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Abstract 16 

Cooperation is ubiquitous in the world surrounding us, from bacteria to Human 17 

interactions. In Humans, cooperation is often associated with various group decisions, 18 

resulting from their complex web of interrelated interests, associations or preferences. 19 

The existence of such social structures not only opens the opportunity of having diverse 20 

behaviors depending on the individuals’ social position, but also for a dynamical 21 

allocation of contributions depending on the returns obtained from each group. Here, we 22 

address these issues by studying the evolution of cooperation under Public Goods Games 23 

in the framework of Evolutionary Game Theory where cooperative players are able to 24 

distribute their donations to their liking. As a result, cooperation is greatly enhanced 25 

when the community structure is described by homogeneous graphs, as cooperators 26 

become able to support cooperative groups and retaliate against those with poor 27 

achievements by withdrawing donations from them. Whenever the underlying network 28 

becomes complex enough to add diversity to the distribution of group sizes, directed 29 

investments do not optimize the emergence of cooperation, but they do enhance its 30 

robustness against the invasion of a minority of free-riders. We define a robustness index 31 

and show that directed investments expand the robustness of cooperation by about 50%.  32 

Keywords: evolutionary game theory; public goods game; structured populations; 33 

evolution of cooperation; complex networks. 34 

35 
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1   Introduction 36 

   Cooperation is a key feature of self-organized systems, occurring at all scales and levels 37 

of complexity (Hardin, 1968; Taylor, 1982; Axelrod, 1984; Trivers, 1985; Maynard-38 

Smith and Szathmáry, 1995; Sigmund, 1995; Barrett, 2007; Sigmund, 2010). Despite 39 

this, the reasons behind its ubiquity remain an open, and challenging, quest in several 40 

areas of science. To address this issue, different models were built in the framework of 41 

evolutionary game theory (Maynard-Smith, 1982; Sigmund, 2010) to try to reproduce the 42 

emergence of cooperation amongst selfish individuals, using different mechanisms to 43 

achieve this goal. In this quest, the role of higher levels of individual cognition has 44 

remained elusive. In the present paper, we show that an additional layer of individual 45 

complexity may provide a major contribution to the emergence and robustness of 46 

cooperation and investigate how the evolutionary advantage of such complexity is tightly 47 

connected with the way in which the population is structured. 48 

For this purpose, we study the N-person Prisoner’s Dilemma, better known as a Public 49 

Goods Game (PGG) of cooperation (Hardin, 1968; Kollock, 1998; Barrett, 2007; 50 

Sigmund, 2010). PGGs constitute the primary tool in evolutionary game theory to 51 

investigate the emergence of cooperation in group interactions. In this game, N 52 

participants can decide to donate or not an amount to the public good. An individual is 53 

considered to be a cooperator (C), if she donates; otherwise she is a defector (D). The 54 

donations are collected in a common pot and multiplied by a factor r (r>1). The resulting 55 

sum is subsequently shared equally among the members of the group independently of 56 

their contribution. Hence, in a mixed group of N individuals, refusing to contribute to a 57 
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common good assures the highest individual payoff. Thus, if all participants are rational, 58 

individuals refuse to donate, falling into the Tragedy of the Commons (Hardin, 1968). 59 

   Among the many mechanisms (Nowak, 2006; West et al., 2007) suggested to avoid this 60 

negative outcome, such as repeated interactions (Trivers, 1971), reward and punishment 61 

mechanisms (Sigmund et al., 2001; Fehr and Gachter, 2002; de Quervain et al., 2004; 62 

Sigmund et al., 2010; Szolnoki and Perc, 2010), reputation systems (Nowak and 63 

Sigmund, 2005; Ohtsuki and Iwasa, 2006), voluntary participation (Brandt et al., 2006), 64 

etc., most assume large populations and a well-mixed interaction pattern in which every 65 

player interacts equally likely with everyone else. While the well-mixed limit may be 66 

valid for small populations, spatial constraints or complex networks of contacts often 67 

shape the interactions within large-scale societies. This feature has been initially 68 

addressed by means of regular lattices and graphs, exploring the role of space in the 69 

emergence of collective behaviors (Nowak and May, 1992; Nowak et al., 1994; Szabó 70 

and Hauert, 2002; Szabó et al., 2005; Ohtsuki et al., 2006; Szabó and Fáth, 2007; Taylor 71 

et al., 2007). More recently, our increasing understanding of real interactions structures 72 

(Doreian and Stokman, 1997; Barabási and Albert, 1999; Watts, 1999; Amaral et al., 73 

2000; Dorogotsev and Mendes, 2003; Newman, 2003) has led to a general analysis of 74 

evolutionary dynamics in a broad range of topologies (Santos and Pacheco, 2005; Vukov 75 

and Szabó, 2005; Santos et al., 2006; Gómez-Gardeñes et al., 2007; Szabó and Fáth, 76 

2007; Santos et al., 2008).  77 

    In a networked population, nodes represent individuals, whereas links represent shared 78 

goals, investments or exchanges. In an N-person interaction setting, neighborhoods define 79 

a network of overlapping groups (Szabó and Hauert, 2002; Santos et al., 2008), defining 80 
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not only who interacts with whom, but also the universe of possible role models of each 81 

individual. With the help of this powerful and general population structure metaphor, 82 

many different communities can be modeled and the outcome of the strategies’ evolution 83 

is highly dependent on the underlying topology. During the evolutionary process, every 84 

player is involved in (k+1) game-interactions, where k is the number of acquaintances 85 

(neighbors) of the given player. The group interactions take place in the (k+1) groups 86 

centered on the neighbors and on the focal player (see Figure 1A). The total payoff of a 87 

player is gained from these (k+1) games (Szabó and Hauert, 2002; Santos et al., 2008). 88 

In the simplest setting (Santos et al., 2008), cooperators donate a fixed cost c to every 89 

PGG they participated. However this assumption may be unrealistic in situations where 90 

players participate in a large number of interactions, as it is very unlikely that players 91 

have such a huge amount of resources at their disposal at any time. Limited resources 92 

may add the limitation that all players have the same amount to invest, which will be 93 

equally shared amongst all the groups (Santos et al., 2008; Pacheco et al., 2009). This 94 

means that cooperators donate c/(k+1) to every group. This modification has a big impact 95 

when the interaction graph is heterogeneous, as we will discuss later. However for regular 96 

networks where the number of neighbors is the same for every node, this principle is 97 

equivalent to the traditional case with a rescaling of the cost c by a factor of 1/(k+1). 98 

Nevertheless fixing the available resources for the players raises new opportunities: what 99 

if cooperators could decide themselves how to distribute their donations amongst the 100 

groups they interact with? 101 

Such a cooperator opens up a whole avenue of new strategies, from random ones where 102 

cooperators just randomly contribute to the different groups, to strategies where 103 
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cooperators can take past events, decisions or incomes into account before deciding about 104 

the amount to contribute to each collective endeavor. Using this idea, we shall address the 105 

role played by this additional speck of complexity, and consider cooperators that donate 106 

to different groups proportionally to the income previously received from each given 107 

group (see Figure 1B). Individuals assess how large is the share they obtained from each 108 

group and, in the next generation, they donate the corresponding fraction of c to this 109 

group. As detailed in Section 2, this strategy is reactive and inherently assumes that 110 

players can keep track of their payoffs from immediate past events, i.e., they have some 111 

kind of short-term memory. As group profits are generated solely from donations of 112 

cooperators, this strategy rewards groups with higher cooperative standards. From this 113 

point of view, this strategy can be seen as a form of direct reciprocity (Trivers, 1971) in 114 

group interactions. For this reason, we shall refer to this type of behavior as reactive 115 

strategies. 116 

2   Methods  117 

To have a clearer understanding of the results, here we give a more thorough description 118 

of the model details. Players are located on the nodes of a graph. The edges of the graph 119 

define who interacts with whom and who can imitate whom. Each individual engages in 120 

k+1 PGG games where k is the number of her neighbors. The PGG groups are defined 121 

by the central player and her neighbors, i.e., a given player is member of his own and his 122 

neighbors’ group (Figure 1A). Players gain their accumulated payoff from these 123 

interactions in each generation. There are two available strategies: defectors (D) do not 124 

donate to the public good, while cooperators (C) donate the cost c. For the different 125 
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simulation scenarios, cooperators use slightly different strategies. In the unconditional, 126 

unconstrained case (UUC), they donate the cost c to every group they participate in. In 127 

the unconditional, constrained case (UCC), when the amount of donation per player is 128 

fixed to c, they donate to all their groups equally, i.e., all groups’ pot receive c/(k+1). In 129 

the conditional, reactive case (CRC), cooperators are allowed to redistribute their 130 

donations, and they donate proportional to the payoffs they received from the given group 131 

in the previous simulation step. Hence, if a cooperator received payoff pi from his ith 132 

group at a given time (see Introduction and Fig. 1) then she will donate (c·pi)/P in the 133 

next round, where P=
1

1

k

j
j

p
+

=
∑ . In the first round of the simulation, cooperators donate 134 

equally to the groups. The same happens if a defector imitates a cooperator and she had 135 

zero total payoff (P=0) in the previous round. 136 

Simulations start from a random initial condition where the concentration of cooperators 137 

and defectors is equal. Having different initial conditions (e.g. fewer cooperators at the 138 

start) does not really influence the stationary distributions. The average values are 139 

decreased slightly because of the cases when cooperator clusters cannot form and 140 

cooperation vanishes at the initial transitional period due to the low initial cooperator 141 

frequency. We use synchronous update: In each simulation time step, we update the 142 

payoff for every player, and then randomly pick a neighbor (y) for every player (x). 143 

Player x can adopt the strategy of player y with a probability given by the so called pair-144 

wise comparison rule: ( )/
1( )

1 x yP P K
W x y

e −
← =

+
, where Px and Py are the total payoff of 145 

players x and y while K is characterizing the amount of errors in decision making. After 146 

calculating the possible strategy imitations, we update the strategy of every player at the 147 
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same time. 148 

   The final outcome of evolution and cooperation is obtained from extensive computer 149 

simulations performed on the following network topologies: We consider paradigmatic 150 

examples of homogeneous and heterogeneous network structures. For the former class we 151 

consider a square lattice with von Neumann neighborhood structure and periodic 152 

boundary conditions. For the latter class, we explore the effects of topological 153 

heterogeneity using Barabási-Albert scale-free networks (Barabási and Albert, 1999), 154 

generated by the combination of growth and linear preferential attachment. This leads to 155 

distributions of group sizes and number of games played by each player that follows the 156 

degree distribution of the network, i.e., a power-law. After 2000 initial generations, we 157 

average the strategy concentrations over the population during 10000 generations. Each 158 

result is obtained from 100 runs from different random initial conditions and in the case 159 

of heterogeneous networks, from 10 different network realizations. We investigated the 160 

strong selection regime and used K=0.04. The qualitative behavior of the system is the 161 

same for higher K values (we tested it up to K=1.0), the ranking among the different 162 

strategies remains the same so the conclusions are valid for those parameter values too. In 163 

the case of the homogeneous networks, higher K shifts the threshold above which 164 

cooperation can be maintained to higher multiplication values as among these conditions 165 

defectors can break in to the cooperator cluster more easily due to the higher noise. For 166 

heterogeneous networks, the thresholds are about the same but the transition from the full 167 

defector state to full cooperation is sharper, isolated, small islands of the minority 168 

strategy are consumed due to the higher noise.  169 
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3   Results and Discussion 170 

    Figure 2 shows the results for the unconditional cooperative strategy (UUC) and the 171 

reactive cooperative strategy (CRC) on the square lattice (see Fig. 1A) as a homogeneous 172 

interaction network (note that, in this case, UUC and UCC lead to the same results). The 173 

fraction of cooperators is plotted as a function of the normalized multiplicative factor 174 

η=r/(k+1), where k=4 for the square lattice with von Neumann-neighborhood. In infinite, 175 

well-mixed populations, full defection is replaced by full cooperation at η≥1, as in this 176 

case, a single cooperator can provide positive payoff for the whole group. Under spatial 177 

reciprocity, the threshold happens for significantly lower values of η. There is also 178 

formally a lower threshold at η≤1/(k+1), in which case even full cooperation results in 179 

negative payoffs, that is, cooperation becomes impossible among these conditions. 180 

   The results in Fig. 2 show that reactive cooperative strategy (CRC, red circles) 181 

successfully outcompetes defectors for a wide range of parameters when compared with 182 

unconditional cooperators (blue squares), while managing to achieve mixed, dynamical 183 

coexistence with them under rather unfavorable conditions. By dividing their donations 184 

among successful groups, cooperators are able to support the emergence of cooperative 185 

clusters by “directed” contributions to fellow cooperator groups. Moreover, these 186 

individuals are able to withdraw help from the most defective groups, located at the edges 187 

of the cooperative clusters. So the reactive cooperative strategy could be considered as a 188 

mix of two mechanisms: reciprocity towards good, generous neighbors/groups and 189 

punishment with the withdrawal of donations from defective neighbors. As a result, 190 

whenever the conditions are not too adverse, the cooperative clusters can grow and they 191 

will almost always take over the whole community. In the coexistence region, due to the 192 
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lower multiplication factor, cooperator clusters gain and loose territories dynamically 193 

while the strategy concentrations slightly fluctuate around the average. We have 194 

investigated other regular networks, such as the kagome-lattice (Syôzi, 1951) and the 195 

one-dimensional ring-graph (Watts, 1999) to filter out possible “square lattice”-specific 196 

features but the results were qualitatively the same on all of them: the overall level of 197 

cooperation was very significantly increased with the introduction of a small level of 198 

complexity (CRC). Similar qualitative results are also obtained for other values of the 199 

intensity of selection, here associated with the parameter K. 200 

      The picture is different when the interaction graph is described by a heterogeneous 201 

network. In this case different players will have, in general, different number of 202 

neighbors. Consequently, fixing the maximum amount of contribution for unconditional 203 

cooperators is no longer a mere rescaling issue ― in fact, it has a huge impact on the final 204 

outcome of evolution (Santos et al., 2008; Pacheco et al., 2009). Blue squares in Figure 3 205 

show the results on a scale-free network when cooperators donate c to every group they 206 

are part of (UUC). Cooperation becomes viable in a considerably wide range even if 207 

cooperators in a central role have to invest a big amount. The key of the success of 208 

cooperation is that the complex interaction network made the payoff distribution 209 

heterogeneous and this gave an opportunity for cooperators to outplay defectors: central 210 

cooperators can collect a high income due to the many groups they are part of and can 211 

turn most of their neighbors to cooperators while if a defector ends up in a central role, 212 

she will turn her followers to defectors, decreasing her own payoff and after a while 213 

loosing the “leading” position. However for lower η, the establishment of cooperation is 214 

hindered by the fact that highly connected individuals (hubs) have to invest a huge 215 
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amount which can be non-remunerative in a partly defective environment. Fixing the total 216 

amount of donation of each individual (UCC) can be of assistance to this problem, as 217 

shown with the green triangles. Indeed, in (Santos et al., 2008; Pacheco et al., 2009) it has 218 

been argued that it is not the amount given what is important but the act of giving. 219 

      Unlike the situation observed in homogeneous networks, the introduction of reactive 220 

cooperators (CRC) does not boost cooperation further (red circles in Fig. 3). Apparently, 221 

the additional complexity in the strategy does not add up to the effects already induced by 222 

the scale-free interaction network, associated with the heterogeneous payoff distribution 223 

In other words, the network structure may by itself dispense the need to develop highly 224 

cognitive capabilities. Differently, a heterogeneous allocation of donations may open a 225 

window to smarter ways of cheating in a heterogeneous network context.  226 

      On the other hand one expects that additional skills may enhance the aptitude of 227 

Cooperators to protect themselves against Defectors, which may play a different role 228 

depending on the composition of the population. Up to now we have been discussing the 229 

viability of cooperation to emerge from an equal distribution of cooperators and 230 

defectors. But how stable is cooperation once established? In the following we investigate 231 

the robustness of the cooperative community against defector invasion attempts. To this 232 

end, and after an initial transient period, in every generation we replace a given amount of 233 

the population by defectors. It turns out that reactive cooperators can withstand defector 234 

attacks far more successfully. Figure 4 shows that even for extreme defector inflow 235 

values as high as 10% of the population in every generation, cooperation survives with 236 

the help of this more sophisticated strategy. We can define a numerical index to compare 237 

the robustness of cooperation in different scenarios by calculating the integral below the 238 
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surfaces in Fig. 4. The ratio of the integrals ΩCRC/ΩUCC=1.46 shows that the reactive 239 

cooperative strategy (CRC) is almost 1.5 times more successful in defending itself than 240 

the unconditionally equal cooperators (UCC).  241 

   Finally, it is also noteworthy that different cognitive skills and levels of complexity can 242 

have an impact in several emerging features of the population beyond the levels of 243 

cooperation. In Fig. 5 we portray the wealth (here understood as fitness) distribution of 244 

the population in a fully cooperative community, that is, we compute how the total 245 

income is divided among the individuals. It is known (Santos et al., 2008) that donating a 246 

fixed cost per individual results in less poor and more rich people than in the case of 247 

donating a fixed cost per game. With the advent of reactive cooperators, society becomes 248 

more “fair”, individuals are shifted from the poor regions to the “middle class”. This can 249 

be also shown by the Gini coefficient G (Gini, 1912), which measures inequality of a 250 

distribution (G=0 for maximum equality and G=1 for total inequality): G is 0.30 for the 251 

reactive cooperators (CRC) and 0.38 for the UCC. The few, very poor individuals are 252 

victims of the randomly built scale-free interaction network: they belong to an 253 

unfortunate neighborhood that condemns them to lower payoffs.  254 

4   Conclusions 255 

We investigated the emergence of cooperation in Public Goods Games from the point of 256 

view of individual complexity. We found that increasing the complexity of the cooperator 257 

strategy can help to establish and maintain cooperation in different environments. When 258 

the interaction network is homogeneous, described by regular graphs, the introduction of 259 

a more complex, reactive cooperator strategy (CRC) helped to improve the performance 260 
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of cooperators to a great extent. However if the interaction network itself is complex and 261 

heterogeneous, as in the case of a scale-free graph, then the additional complexity in 262 

strategy (CRC) does not positively take effect on the spreading range but renders 263 

established cooperation more robust against defector invasion. 264 
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Figure legends 346 

Figure 1. Public Goods Game on graphs. A. Players are participating in (k+1) games in 347 

every generation. Colored bubbles show the PGG groups in which the central (orange) 348 

player is participating while the pi values show the payoff she gains from the 349 

corresponding groups. B. Reactive behavior of CRC cooperators: colored bars show the 350 

orange player’s payoff-share gained from each group (with a given color) compared to 351 

the player’s total payoff. In the next generation, cooperators divide their contribution to 352 

the public good according to their previous income. 353 

Figure 2. Results of additional cooperator complexity on the square lattice: the 354 

fraction of cooperators as a function of the normalized multiplicative factor (η) for the 355 

different cooperator strategies. The incipient cognitive abilities of CRC cooperators make 356 

it possible to prevail under much worse conditions. Red circles show the concentration of 357 

CRC cooperators when the donations are given proportional to the payoff from the 358 

groups, while blue squares show the results of the traditional case (UUC or, equivalently, 359 

UCC), where the donations are shared equally. We used a square lattice of size 360 

Z=100x100 as an example of a homogeneous interaction structure, with nearest neighbor 361 

(von Neumann) interactions (k=4) and with periodic boundary conditions. 362 

363 
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Figure 3. Cooperation level with scale-free networks as interaction structures. The 364 

different symbols show the fraction of cooperators with different model setups as a 365 

function of the normalized multiplicative factor (η). For heterogeneous, scale-free 366 

networks, η is calculated using the average connectivity (<k>=4) of the graph. Blue 367 

squares stand for the UUC cooperators, green triangles for the UCC cooperators, while 368 

red circles indicate the CRC cooperators. The definition of the strategies is given in the 369 

Methods. Scale-free networks (size of Z=1000 and average degree of <k>=4) were 370 

generated using the Barabási-Albert algorithm (Barabási and Albert, 1999). 371 

Figure 4. Robustness against defector inflow on scale-free networks. Color codes 372 

show the cooperator concentration for different defector inflow rates as a function of η. 373 

After a transient period, a given amount of players were randomly replaced by defectors 374 

in every generation and the concentration values were calculated during the subsequent 375 

104 generations under continuous defector inflow. The left panel (4A) displays the results 376 

for the case when cooperators share their donations equally (UCC), while the right panel 377 

(4B) shows them for the more complex, reactive cooperator strategy (CRC). CRCs are 378 

more robust against the invasion of a minority of free-riders, specially for large η and 379 

defectors inflow rates. 380 

Figure 5. Wealth distribution in fully cooperative populations for the different 381 
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cooperative strategies. Red bars stand for the cognitive cooperator strategy (CRC) while 382 

striped bars show the distribution for the “equal” cooperators (UCC). CRC cooperators 383 

lead to less poor and more rich individuals. Both distributions were obtained from an 384 

average over 10 different network realizations with a size of Z=103. 385 

386 
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Highlights:  387 
 388 
 389 

• We study the evolution of cooperation in the framework of Public Goods Games. 390 

• Cooperative players are able to distribute their donations to their liking. 391 

• Directed investments greatly enhance cooperation on homogeneous graphs. 392 

• Established cooperation is robust against the invasion of free-riders. 393 

394 
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Fig. 1 395 
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Fig. 2 398 
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Fig. 3 401 
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Fig. 5 407 
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