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Abstract1

The heat transfer rate into highly viscous, low thermal-conductivity fluids can be enhanced2

significantly by chaotic advection in three-dimensional flows dominated by viscous forces. The3

physical effect of chaotic advection is to render the cross-sectional temperature field uniform,4

thus increasing both the wall temperature gradient and the heat flux into the fluid. A method5

of analysis for one such flow—the flow in the eccentric, annular, rotating heat exchanger—6
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and a procedure to determine the best heat transfer conditions, namely the optimal values7

of the eccentricity ratio and time-periodic rotating protocol, are discussed. It is shown that8

in continuous flows, such as the one under consideration, there exists an optimum frequency9

of the rotation protocol for which the heat transfer rate is a maximum.10

1 Introduction11

The efficient heating of high viscosity liquids with a low thermal conductivity is a major12

engineering problem today due to the increase in the price of energy and also due to a public13

awareness against processes that waste energy and produce significant amounts of gases, such14

as carbon dioxide, that are responsible for climate change. The production of cement is one15

industry sector that is in dire need for improvement since its efficiency is very low. For the16

production of cement it is necessary to heat oil in a continuous process and this is generally17

done under turbulent flow conditions and in equipment that is not suitable for highly viscous18

fluids—the type of fluids whose properties are those considered here.19

An appropriate apparatus for heating these high Prandtl number fluids under laminar flow20

conditions, which is the recommended flow regime for highly viscous fluids since otherwise21

the pressure drop will be quite large and the energy consumption will be very high, is the22

annular heat exchanger. In this apparatus the fluid flows in the annular region between two23

concentric cylinders. The advantage of this apparatus—and it is a major one—is that heat24

can be introduced into the fluid via both the inner and outer boundaries.25

Under laminar flow conditions, it is possible to solve the flow and energy equations ana-26

lytically and to determine the thermal performance of this apparatus. This has been done by27

2
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Kays and co-workers at Stanford University [1]; their results are given in tabular form and28

for different types of boundary conditions on both walls by Shah and London [2]. One can29

also find in this last reference analytical and numerical solutions to laminar flow problems in30

similar geometries such as the eccentric annular region or a confocal elliptic annular region.31

This efficient system can be further improved if the two cylinders are allowed to rotate32

at low angular velocities so that the energy consumption is not too high. If the cylinders are33

in an eccentric position and if one cylinder is allowed to turn at a periodic angular velocity34

while the other turns at constant speed, it is possible, under certain conditions, to obtain35

chaotic streaklines very similar to those occurring in turbulent flows. Pictures of experiments36

where chaotic streaklines appear in the geometry considered here, but also in the partitioned37

pipe mixer, were taken by Kusch and Ottino [3]. However these authors have not provided a38

theoretical analysis and have not explained why the flow becomes regular when the average39

axial velocity is increased. Chaotic advection in flows dominated by viscous forces can occur40

in two-dimensional periodic flows, such as the journal bearing flow, and in either spatially41

periodic [4, 5, 6] or time periodic 3-D flows.42

In this paper the eccentric, annular, rotating heat exchanger is analyzed for oscillatory43

flow at low Strouhal number driven by the counter-rotation of the inner cylinder with a time-44

periodic angular velocity. When the two cylinders turn at constant velocity, the three velocity45

components can be determined analytically by solving the Stokes equations. If one cylinder46

is turned with a periodic angular velocity at a small Strouhal number, one can assume that47

the velocity profile is given by the analytical solution for steady cylinder rotation calculated48

at the instantaneous angular velocity ratio. The energy equation is then solved numerically49

3
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for adiabatic operation of the heat exchanger to determine the best conditions, namely the50

eccentricity ratio and modulation frequency, leading to a maximum heat transfer rate from51

the cylinders to the fluid. It is shown that there is a connection between the operating regime52

that yields optimal thermal performance and the advection properties of the flow.53

2 Flow (3-D) between two eccentric, rotating cylinders54

Let us first consider viscous fluid flow between two eccentric cylinders that are rotating at55

constant angular velocities Ω1 and Ω2. The radii of the inner and outer cylinders are R156

and R2, respectively, the distance between the centers of the two cylinders is labeled e, and57

the axial length of both cylinders is L. A sketch of the cross section and a view of the58

complete apparatus are shown in Fig. 1. The cross-sectional geometry is completely defined59

by two dimensionless parameters: the clearance ratio, R2/R1, and the eccentricity ratio,60

ǫ = e/(R2 − R1).61

The analytical solution for this flow can be obtained by first solving the cross-sectional62

components of the equations of motion (journal bearing flow) and then solving the axial63

velocity component of the Stokes equations for pressure-driven axial flow in the eccentric,64

cylindrical annulus. An appropriate coordinate system for this geometry are the bipolar65

cylindrical coordinates [α, β, z], defined by the following transformations from Cartesian co-66

ordinates [x, y, z]:67

x = −
a sinhα

coshα− cos β
, y =

a sin β

coshα− cos β
, z = z, (1)68

4
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Figure 1: (a) Cross section of the eccentric, rotating, annular heat exchanger and (b) view

of the whole apparatus.

where69

a =
R2 − R1

2ǫ

[

(

R1 +R2

R2 − R1
− ǫ2

)2

−
(

2R1ǫ

R2 − R1

)2
]1/2

. (2)70

This coordinate system is orthogonal; the scale factors are71

hα = hβ = h =
a

coshα− cos β
, hz = 1. (3)72

In bipolar cylindrical coordinates the inner and outer cylinders correspond to surfaces of73

constant α; the boundary values, α1 and α2, can be determined from the following identities:74

α1 = arcsinh(−a/R1), α2 = arcsinh(−a/R2). (4)75

Other coordinate systems have been used to solve this same problem. Wannier [7] used a76

mixed nonorthogonal, Cartesian–cylindrical coordinate system, whereas DiPrima and Stuart77

[8] used a modified bipolar coordinate system. Although the bipolar cylindrical coordinates78

used in the present work do not convert to cylindrical coordinates as the eccentricity tends
revised

79
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towards zero, they are probably the most adequate because the mathematical expressions80

are simpler than in the other coordinate systems.81

When the two cylinders rotate at constant velocity, and assuming that inertial effects are82

negligible, the equations of motion for the cross-sectional flow can be written as83

∂2ω

∂α2
+
∂2ω

∂β2
= 0, −h2ω =

∂2ψ

∂α2
+
∂2ψ

∂β2
, (5)84

where ω is the axial component of the vorticity vector and ψ is the stream function defined85

as86

hVβ = −
∂ψ

∂α
, hVα =

∂ψ

∂β
. (6)87

Here, Vα and Vβ are the two cross-sectional components of the velocity vector.88

The analytical solution to the above equations with the expressions of all the constants89

is quite long and is not fully reproduced here; it is given by Ballal and Rivlin [9]. In short,90

the solution can be written as91

ψ = h [F0(α) + F1(α) cosβ] , (7)92

93

F0(α) = (A0 + C0α) coshα + (B0 +D0α) sinhα, (8)94

95

F1(α) = A1 cosh 2α +B1 sinh 2αA1 + C1α +D1, (9)96

where the Ai, Bi, Ci, and Di are constants determined from the boundary conditions. These97

are the prescribed angular velocities of both cylinders (Ω1 and Ω2) and the no-slip boundary98

conditions.99

The axial velocity component, Vz, is obtained by solving the axial component of the100

equation of motion,101

h2
dP

dz
= µ

(

∂2Vz
∂α2

+
∂2Vz
∂β2

)

, (10)102
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where µ is the fluid viscosity and dP/dz is the pressure drop per unit axial length of the heat103

exchanger. The analytical solution to this problem is given in Snyder and Goldstein [10]; the104

axial velocity is105

Vz = −
a2

µ

dP

dz

(

F + Eα−
cothα

2
+

∞
∑

n=1

[

Ane
nα + (Bn − cothα)e−nα

]

cosnβ

)

, (11)106

where107

F =
α1 cothα2 − α2 cothα1

2(α1 − α2)
, E =

cothα1 − cothα2

2(α1 − α2)
, (12)108

109

An =
cothα1 − cothα2

exp(2nα1)− exp(2nα2)
Bn =

exp(2nα1) cothα2 − exp(2nα2) cothα1

exp(2nα1)− exp(2nα2)
. (13)110

The average axial velocity over the cross section A = π(R2
2 −R2

1) of the eccentric annular111

region, 〈Vz〉 = A−1
∫∫

A Vz dA, is defined in terms of bipolar coordinates as112

〈Vz〉 =
2a2

π(R2
2 − R2

1)

∫ α2

α1

∫ π

0

Vz
(coshα− cosβ)2

dα dβ. (14)113

To determine 〈Vz〉 for a given geometry, Eq. (11) is substituted into Eq. (14) and the latter114

is integrated numerically; this gives115

〈Vz〉 = −K
a2

µ

dP

dz
, (15)116

where K is a constant that depends on R2/R1 and ǫ.117

The three velocity components for the case where both cylinders are turning at constant118

speed have been determined analytically by first solving for the two cross-sectional com-119

ponents, Vα and Vβ , and then for the axial component Vz; furthermore all three velocity120

components are independent of the axial coordinate z. For these reasons, this flow is not121

strictly 3-D but really is 2.5-D.122

7
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When both cylinders turn at constant speed, the streaklines are helicoidal as shown123

experimentally by Kusch and Ottino [3]. In order to promote chaotic advection in this flow,124

at least one of the cylinders must turn at a time-varying angular velocity. In what follows, it125

is assumed that the outer cylinder turns at a constant angular velocity Ω2, whereas the inner126

cylinder is allowed to rotate in the opposite direction (counter-rotation) with a time-periodic127

angular velocity:128

Ω1 = Ω1(1 + δ sinωt), Ω1 · Ω2 < 0, (16)129

where δ and ω are the amplitude and frequency of the inner-cylinder modulation.130

The analytical solution of the cross-sectional velocity components, Eqs. (7)–(9), is valid131

only if the cylinders rotate at constant angular velocities and if the inertial terms are132

negligible. However, if the modulation frequency ω is small then the Strouhal number133

Sr = ωLref/Vref , where Lref and Vref are characteristic length and velocity scales for the134

cross-sectional flow, is also small. This assumption allows us to consider the flow to be quasi-135

static and the velocity profile to be given by the analytical solution for steady rotation at136

the instantaneous angular velocity ratio. This can be written mathematically as137

V(α, β, t) ≈ V(α, β)|Ω1(t),Ω2
. (17)138

The flow is also quasi-static if δ ≪ 1, but this is not the case under consideration here. A139

complete discussion of this assumption and of the Strouhal number is given later on.140

8
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3 Heat transfer in the rotating, eccentric, annular heat141

exchanger142

Now that the velocity profile in the eccentric, rotating, annular heat exchanger is known143

analytically, the temperature distribution in the heat exchanger can be determined by solv-144

ing numerically the conservation of energy equation for an incompressible, Newtonian fluid145

neglecting viscous dissipation:146

∂T

∂t
+V · ∇T = η∇2T, (18)147

where η = k/ρcp is the thermal diffusivity of the fluid; k, ρ, and cp are, respectively, the148

thermal conductivity, the density, and the heat capacity of the fluid.149

As mentioned above, for the concentric annular heat exchanger without any rotation,150

Kays [1] obtained solutions to four different problems corresponding to different boundary151

conditions. From these solutions an internal and an external Nusselt number can be defined.152

Here, the purpose is to determine the geometry and the way the cylinders have to turn153

in order to maximize the heat transfer rate to the fluid. Let us examine in detail the heat154

transfer characteristics and the possible ways of increasing the heat transfer rate into the fluid155

in this system. Under laminar flow conditions and when the two cylinders are motionless,156

in either a concentric or eccentric position, the velocity profile is one-dimensional in the157

axial direction; Nusselt numbers for both the fully developed temperature profile and for the158

developing profile were calculated by Shah and London [2].159

For the concentric case, if one or both cylinders are allowed to rotate at constant speed160

and assuming that laminar flow prevails, there will be no heat transfer enhancement because161

9
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the heat flux is in the radial direction and the radial velocity component and the advection162

terms V · ∇T = 0 are both zero.163

When the cylinders are in an eccentric position and rotating at constant speed, the heat164

transfer rate enhancement is due to the velocity component in the heat flux direction; the165

temperature gradient and thus the heat transfer rate at both walls increases. In the journal166

bearing flow this same phenomenon occurs, it is due to the recirculation region as shown167

by Ghosh et al. [11]. In the eccentric case, when both cylinders turn with one of them168

turning at a periodic angular velocity, there will be a further heat transfer rate enhancement169

due to chaotic advection. This phenomenon occurs in the flow considered here as well as170

in the journal bearing flow. Chaotic advection also tends to homogenize the cross sectional171

temperature field so that the temperature gradient at the walls and the heat transfer rate172

into the fluid both increase.173

For this reason the following numerical experiment was devised: the heat exchanger is174

assumed adiabatic, i.e., no heat is exchanged through the cylindrical walls, and the fluid175

entering the heat exchanger has a nonuniform temperature distribution. For simplicity, the176

inlet temperature field, T (α, β, z = 0), is taken to be linear in the α coordinate, which is the177

main direction for cross-sectional heat transfer, such that178

T (α, β, 0) = T1 +
T2 − T1
α2 − α1

(α− α1), (19)179

where T1 and T2 are the extreme values of the temperature distribution.180

Now, since the heat exchanger is adiabatic, the best velocity protocol and the best ge-181

ometry will be the ones that give the most uniform outlet temperature distribution—ideally,182

the fluid will exit the heat exchanger at a constant temperature.183

10
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In mathematical terms, the mixed-mean temperature at axial position z in the heat184

exchanger and time t, i.e., the average temperature over the cross section at z if that in-185

finitesimal slice of fluid is put into an adiabatic cup at time t, is defined as186

〈T 〉(z, t) =
1

A 〈Vz〉

∫∫

A
Vz(α, β) T (α, β, z; t) dA. (20)187

The standard deviation of the cross-sectional temperature field, σ′(z, t), at axial position z188

and time t is obtained by calculating189

[σ′(z, t)]2 =
1

A 〈Vz〉

∫∫

A
Vz(α, β) [T (α, β, z; t)− 〈T 〉(z, t)]2 dA. (21)190

To make the results less dependent on the shape of the chosen inlet temperature distribution,191

σ′(z, t) is normalized with respect to its inlet value:192

σ(z, t) = σ′(z, t)/σ′(0, t). (22)193

Since the velocity distribution is time-periodic because of the inner cylinder modulation,194

the exit standard deviation will also be time-periodic after the influence of the initial con-195

ditions vanishes. Therefore, the average value of the standard deviation over a period of196

modulation,197

σ(z, t) =
ω

2π

∫ t+2π/ω

t
σ(z, t) dt (23)198

will be time invariant after a sufficiently long period of time. We denote by σ∞(z) the axial199

σ-profile when this steady-periodic regime is established; the value for the outlet cross section200

of the heat exchanger is σ∞(L). The best heat transfer conditions, namely the optimal values201

of the eccentricity ratio and time-periodic rotating protocol, are those that minimize the value202

of σ∞(L).203

11
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The numerical solution of the energy equation in bipolar cylindrical coordinates, with the204

velocity field determined by the analytical solution, was obtained using OpenFOAM R©, an205

open source computational-fluid-dynamics (CFD) toolbox [12]. It is worth noting that the206

existence of an analytical solution for the velocity field reduces significantly the CPU time207

required to compute the numerical solution.208

The results given below were obtained on a structured grid with 50 × 80 × 60 (α, β, z)209

points covering the eccentric, cylindrical annulus of the heat exchanger. The diffusive term in210

Eq. (18) was discretized using second-order central differences, whereas the advection term211

was approximated by the second-order QUICK scheme [13] combined with the van Leer’s212

symmetric flux limiter [14] to reduce numerical diffusion and spurious oscillations in the213

computed solution.214

Results and Discussion215

As in [15, 16], two dimensionless control parameters, NT and NP , are first defined. The216

former parameter gives the number of rotations that the outer cylinder makes per average217

residence time in the annular heat exchanger:218

NT =
Ω2τ

2π
, (24)219

where τ = L/ 〈Vz〉 is the average residence time of a fluid particle in the apparatus. The220

second parameter, NP , is related to the number of periods the inner cylinder makes per221

average residence time:222

NP =
ωτ

2π
. (25)223

12
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Previous work [17] on chaotic advection in the 2-D flow between two eccentric cylinders224

(Vz = 0) showed that the amplitude of the modulation must be chosen as large as possible,225

as long as the Stokes flow conditions are maintained. This way, the instantaneous hyperbolic
revised

226

fixed point that exists in the region of minimum gap is periodically displaced from the227

vicinity of one cylinder to the vicinity of the other. The periodic forcing allows exchange of228

fluid between the three regions separated by the two streamlines stagnating on the hyperbolic229

point. For this reason, in the present work δ is fixed at a large value (δ = 0.9).230

In all cases analyzed the heat exchanger is operated under Stokes flow conditions. The231

axial and cross-sectional Péclet numbers, Pez = 〈Vz〉L/η and PeΩ = |Ω2|R2(R2 − R1)/η, are232

both fixed at 5000. Let us now reconsider the effects of time periodicity in this apparatus. For233

the fluid to respond quasi-statically to the modulation of the inner boundary, the Strouhal234

number must be small, Sr < 1. If the characteristic length is taken equal to the annular235

gap spacing, Lref = R2 −R1, and the characteristic velocity taken equal to the average value236

for the oscillatory cylinder, Vref = R1Ω1, then Sr = (R2/R1 − 1)(|Ω2|/Ω1)(NP/NT ). For237

R2/R1 = 2, |Ω2|/Ω1 = 1/2, and NT = 30 used in our calculations, we get Sr = NP/60.238

Thus, to keep Sr < 1 implies NP < 60. Although the calculations were carried out up to239

NP = 64, we shall see that the interesting results are obtained for NP < 40. Therefore, the240

underlying assumption of quasi-static flow seems to be a reasonable one and is not expected241

to compromise the physical meaningfulness of the results.242

The influence of the modulation frequency is first examined for a specific geometry, defined243

by a clearance ratio R2/R1 = 2 and an eccentricity ratio ǫ = 0.5. Figure 2 shows the244

normalized standard deviation of the outlet temperature field as a function of NP for a fixed245

13



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

0

0.02

0.04

0.06

0.08

0.10

0 8 16 24 32 40 48 56 64 72 80

NP

σ
∞
( L
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Figure 2: Average value of the normalized standard deviation of the outlet cross-sectional

temperature field, σ∞(L), under steady-periodic conditions, as a function of NP for the

rotating, eccentric, 3-D annular heat exchanger. The geometric and velocity parameters are

R2/R1 = 2, ǫ = 0.5, NT = 30, Ω1 = Ω1(1 + 0.9 sinωt), Ω1/Ω2 = −2. Both the axial and

cross-sectional Péclet numbers, Pez = 〈Vz〉L/η and PeΩ = |Ω2|R2(R2 − R1)/η, are fixed at

5 × 103. The line is a smooth interpolation of the numerical data and serves as a guide to

the eye.

value NT = 30. Notice that the curve of σ∞(L) vs NP exhibits a value for which the standard246

deviation is a minimum. Obviously, it is at this modulation frequency that the apparatus247

must be operated if the heat transfer rate into the fluid is to be a maximum. Above or below248

the modulation frequency the mixing and heat transfer rates within the cross-section are not249

as good.250

Figure 3 shows color plots of the steady-periodic temperature field for the exit cross251

section of the heat exchanger for different values of the flow parameters NT and NP ; for252

14
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8.72e-01

7.95e-01

7.18e-01

6.41e-01

5.64e-01

4.87e-01

4.10e-01

3.33e-01

2.55e-01

1.78e-01

1.01e-01

2.42e-02

Inlet

0.02

0.19

0.33

0.49

0.64

0.80

0.95

0.51

0.54

0.56

0.59

0.61

0.63

0.66

NT = 10

NP = 16

NT = 30

NP = 0

NT = 30

NP = 16

NT = 10

NP = 64

Figure 3: Temperature field for the exit cross section of the heat exchanger as a function

of NP and NT . The top plot shows the cross-sectional temperature distribution at the inlet

of the heat exchanger, as given by Eq. (19). The snapshots of the exit temperature fields

were generated under steady-periodic conditions at a time instant that is a multiple of the

modulation period (2π/ω). The geometry and flow parameters are identical to those of Fig. 2.

reference, the topmost plot shows the inlet temperature distribution, which is the same for253

all cases, it is defined by Eq. (19). The set of flow parameters considered in Fig. 3 includes the254

15
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cases of steady rotation of the inner cylinder (NP = 0), low and moderate angular rotations255

(NT = 10 and NT = 30), and medium and high forcing frequencies (NP = 16 and NP = 64).256

The cross-sectional temperature fields in the left-hand column use the same color scale as that257

for the inlet temperature distribution; the righthand plots employ a color scale that varies258

over a much smaller temperature range to give a better visualization of the temperature259

non-uniformities.260

Figure 3 shows that a homogeneous outlet temperature field is obtained for the pair of261

parameter values {NT = 30, NP = 16}. However, it is incorrect to deduce that the value262

NP = 16 is optimal regardless of the value of NT , as can be seen by analyzing the first case263

in Fig. 3. Notice also that the exit temperature field for {NT = 30, NP = 64} is quite similar264

to that obtained for steady rotation of the inner cylinder (NT = 30, NP = 0).265

The above results can be confirmed indirectly by other methods based on the analogy266

between heat and momentum transfer. One tool consists of placing a blob of dye at the267

flow entrance and then following the trajectory of each individual particle all the way to the268

exit. The location where each particle crosses the outlet cross section of the heat exchanger is269

plotted. These calculations are equivalent to solving the 3-D convection-conduction equation,270

Eq. (18), in a Lagrangian framework for the limiting case of vanishing thermal diffusivity. In271

this framework, the equations of motion for a non-diffusive scalar are the advection equations,272

dx

dt
= V(x, t), (26)273

where x = (α, β, z) is the position vector. In the present work, Eq. (26) was integrated274

over the time coordinate using a fourth-order, semi-implicit Runge-Kutta scheme with error275

estimation and adaptive stepsize control [18].276
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Figure 4 shows the outcome of two numerical experiments in which 0.1 vol-% of a passive277

tracer, consisting of over 104 material points, is injected at a specific point of the inlet cross278

section of the heat exchanger. Two injection locations are considered in Fig. 4: one in279

the region of maximum gap, the other in the region of minimum clearance. The numerical280

experiments are performed for a fixed value of NT = 30 and various values of NP : 0 (no281

modulation), 16 (optimum frequency), 32 (high frequency), and 64 (very high frequency).282

Notice how, for the optimum frequency (NP = 16), the tracer spreads over the whole section283

and much less for the other values of NP .284

In Hamiltonian systems, such as the flow under study but without an axial velocity285

component (journal bearing flow), the initial location of a tracer particle is important. The
revised

286

particle can be introduced either in a poorly mixed region or in a chaotic region. If the287

particle is introduced outside of a chaotic region it will mix poorly and at the end of each288

period it will lie somewhere in a well defined domain where there is little stretching. If the289

particle is placed in a chaotic region, it will spread over a large part of the cross-section and290

at the end of each period it will be in a new location. A major tool for the study of chaos in291

2-D periodic flows is the Poincaré section. It is obtained by tracking a given particle over a292

very large number of periods.293

When an axial Poiseuille velocity profile is superimposed over the above flow, as is the case294

in the present study, a fluid particle moves forward in the axial direction with an instantaneous295

velocity that depends on its cross-sectional coordinates. Because of this, a given location can
revised

296

be either in a chaotic region or in a regular domain depending on the time instant. While a297

fluid particle is moved forward by the axial flow inside the heat exchanger, the particle can298

17



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

NP = 16NP = 0 NP = 32 NP = 64Initial blob

Figure 4: Location of material points at the exit cross section of the heat exchanger for

0.1 vol-% injection of a tracer (passive scalar). The results are presented for different values

of NP and two different injection locations; the exact placements of the injections are shown

in the two leftmost plots. The selected values of NP are: 0 (no modulation), 16 (optimum

frequency), 32 (high frequency), and 64 (very high frequency). The geometry and flow

parameters are identical to those of Fig. 2. The plots were generated by synchronizing each

tracer tracking run with the start of a period of modulation.

find itself in a regular domain for some amount of time, then be trapped in a chaotic region,299

then escape to another region, and so on. Because of this, the initial location of the particle300

is more important in the 2-D flow than in its 3-D counterpart.301

The initial locations of the two blobs in Fig. 4 are the minimum gap region, where the302

hyperbolic stagnation point appears in the journal bearing flow (bottom) and the maximum303

gap region, where the vortex center is placed in the 2-D flow (top). If there was no axial304

velocity component, only the blob in the hyperbolic point region would mix over a large305
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part of the cross-section. For the reasons stated above, when the axial velocity component306

is nonzero, the initial location of the blob is less important even though, qualitatively, the307

numerical experiments of spreading of a blob show a better mixing when the blob is injected308

in the narrow gap region.309

Another way to highlight the existence of an optimal forcing frequency is to explore the310

relationship between mixing and stretching in this flow. The computation of stretching,311

which is related to the increase of interfacial area available for mass and energy transport,312

was shown to be an alternative route to Poicaré sections and tracer dispersion simulations313

for characterizing microstructure in chaotic flows [20]. Points experiencing high and low314

stretching correspond to regions of good and poor micro-mixing, respectively [19, 20]. The315

rate of stretching determines the rate of the micromixing process both by increasing the316

intermaterial area over which heat conduction can occur but also by decreasing the required317

thermal diffusional distance. Stretching calculations are computationally tractable for even318

3D flows. This type of calculations was first made in the journal bearing flow by Swanson319

and Ottino [21].320

The stretching vector of a fluid element, l, associated with a tracer particle initially321

located at x0 can be calculated by integrating the advection equations, Eq. (26), subject to322

(x)t=0 = x0, along with323

dl

dt
= (∇V)T · l, (l)t=0 = l0. (27)324

The total accumulated stretching λ experienced by the fluid element at a given time instant325

is326

λ = ||l||/||l0||. (28)327
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Stretching calculations were performed with 2× 104 particles covering uniformly the en-328

trance of the heat exchanger. Each particle was assigned an initial stretch vector l0 =329

[lα, lβ, lz] = [0, 0, 1]. In order to determine the stretching field at the exit of the heat ex-330

changer, the cross section was discretized with a square grid of 100×100 cells. Cells that are331

entirely within the flow domain were retained, those that fall partially or completely outside332

the flow domain were discarded. The value of stretching in each cell was approximated as the333

geometric mean of the stretching values of the tracer particles located within the cell. Since334

the flow field is time periodic, the overall stretching plot for a given modulation protocol335

was computed by averaging stretching distributions determined for 10 equally spaced phase336

angles of the sinusoidal velocity protocol.337

Figure 5 shows the time-average stretching field at the exit cross section of the heat338

exchanger for the same values of the parameters as in Fig. 4. The fluid particles that were339

subjected to a good stretching rate during their residence in the heat exchanger are colored340

in white, while regions of poor stretching are colored in blue. One can see in Fig. 5 that the341

regions of low stretching correspond to the regions in Fig. 3 where the outlet temperature342

field deviates most from the mean value. Furthermore, there are practically no regions of low343

stretching rate when the modulation frequency is at its optimum value.344

The influence of the eccentricity ratio on the efficiency of the heat exchanger is shown in345

Fig. 6, where the exit value of the normalized standard deviation of the temperature field,346

σ∞(L), is plotted against NP for NT = 30 and different values of ǫ. From Fig. 6 it is possible347

to determine the optimum value of NP for each value of ǫ; for example, the optimum value348

for ǫ = 0.1 is NP = 12; over the range 0.3 ≤ ǫ ≤ 0.5 it is NP = 16; for ǫ = 0.7 there are two349
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N
P
 = 0 N

P
 = 16

N
P
 = 32 N

P
 = 64

Figure 5: Time averaged stretching field for the exit cross section of the heat exchanger as a

function of NP for a fixed value NT = 30. Any region where the accumulated stretching is

less than the cutoff value λc = 105 is colored in blue while any region where the stretching is

above the cutoff value is white. The geometry and flow parameters are identical to those of

Fig. 2.

local optimal values of NP , namely NP = 0 and NP = 48. Notice that the lowest value of the350

standard deviation is obtained for ǫ ≈ 0.5 and NP = 16. It is also for intermediate values of351

ǫ that the effect of the forcing frequency is more pronounced. For small values of ǫ there is a352

single local optimum value of NP . For large values of ǫ, σ∞(L) is weakly dependent on NP .353

The color plots of the exit temperature field, displayed in Fig. 7 for selected values of354

ǫ, show that the best value is actually closer to ǫ = 0.4. These temperature fields were355

generated at the optimum forcing frequency for each value of ǫ. The thermal profiles can
new

356

be visually compared in terms of their degree of uniformity or in terms of their degree of357
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Figure 6: Exit value of the normalized standard deviation of the temperature field, σ∞(L),

as a function of ǫ and NP , for the eccentric, rotating, 3-D annular heat exchanger under

steady-periodic conditions. The geometric and rotation parameters are the same as in Fig. 2.

The lines are a smooth interpolation of the numerical data and serve as guides to the eye.

similitude with the color value of 〈T 〉(0), which is the exit fluid temperature for a perfectly358

homogenized heat exchanger. Obviously, both types of comparison yield the same conclusion359

about the optimal choice of ǫ. Particle tracking in the heat exchanger, Fig. 8, shows that360

the passive tracer is better and more evenly distributed over the entire exit cross section of361

the heat exchanger for an eccentricity ratio ǫ between 0.4 and 0.5 and at the same optimum362

forcing frequency as in Fig. 7.363

Chaotic advection in this flow is, perhaps, best visualized by plotting numerical streak-364

lines. As an example, for ǫ = 0.5, R2/R1 = 2, and NT = 30, Fig. 9 shows the streaklines365

for the cases of no inner cylinder modulation (NP = 0), optimum modulation (NP = 16),366

and a very high modulation (NP = 64). The point where the tracer is continuously injected367
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Figure 7: Temperature field at the exit cross section of the heat exchanger as a function

of the eccentricity ratio, ǫ, for a fixed value NT = 30 and optimal value of NP . For each

case, the value of the control parameter NP is the one that minimizes the exit value of the

normalized standard deviation of the temperature field, σ∞(L) (see Fig. 6). The snapshots of

the exit temperature field were generated under steady-periodic conditions at a time instant

that is a multiple of the modulation period (2π/ω). The geometric and rotation parameters

are the same as in Fig. 2. The rectangle over the color scale shows the temperature value if

the cross-sectional exit temperature field in the heat exchanger were perfectly homogenized.
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ε = 0.1 0.3 0.4 0.5 0.7

Figure 8: Location of material points at the exit cross section of the heat exchanger for

0.1 vol-% injection of a tracer (passive scalar). The results are presented for different values

of ǫ at the optimum forcing frequency for each case. The injection is placed in the region of

maximum clearance, its exact placement is shown in the top plots. The values of (ǫ, NP ) are

(0.1, 12), (0.3, 16), (0.4, 16), (0.5, 16), and (0.7, 0). The geometry and flow parameters are

identical to those of Fig. 2. The plots were generated by synchronizing each tracer tracking

run with the start of a period of modulation.

is the same in all three cases. When there is no modulation the streaklines are helicoidal,368

this result is well known and has been shown by Kusch and Ottino [3]. For the optimum369

modulation frequency, NP = 16, the streaklines are chaotic as shown in middle graphic of370

Fig. 9. A very high modulation leads to streaklines that are very similar to those obtained371

without any modulation.372
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Figure 9: Streaklines for ǫ = 0.5, R2/R1 = 2, and NT = 30 and three different values of

NP : 0 (top), 16 (middle), and 64 (bottom). The arrows point to the location of the injection

point, which is placed in the maximum gap region.

Conclusions373

The heat transfer rate into highly viscous, low thermal-conductivity fluids can be enhanced374

substantially in the eccentric, annular heat exchanger when both boundaries are allowed to375

rotate. The physical effect of chaotic advection is to render the cross-sectional temperature376

field uniform, thus increasing both the wall temperature gradient and the heat flux into the377

fluid. If one boundary moves at constant velocity while the other one turns at a periodic378
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angular velocity, an optimum forcing frequency exists for which the heat transfer rate is a379

maximum. The heat transfer efficiency under such conditions is better than that obtained380

without modulation. The heat transfer enhancement is due to chaotic advection as in turbu-381

lent flow. For a given axial flow-rate there is an optimum value of the frequency that enhances382

the heat-transfer rate most. There is also an optimum value of the eccentricity ratio ǫ. The383

best performance is obtained for a moderately eccentric heat exchanger, ǫ ≈ 0.4–0.5.384
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