, as a consequence, the heat does not have enough time to diffuse inside the solid. The temperature gradient is confined within a very thin layer in the vicinity of the moving source. The transport term and thermal gradient are of such importance that they require a very fine mesh in and around the contact area. Figure [START_REF] Laraqi | Phénomène de constriction thermique dans les contacts glissants. (Thermal constriction phenomenon in sliding contacts)[END_REF] shows the usual curvature of the temperature profile due to the moving heat source, and that the maximum temperature moves to the exit of the contact area when the value of the Peclet number increases.

Figure [START_REF] Laraqi | Thermal impedance and transient temperature due to a spot of heat on a half space[END_REF] represents the surface steady state temperature (z = 0) for four Peclet numbers (0.1, 1, 10, and 100). In each subfigure, results are shown for different values of Biot 0, 1, and 10. For small Peclet numbers (0.1 and 1), the entire computation region is significantly affected by the convection and the surface temperature distribution is substantially reduced. When the source is moving with high speed (a large Peclet number), the effect of convection varies according to location: before, in, and after the contact zone. The convection has little effect on the temperature at points inside the surface-heating region -a < x < +a, but significantly reduces the temperature at all other points. 

Figure 1 :

 1 Figure 1: Geometric configuration and coordinate system.

Figure 2 :

 2 Figure 2: Transient constriction resistance in semi-infinite strip for different Peclet numbers.

Figure ( 2 )

 2 displays both numerical and analytical solutions for some of the values of Peclet number Pe. The analytical solution is obtained successively from equations[START_REF] Shuangbiao | Solutions for temperature rise in staionary/moving bodies caused by surface heating with surface convection[END_REF] and[START_REF] Garcia | Steady state temperature of two layer bodies subjected to a moving heat source and convected cooling[END_REF], while the second one is computed by the finite element code. Figure (2) shows the results of three tests: Pe = 0.1, Pe = 1, and Pe = 10. As displayed by Figure (2), the numerical solution precisely matches the analytical one over the whole time domain.

Figure 3 :

 3 Figure 3: Evolution of surface temperature as a function of time and for different Peclet number values.

Figure ( 3 )

 3 Figure (3) displays the surface temperature of the semi-infinite medium, over and outside the contact zone, for two values of the Peclet number at three specific time steps. The last and greatest time step corresponds to the establishment of the steady state regime for both Peclet numbers. For Pe = 0.1, there is no substantial change in

Figure ( 5 )

 5 Figure[START_REF] Laraqi | Températures de contact et coefficient de partage de flux généré par frottement sec entre deux solides. Approche nouvelle de la génération de flux. (Contact temperature and flux partition coefficient of heat generated by dry friction between two solids. New approach to flux generation)[END_REF] represents the spatial distribution of temperature in the semi-infinite solid as a function of x/a for different values of Pe and depth z. The most important variations for the temperature arise in the plane of the source z = 0. The maxima of the curves are seen to move steadily to the right as z increases. This effect is caused by diffusion and transport of heat from the contact surface inwards after the source has passed.

Figure 4 :

 4 Figure 4: Surface steady state temperature as a function of Peclet number.

Figure 5 :Figure 6 :

 56 Figure 5: Steady state temperature as a function of depth and Peclet number

1 Figure 7 :

 17 Figure 7: Validation of the finite element method in the case of cooling at the surface.

Figure ( 8 )

 8 Figure[START_REF] Laraqi | Velocity and relative contact size effect of the thermal constriction resistance in sliding solids[END_REF] represents the evolution of the dimensionless constriction resistance as a function of time for different values of the Peclet and Biot numbers. The main conclusion of this figure is the decrease of the constriction resistance with the growth of the Peclet and Biot numbers (speed and cooling effect). Specifically, at a low Peclet number (Pe < 5), the presence of cooling is significant and affects the surface temperature. At a high Peclet number

Figure 8 :

 8 Figure 8: Variation of constriction resistance as a function of time, Peclet number, and cooling (Biot number).

Figure ( 11 )

 11 Figure[START_REF] Cameron | Contact temperature in rolling sliding surfaces[END_REF] shows the steady state constriction resistance as a function of Peclet number Pe and for different values of Bi representing the effect of cooling at the interface. All presented curves show a decrease tendency and the highest point is observed with Bi = 0 and a very small value of Peclet (Pe = 0.1). On the other hand, all the displayed curves come together at a high Peclet number (Pe ≥ 5). At a low Peclet number, the change of Bi from 0 to 0.5 causes a drop of 44 % of the steady state constriction resistance. At a very high Peclet number (Pe ≈ 100), there is no difference between the steady state constriction resistances regardless of the value of Bi . This means that the cooling becomes insignificant at a high moving speed.The influence of cooling (Bi ) on the steady state constriction resistance, for different values of the source speed, is displayed in Figure[START_REF] Hou | General solutions for stationary/moving plane heat source problems in manufacturing and tribology[END_REF]. Except for the window Bi × Pe ≈ [0, 4] × [0.1 3] in which an appreciable change in the steady state constriction resistance can be observed, the above figure shows that the cooling effect is very limited

Table 1 :

 1 Comparison of constriction resistance between analytical and numerical solutions. These values are displayed graphically in Figure[START_REF] Jaeger | Moving sources of heat and the temperature at sliding contacts[END_REF].

	t	10 -4	10 -3	10 -2	10 -1	10 +0	10 +1	10 +2	10 +3	10 +4
	Numerically 0.005 0.017 0.054 0.160 0.406 0.751 1.115 1.483 1.846
	Analytically 0.005 0.017 0.054 0.162 0.409 0.754 1.118 1.485 1.851
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summarizes the obtained fitted parameters for two different cases :

• The first and simplest interpolation concerns the approximation of ψ ss as a function of Pe without incorporating the cooling effect and this is accomplished through equation [START_REF] Negus | On the Nondimensionalization of Constriction Resistance for Semiinfinite Heat Flux Tubes[END_REF]. For each value of Bi a set of parameter (A, B and C ) is deduced from the fitting. As shown by the R-square value R, the approximation in this case is excellent.

• The second fitting model is expressed by equation [START_REF] Madhusudana | Thermal contact conductance[END_REF]. This is the most difficult case to conduct due to the strong nonlinearity of steady state constriction resistance ψ ss as a function of Bi and Pe simultaneously. The fitting quality is acceptable but need an extra work to be improved.

The constriction rise at the origin is obtained for different values of Bi and shown in Figure [START_REF] Hou | General solutions for stationary/moving plane heat source problems in manufacturing and tribology[END_REF] as a function of the Peclet number. The constriction at the origin is found to be substantially reduced with the increasing of Bi when the Peclet number is less than three.
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Conclusions

A general analytical solution for the temperature rise at any point due to a stationary or moving band heat source with uniform heat intensity distribution was developed based on Jaeger's classical heat source method. This solution can be used for both transient and steady state conditions without convection outside the contact area. It can also be used to determine the surface temperature distribution and dimensionless constriction resistance in the half-space. For a moving heat source, the location of the point of maximum steady state temperature rise is shown to be different for different Peclet numbers.

A numerical solution has been developed to study the influence of cooling on the evolution of surface temperature and the constriction resistance. This solution was first validated by the analytical solution for adiabatic boundary conditions where an error of 0.10 % was observed. The numerical results obtained from the developed model highlighted the inter-related roles of three parameters considered in the present work: the velocity, the heat convection coefficient, and the thermal constriction resistance. This study shows an appreciable effect of cooling on the temperature field in the half space at a low Peclet number resulting in weak constriction resistance. This effect is minimized by the increase of the heat strip source speed.

The analysis of the obtained results shows that the increase of the velocity reduces the penetration of the thermal heat in the half space. The cooling increase significantly reduces the temperature gradient, in particular in the vicinity of the frictional surface. Finally, some correlations are given to evaluate the time interval for which the steady state is reached, and to estimate the constriction parameter as a function of Peclet and Biot numbers in the steady state case. The establishment of constriction resistance is affected by the heat source velocity. The establishment time is short when the speed is high and vice-versa.