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In this article, we test a variant of the Sapir-Whorf Hypothesis in the area of complex network theory. This is done by analyzing social ontologies as a new resource for automatic language classification. Our method is to solely explore structural features of social ontologies in order to predict family resemblances of languages used by the corresponding communities to build these ontologies. This approach is based on a reformulation of the Sapir-Whorf Hypothesis in terms of distributed cognition. Starting from a corpus of 160 Wikipedia-based social ontologies, we test our variant of the Sapir-Whorf Hypothesis by several experiments, and find out that we outperform the corresponding baselines. All in all, the article develops an approach to classify linguistic networks of tens of thousands of vertices by exploring a small range of mathematically wellestablished topological indices.

Introduction

This article presents an approach to automatic language classification based on complex network theory [START_REF] Newman | The structure and function of complex networks[END_REF][START_REF] Ferrer I Cancho | Patterns in Syntactic Dependency-Networks[END_REF][START_REF] Mehler | Large Text Networks as an Object of Corpus Linguistic Studies[END_REF]. It explores the topologies of social ontologies as part of Wikipedia to get a new data source of genealogical classification. In so doing, the article tests a variant of the Sapir-Whorf Hypothesis (SWH) by means of a network-theoretical approach. It tackles the question, whether structural similarities of social ontologies correspond to family resemblances of the underlying languages.

Generally speaking, the SWH states that language structure imprints on cognitive structure [START_REF] Whorf | Language, Thought, and Reality: Selected Writings of Benjamin Lee Whorf[END_REF][START_REF] Lucy | Language Diversity and Thought. A reformulation of the linguistic relativity hypothesis[END_REF]. If this principle of linguistic relativity is true, then the usage of similar languages should result in similar conceptual structures.
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Therefore, conversely, conceptual structures should be indicative of family resemblances of the languages in which they are manifested. According to our network-theoretical approach, we additionally hypothesize that these resemblances can be deduced from topological similarities of conceptual structures.

To test the SWH, we explore conceptual structures in terms of social ontologies as a sort of linguistic network in which vertices denote terminological units while edges stand for terminological relations of subordination [START_REF] Sowa | Knowledge Representation: Logical, Philosophical, and Computational Foundations[END_REF]. This approach is indispensable as social ontologies are to date the only access point to large scale conceptual structures in numerous languages of various families. 1As these systems are based on terminological relations of subordination according to the wiki principle [START_REF] Leuf | The Wiki Way. Quick Collaboration on the Web[END_REF], we speak of social ontologies as instances of social tagging [START_REF] Mika | Descriptions of Social Relations[END_REF], which extend the range of terminological ontologies [START_REF] Sowa | Knowledge Representation: Logical, Philosophical, and Computational Foundations[END_REF].

Note that we do not use the notion of a social ontology in terms of philosophy [START_REF] Searle | Social Ontology. Some Basic Principles[END_REF], nor in the sense that a social ontology is an ontology of social entities. In contrast to this, the attribute 'social' relates to the wiki principle by which the ontologies under consideration are generated. That is, social ontologies as manifested by the category systems of Wikipedia are non-automatically, manually generated by their users according to guidelines 2 which may vary between different languages.

Generally speaking, a social ontology emerges as a solution to a coordination problem among large groups of interacting agents [START_REF] Bickhard | Social Ontology as Convention[END_REF]. This relates to the sharing of a collaboratively-structured, dynamically-growing universe of semantic units [START_REF] Steels | Collaborative tagging as distributed cognition[END_REF]. Social ontologies as exemplified by the category system of Wikipedia [START_REF] Voss | Collaborative thesaurus tagging the Wikipedia way[END_REF] manifest the output of a kind of distributed cognition [START_REF] Hollan | Distributed cognition: toward a new foundation for human-computer interaction research[END_REF], which is distributed among agents who collaboratively generate and structure certain fields of knowledge. By utilizing social ontologies as a resource of language classification, we specify the general notion of cognition in the formulation of the SWH as that of distributed cognition. As a consequence, we arrive at a variant of the SWH, which states that language structure imprints on distributed cognition as manifested by social ontologies so that their topologies are indicative of the corresponding language families. We present a series of experiments to test this hypothesis.

The article is organized as follows: Section 2 brings our variant of the SWH in line with research on this hypothesis. Related approaches to language classification are discussed in Section 3. Further, Section 4 informs about the corpus of social ontologies explored in this study. Our method to formalize these ontologies, to quantify their topology, and to automatically classify them is presented in Section 5. Based on that, Section 6 tests our target hypotheses and discusses our findings. Finally, Section 7 gives a conclusion.
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Towards a Variant of the Sapir-Whorf Hypothesis

Few ideas have caused as much controversy and debate in linguistics as the Sapir-Whorf Hypothesis. Basically, it states that language influences the way in which we think about reality [START_REF] Whorf | Language, Thought, and Reality: Selected Writings of Benjamin Lee Whorf[END_REF]. One reason for the controversy about this hypothesis relates to its variant in terms of the principle of linguistic determinism, which implies, for example, the impossibility of translations. Notwithstanding this disputable variant, there is a less controversial version in terms of the principle of linguistic relativity. This version claims that language influences thought by acting as a mediator between reality and its conceptual representation [START_REF] Lucy | Linguistic Relativity[END_REF]. Despite this common understanding of language as a mediator, approaches to the SWH are distinguished by their perspective on this role [START_REF] Lucy | Linguistic Relativity[END_REF]:

• Structure-centered approaches start from an observed structural difference between languages (e.g., on the level of single linguistic constructions). They refer to this variation as the explanandum and try to explain it by means of differences in the experience of reality and its conceptual representation (the explanans). One problem with this approach is its uncritical selection of particular languages as quasi-neutral reference points for comparison. Whorf's classical comparison of the verbalization of time in Hopi and English falls into this class of approaches. As a matter of fact, his study is heavily disputed in linguistics [15, see 16 for a discussion]. • Domain-centered approaches focus on a selected domain of experience (explanandum) (e.g., the range of colors [START_REF] Lucy | Language Diversity and Thought. A reformulation of the linguistic relativity hypothesis[END_REF][START_REF] Lenneberg | The language of experience: A study in methodology[END_REF]) to ask how particular languages structure this domain (explanans). Unlike structure-centered approaches, the scope of investigation of the linguistic anticipation of the domain is narrow. In any event, this approach makes it possible to precisely compare large numbers of languages [START_REF]Color Categories in Thought and Language[END_REF]. However, comparisons of this sort are biased by the small range of categories under consideration (e.g., color terms [START_REF] Regier | Color naming reflects optimal partitions of color space[END_REF]) and the selection of the domain-related terms according to linguistic introspection [START_REF] Lucy | Linguistic Relativity[END_REF]. • Finally, behavior-centered approaches try to explain behavioral differences (explanandum) by linguistic differences (explanans). Obviously, these approaches reverse the perspective of their structure-centered counterparts. An example is Whorf's [START_REF] Whorf | Language, Thought, and Reality: Selected Writings of Benjamin Lee Whorf[END_REF] observation of how different readings of the word 'empty' caused accidental fires. In any event, this approach is biased by the difficulty of verifying the salience and strength of the relation between linguistic features and the observed behavior [START_REF] Bowermann | The Origins of children's spatial semantic categories: cognitive versus linguistic determinants[END_REF][START_REF] Levinson | Frames of reference and Molyneux's question: Cross-linguistic evidence[END_REF][START_REF] Lucy | Grammatical categories and the development of classification preferences: a comparative approach[END_REF][START_REF] Boroditsky | Does Language Shape Thought? Mandarin and English Speakers' Conceptions of Time[END_REF].

The present study combines the domain-centered with the structure-centered approach. On the one hand, our method can be regarded as domain-centered since we refer to encyclopedic domains as the data source of language classification. At the same time, we overcome the restriction of traditional domaincentered approaches to small ranges of terms. The reason is that social ontologies cover, in principle, the complete range of encyclopedic knowledge and its terminological manifestation. Additionally, we circumvent the problematic A c c e p t e d M a n u s c r i p t introspection of many domain-centered approaches as we access social ontologies directly without any subjective mediation. Consequently, we depart from domain-centered approaches in two respects. The first is that we do not compare the terms of different ontologies directly, nor do we directly compare the referents of these terms in the corresponding domains. Rather, we follow a strict network-theoretical approach as outlined in Section 1.

This approach is inspired by experiments that demonstrate the expressiveness of exclusively structural classifications of linguistic units [START_REF] Liiv | On Classifying Texts with the Help of Cluster Analysis[END_REF]. Dimter [START_REF] Dimter | Textklassenkonzepte heutiger Alltagssprache[END_REF], for example, asked subjects to guess the type of texts (e.g., weather forecast, obituary announcement etc.) in which all content words had been replaced by random strings. Surprisingly, most test persons guessed these types correctly, obviously by exploring the structure of the texts. 3 In this article, we transfer Dimter's approach to the level of linguistic networks: we explore topologies of networks in contrast to text structures in order to classify language families instead of text types. In this sense, our approach is structure-centered in that we ask, how wikilocutors organize encyclopedic domains depending on the languages that they use. Starting with social ontologies, we look at structural differences of their topologies and ask whether wikilocutors of related languages organize encyclopedic domains in a similar way.

Altogether, this combines to a domain-structure-centered approach since we ask whether wikilocutors of related languages structure encyclopedic domains in a similar way. As our variant of the SWH focuses on distributed cognition, our approach cannot directly be compared with recent findings on neural correlates of the SWH [START_REF] Regier | Color naming reflects optimal partitions of color space[END_REF], which focus on the cognition of single agents. However, as we enlarge the scope of the SWH, this may help to bridge these two areas of cognitive science. Our approach directly relates to a variant of the SWH that has been recently formulated by Nisbett [START_REF] Nisbett | The Geography of Thought. How Asians and Westeners Think Differently[END_REF].

Nisbett's Hypothesis

In his book "Geography of Thought" [START_REF] Nisbett | The Geography of Thought. How Asians and Westeners Think Differently[END_REF], Richard E. Nisbett compares the Western tradition based on the philosophy of Ancient Greek to the Eastern tradition shaped by several other philosophies [28, pp. 12]. He argues that differences in these cultural traditions -as manifested in language -have different influences on the speakers' behaviors. For example, Nisbett observes that Indo-European languages all have expressions for abstract nouns, whereas Chinese does not (e.g., there is no direct translation for 'size' in Chinese, nor does this language have a suffix '-ness' with which to build abstract nouns).
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Nisbett reports a wide range of psycholinguistic experiments in support of his hypothesis. Recent results from other studies concerned with the East-West comparison are referred to in [START_REF] Bowermann | The Origins of children's spatial semantic categories: cognitive versus linguistic determinants[END_REF][START_REF] Levinson | Frames of reference and Molyneux's question: Cross-linguistic evidence[END_REF][START_REF] Boroditsky | Does Language Shape Thought? Mandarin and English Speakers' Conceptions of Time[END_REF][START_REF] Mcdonough | Development of language-specific categorization of spatial relations from pre-linguistic to linguistic stage a preliminary study[END_REF]. 4 The present study tests Nisbett's Hypothesis by means of exploring social ontologies. That is, different social ontologies belonging to a particular cultural group -Western or Eastern -are tested for similarities within the group and in contrast to each other.

In summary, we test two related hypotheses: a variant of the SWH and a variant of the closely related hypothesis of Nisbett. Note that the latter variant is a special case of our variant of the SWH as it focuses on the manifestation of cultural differences in terms of the topologies of social ontologies.

Related Work to Language Classification

Generally speaking, language classification aims to categorize languages by means of their genealogical descent. The basic idea is that languages inherit structural features from a common root so that they can be ascribed to the same family. By measuring different degrees of similarity between languages, a language family tree can be reconstructed (often referred to as glossogeny [START_REF] Hurford | Nativist and functional explanations in language acquisition[END_REF]).

Early lexicostatistical approaches -closely connected to the name of Morris Swadesh -were solely based on calculating differences between the lexical material of pairs of languages [START_REF] Swadesh | Lexico-statistic dating of prehistoric ethnic contacts[END_REF]. The main units of these approaches are so-called cognates. These are pairs of words taken from different languages that have the same meaning, coincide in their phonetic/phonological form, and originate from a common ancestor in a (hypothetical) parental language. The degree of relatedness of two languages is then calculated by the number of shared cognates which occur in a limited list of pairs of core words that are synonymous in both languages. In the beginning, the decision of whether or not two words were phonetically similar was made based on intuition [START_REF] Swadesh | Lexico-statistic dating of prehistoric ethnic contacts[END_REF][START_REF] Gudschinsky | The ABC's of Lexicostatistics (Glottochronology)[END_REF]. Subsequently, algorithms were developed to formalize these judgments [e.g., [START_REF] Oswalt | The Detection of Remote Linguistic Relationships, Studies in the Humanities and Verbal[END_REF][START_REF] Covington | An algorithm to align words for historical comparison[END_REF]. In many cases, these algorithms used the character-based edit distance of words [START_REF] Levenshtein | Binary codes capable of correcting deletions, insertions, and reversals[END_REF][START_REF] Wagner | The String-to-String Correction Problem[END_REF], sometimes enhanced by phonetic criteria [38, see 39 for a survey on phonetic string matching].

According to Swadesh, the list of core word forms is the primary access point to what he calls the fundamental vocabulary of a language, which supposedly covers the part of the lexicon that is mostly independent from cultural influences. Following an assumption made by Sapir, that "[the] greater the degrees of linguistic differentiation within a stock, the greater is the period of time that must be assumed for the development of such differentiations" [40, p.76], Swadesh [START_REF] Swadesh | Lexico-statistic dating of prehistoric ethnic contacts[END_REF] proposes that this vocabulary changes at a roughly constant rate over time. This hypothesis is the starting point for the reconstruction of language family trees complemented by information about the probable time of language divergence (in the style of carbon-14 dating in archaeology). Even A c c e p t e d M a n u s c r i p t though Swadesh's universal glottochronological approach was quickly disputed [START_REF] Bergsland | On the Validity of Glottochronology[END_REF][START_REF] Embleton | Statistics in Historical Linguistics[END_REF], it led to a better understanding of language change and motivated further studies on its variation rate. For example, [START_REF] Pagel | Frequency of word-use predicts rates of lexical evolution throughout Indo-European history[END_REF] show a significant variation based on the frequency of word use: the more frequently a word is used in a language, the slower it evolves over time.

The existence of loanwords is another effect that takes part in lexicostatistics and influences the variation of change rates. Besides their inheritance from a common origin, languages can share cognates by borrowing in areal neighborhood. While Swadesh reduces the borrowability of words to the nonfundamental, cultural part of vocabularies (and sorts them out of his core lists), [START_REF] Ellison | Measuring Language Divergence by Intra-Lexical Comparison[END_REF] argue that the borrowability of a word (or a grammatical construction [START_REF] Lieberman | Quantifying the evolutionary dynamics of language[END_REF]) depends on its frequency of use similar to the variation of its change rate. 5Recent models additionally account for such geographical effects [START_REF] Warnow | A Stochastic model of language evolution that incorporates homoplasy and borrowing[END_REF].

Despite the success of glossogenetic reconstructions by lexicostatistics, the validity of inter-lexical comparison for language classification and family tree reconstruction is controversial. This is not only due to the lack of additional linguistic features (such as morphological or syntactical aspects), but also in respect to a debated incomparability of phonetic forms throughout languages: Cognates must be objectively transcribed into a common phonetic space and it is highly questionable whether such a common space exists or not [see 48 for a discussion].

Consequently, newer approaches concentrate on intra-rather than interlanguage comparisons. These approaches generate profiles of languages in order to calculate their dissimilarity. They compare, for example, confusion probability matrices (as a kind of intra-language edit-distance matrix) [START_REF] Ellison | Measuring Language Divergence by Intra-Lexical Comparison[END_REF], n-gram profiles [START_REF] Cavnar | N-Gram-Based Text Categorization[END_REF], or typological feature vectors [START_REF] Daumé | Non-Parametric Bayesian Areal Linguistics[END_REF]. Finally, approaches to networkbased language profiles calculate dissimilarities of languages by means of topological differences. This relates, for example, to explorations of phoneme networks [START_REF] Mukherjee | Emergence of community structures in vowel inventories: an analysis based on complex networks[END_REF] or so-called Global Syntactic Dependency Networks (GSDNs) [START_REF] Ferrer I Cancho | Patterns in Syntactic Dependency-Networks[END_REF][START_REF] Pustylnikov | Typology by means of Language Networks. Enhancing Typological Methods by an Integrated View on Language[END_REF].

A central advantage of the network-theoretical approach as followed here is that it disposes of direct comparisons of lexical units or typological features. Rather, it opens the door to topological information as a novel resource for language classification. Thus, with our approach to language classification based on comparisons of the structures of ontologies, we aim to avoid known shortcomings of lexicostatistics with a simple, yet comprehensive model.

A Corpus of Social Ontologies

In order to study our variant of the SWH and its descendant in the form of Nisbett's Hypothesis, we explore a corpus of social ontologies from Wikipedia, which is henceforth called Social Ontology Corpus (SOC). Table 1 and Wikimedia codes of 160 Wikipedias (underlined) whose social ontologies have been analyzed in this article.

They have been selected because their largest weakly connected component contains at least 100 vertices (see http://meta.wikimedia.org/wiki/List_of_Wikipedias/sortable). aa ab af ak als am an ang ar arc as ast av ay az ba bar bat-smg bcl be be-x-old bg bh bi bm bn bo bpy br bs bug bxr ca cbk-zam cdo ce ceb ch cho chr chy co cr crh cs csb cu cv cy da de diq dsb dv dz ee el eml en eo es et eu ext fa ff fi fiu-vro fj fo fr frp fur fy ga gan gd gl glk gn got gu gv ha hak haw he hi hif ho hr hsb ht hu hy hz ia id ie ig ii ik ilo io is it iu ja jbo jv ka kaa kab kg ki kj kk kl km kn ko kr ks ksh ku kv kw ky la lad lb lbe lg li lij lmo ln lo lt lv map-bms mdf mg mh mi mk ml mn mo mr ms mt mus my myv mzn na nah nap nds nds-nl ne new ng nl nn no nov nrm nv ny oc om or os pa pag pam pap pdc pi pih pl pms ps pt qu rm rmy rn ro roa-rup roa-tara ru rw sa sah sc scn sco sd se sg sh si simple sk sl sm sn so sq sr srn ss st stq su sv sw szl ta te tet tg th ti tk tl tn to tokipona tpi tr ts tt tum tw ty udm ug uk ur uz ve vec vi vls vo wa war wo wuu xal xh yi yo za zea zh zh-classical zh-min-nan zh-yue zu the Eurasian-centered distribution of the releases of Wikipedia that have been analyzed here. This corpus has been analyzed in two ways:

• The corpus of 160 social ontologies (see Table 1) of at least 100 vertices in their largest weakly connected component has been analyzed in order to study the separability of various topological indices (see Section 5.2). This has been done to select those indices which best separate the different ontologies only by virtue of their topology. The ontologies in this corpus range from a minimum order of 103 vertices and a minimal size of 102 arcs to a maximum order of 102,129 vertices and a maximum order of 205,391 arcs (see Table 3). These 160 ontologies have on average 8,348.9 vertices (order) and 14,634 arcs (size). 6 To the best of our knowledge, this is the largest corpus of social ontologies that has been analyzed so far.7 • Based on this corpus, we have selected several subcorpora of Western and Eastern languages in order to perform experiments in genealogical language classification according to our variant of the SWH. With the exception of the English Wikipedia, the elements of these subcorpora have been selected according to their size: for a given language family, ontologies were selected whose order is of at least 1,000 vertices. See Table 2 for a complete listing of the experiments based on these subcorpora.

A Network Model of Ontology-Based Language Classification

Our variant of the SWH states that the structure of social ontologies is indicative of family resemblances of the underlying languages. In this section,
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Table 2: The list of 46 social ontologies considered in 7 experiments E0-E6 (Section 6) on language classification including the pilot study E0. The table reports the Wikimedia codes of the ontologies together with the names of the corresponding languages, their mapping onto language families as well as the order (#vertices) and size (#arcs) of the ontologies. Finally, columns E0-E6 report which languages have been considered in which experiment. we make this hypothesis a measurable and testable property. This is done in four steps:

Step 1. by specifying the formal class of graphs spanned by social ontologies;

Step 2. by identifying topological characteristics of this class of graphs;

Step 3. by representing social ontologies by vectors of these topological indices;

Step 4. by using these feature vectors as input to automatic classification.

The first two steps relate to our representation model of social ontologies and are explained in Section 5.1 and 5.2, respectively. The last two steps are covered by cluster analysis. As the features in use denote topological indices of networks, we subsume these two steps under the notion of quantitative network analysis (see Section 5.3).
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A c c e p t e d M a n u s c r i p t Table 3: Some statistical characteristics of the Social Ontology Corpus (SOC) analyzed here: height is the eccentricity [START_REF] Harary | Graph Theory[END_REF] of the main category of the corresponding social ontology, width is the maximum number of vertices with equal distance to the root and level is the corresponding distance for which this maximum is reached. 

Social Ontologies as Directed Acyclic Graphs

Figure 1 exemplifies the kind of relations which form the skeleton of social ontologies. It shows an outline of the category system of the English Wikipedia in which the category mammal is subordinated to the categories vertebrates, tetrapods, and synapsids, while it subordinates, for example, the categories bats, primates and fur. This example shows that in social ontologies, subordination does not necessarily coincide with hyperonymy relations (fur is not a kind of mammal ). Figure 1 also shows that social ontologies may include cycles: in the German Wikipedia, the category Druckerzeugnis [print product] is subordinated to Buch [book], which is subordinated to Bibliothekswesen [librarianship] which is finally subordinated to Druckerzeugnis. Figure 1 also shows a larger cyclic structure as part of the social ontology of the Turkish Wikipedia. Obviously, ontologies of this sort do not span trees, but a certain class of more general graphs as exemplified in Figure 2. It shows three Wikipedia-based category systems of approximately the same size. As exemplified by these digraphs, social ontologies do not span trees, but graphs with a kernel hierarchical structure that is superimposed by arcs which add a graph-like structure. Figure 2 also hints at the fact that the widths of social ontologies grow more than their depths. This is shown in Figure 3 (left), which reports the ratio of depth and width of the 160 ontologies in our SOC. Obviously, for a growing order (i.e., number of vertices) this ratio is close to zero.

Figure 4 presents a schematic account of this class of graphs. From left to right we observe an increase in structural complexity: while graph (b) generalizes tree (a) by graph-inducing downward, upward and lateral arcs, graph (c) additionally possesses a second source [START_REF] Bang-Jensen | Digraphs. Theory, Algorithms and Applications[END_REF] called . It is this third graph that best captures the scenario of social ontologies, which may contain multiple sources, cycles and even loops. However, social ontologies are neither trees, nor acyclic or arbitrary graphs. Rather, they form a class in the range of these extreme cases: graphs which are spanned around a kernel hierarchy that build nearly acyclic graphs [START_REF] Mehler | Structural Similarities of Complex Networks: A Computational Model by Example of Wiki Graphs[END_REF]. That is, social ontologies contain cycles, but not very many. This is shown in Figure 3 (right), which reports the number of vertices that belong to cycles in relation to the order of the ontologies in our SOC. Obviously, this ratio is mostly near but not equal to zero. To give a formal definition of this class of graphs we extend the notion of a directed generalized tree [START_REF] Mehler | Generalized Shortest Paths Trees: A Novel Graph Class Applied to Semiotic Networks[END_REF][START_REF] Dehmer | Graph-theoretical Characterizations of Generalized Trees[END_REF], which is, in turn, based on the notion of a tree. The reason to proceed in this way is that while Directed Acyclic Graphs (DAG) generalize the notion of a tree, social ontologies have a graph-like structure which extends the one of generalized trees as they are spanned around a kernel DAG-like structure. It is necessary to consider this class of graphs in formal terms as it constrains the set of network indices that actually characterize social ontologies. Definition 1 and 2 provide this formal account.

Definition 1. Let = ( , ′ , ) be a directed tree rooted in ∈ . Further, for any vertex and

∈ let = ( 0 , 1 , 1 , . . . , -1 , , ), 0 = , = , ∈ ′ , in( ) = -1 , out( ) = , 1 ≤ ≤ ,
∈ 1 = ′ (kernel arcs) ∈ 2 ⊆ { | in( ) = ∈ ∧ out( ) = ∈ ( ) ∖ { }} (upward arcs) ∈ 3 ⊆ { | in( ) = ∈ ( ) ∖ { } ∧ out( ) = ∈ } (downward arcs) ∈ 4 ⊆ { | in( ) = out( ) ∈ } (reflexive arcs) ∈ 5 ⊆ 2 ∖ ( 1 ∪ 2 ∪ 3 ∪ 4 ) (lateral arcs)
is said to be generalized by its reflexive, lateral, up-and downward arcs.

Graph (b) in Figure 4 exemplifies a generalized tree. Graphs of this sort are quite common in web-based communication [START_REF] Mehler | Structure Formation in the Web. A Graph-Theoretical Model of Hypertext Types[END_REF]. They provide a blueprint for defining generalized nearly acyclic graphs (see Figure 4. ) that naturally extend generalized trees in the sense of the following definition. it exists, and write ∕ ∈ P( ′ ), if not. Additionally, we demand that ′ does not contain lateral arcs that connect vertices reachable from different sources:

∀ , ∈ : ( ∕ = ∧ , ∈ P( ′ ) ∧ , ∕ ∈ P( ′ )) ⇒ ¬∃( , . . . , ) ∈ P( ′ ). A Generalized Acyclic Graph = ( , 1..5 , ) based on the DAG ′ is a graph such that 1..5 = ∪ 5 =1 , ∀1 ≤ < ≤ 5 : ∩ = ∅ and 8 ∈ 1 = ∈ ′ ∈ 2 ⊆ { | ∃ ∈ ∃ ∈ P( ′ ) : in( ) = ∈ ∧ out( ) = ∈ ( ) ∖ { }} ∈ 3 ⊆ { | ∃ ∈ ∃ ∈ P( ′ ) : in( ) = ∈ ( ) ∖ { } ∧ out( ) = ∈ } ∈ 4 ⊆ { | in( ) = out( ) ∈ } ∈ 5 ⊆ 2 ∖ ( 1 ∪ 2 ∪ 3 ∪ 4 )
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A c c e p t e d M a n u s c r i p t is called a Generalized Nearly Acyclic Graph (GNAG) if its number of vertices that enter into cycles is small in relation to its order, that is, if

0 < /| | ≪ 1.
Obviously, Figure 3 (right) shows that social ontologies are indeed characteristic in that their number of vertices that enter into cycles is close (but not necessarily equal) to 0.

In order to capture the structure of social ontologies according to this graph model we need to go beyond network theory, which deals with less restricted graphs. In short, we may explore social ontologies as networks because of their cyclicity. However, because of their kernel hierarchy, we may explore them as acyclic graphs or even as trees. This plurality is captured by our quantitative model of social ontologies.

Topological Fingerprints of Directed Acyclic Graphs

In this section we present our approach to characterizing social ontologies by topological indices of their graph model. As explained in the last section, we capture both the network-and tree-like structures of social ontologies in a single model. This is done by taking fingerprints of GNAGs by means of four classes of topological indices: Class 1. Network Theoretical (NT) measures: We utilize the apparatus of scalefree networks [START_REF] Newman | The structure and function of complex networks[END_REF]. In a pilot study (see Section 6.1), we test the hypothesis that languages can be classified into families based on topological indices of dependency networks as invented by [START_REF] Ferrer I Cancho | Patterns in Syntactic Dependency-Networks[END_REF]. In line with this approach, we test whether the same indices indicate the membership of social ontologies to language families. We test this for the cluster coefficients ws [START_REF] Watts | Collective Dynamics of 'Small-World' Networks[END_REF], br [START_REF] Bollobás | Mathematical Results on Scale-Free Random Graphs[END_REF] and their weighted counterparts ⟨ ( )⟩ and ⟨ ns ( )⟩ [START_REF] Serrano | Correlations in weighted networks[END_REF]. Further, we consider the diameter together with the average geodesic distance ⟨ ⟩, the average degree, Newman's assortativity index [START_REF] Newman | The structure and function of complex networks[END_REF] and the expected ⟨ ⟩ and ws of the random and regular graphs of equal order and size. 9 All in all, we consider 12 indices in Class 1 -see [START_REF] Mehler | Structural Similarities of Complex Networks: A Computational Model by Example of Wiki Graphs[END_REF] for a thorough exemplification of these indices in the context of linguistic networks. Class 2. Information Theoretical (IT) Measures: In addition, we investigate a range of measures that have been invented in order to describe the information content of graphs and processes of information flow based on them [see 54 for a first introduction into this topic]. This relates to socalled measures of graph entropy [START_REF] Dehmer | A Natural History of Graph Entropy[END_REF]. The idea behind this approach is more related to Nisbett's Hypothesis, which states that information A c c e p t e d M a n u s c r i p t content tells us something about the shareability [START_REF] Freyd | Shareability: the social psychology of epistemology[END_REF] of knowledge systems. Therefore, we direct our attention to this class of topological indices. Further, a pre-study has shown that compactness and centrality measures are informative about differences of linguistic networks like such as wiki graphs [START_REF] Mehler | Structural Similarities of Complex Networks: A Computational Model by Example of Wiki Graphs[END_REF]. This includes the compactness measure of hypertext theory [START_REF] Botafogo | Structural Analysis of Hypertexts: Identifying Hierarchies and Useful Metrics[END_REF] as well as graph-related centrality measures such as graph, degree and closeness centrality, which have been successfully applied in NLP [START_REF] Feldman | The Text Mining Handbook. Advanced Approaches in Analyzing Unstructured Data[END_REF]. As centrality measures are primarily based on the notion of geodesic distance, they relate to graph entropy measures so that we commonly refer to this group as Information Theoretical (IT) measures. All in all, we experiment with 45 indices in Class 2 as further described in Section 5.2.1. Class 3. GNAG-based Measures: We additionally utilize a range of measures that have been developed in order to capture the topological specifics of social ontologies in contrast to terminological and formal ontologies [START_REF] Mehler | A Quantitative Graph Model of Social Ontologies by Example of Wikipedia[END_REF]. This class of measures is sensitive to the kernel hierarchical structure of GNAGs and, therefore, goes beyond network-theoretical indices (of Class 1). We experiment with 52 indices in Class 3 as described in Section 5.2.2. Class 4. Measures related to a Sensitivity Analysis (SA): As a fourth class of features, rather than beginning a new measurement, we instead undertake a deterministic selection among all 109 = 12 + 45 + 52 topological indices described so far. That is, we compute for each index how well it differentiates among all 160 social ontologies in our SOC (see Section 4). This is done by means of the sensitivity measure ( ) of Konstantinova et al. [START_REF] Konstantinova | Applications of information theory in chemical graph theory[END_REF] for a topological index :

( ) = | | -| | | | ∈ [0, 1] (1) 
where is the set of networks from the SOC that cannot distinguish. These are networks for which there is at least one other network in that is mapped onto the same number by . As we know that all ontologies in are pairwise different, we ask whether a candidate topological index accounts for this difference by mapping the networks onto different numbers. Indices for which ( ) → 0 are called degenerated [START_REF] Konstantinova | Applications of information theory in chemical graph theory[END_REF][START_REF] Dehmer | On entropy-based molecular descriptors: statistical analysis of real and synthetic chemical structures[END_REF]. The results of computing for our indices can be seen in Figure 5. It shows that 34 of 109 indices distinguish exactly 100% of the networks correctly. These 34 indices are collected in Class 4 as they are minimally degenerated in terms of . 10 As an alternative to this subset, we consider the set of indices that are degenerated only by 5%. These are indices, which distinguish at least 95% of the networks in our reference SOC. The measures that fall into the first class have been extensively discussed in the literature [see, e.g., 1, 71-73 and 67 for thorough introductions]. In this article, we concentrate on a short presentation of measures in Class 2 and 3.
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Graph Entropy

The literature discusses a wide range of measures of graph entropy [START_REF] Dehmer | A Natural History of Graph Entropy[END_REF]. One approach to apply the notion of entropy to a vertex ∈ in a graph = ( , ) is to say that ( ) codes information about the topology of from the perspective of : if the geodesic distances from to the other vertices of are uniformly distributed, ( ) is high. In this case, we are little determined in entering the neighborhood of , when randomly selecting as an entry point to . An extreme case is a star graph around the center . In case of a social ontology this is tantamount to a very flat, but broad ontology. If, in contrast to this, the distances are non-uniformly distributed, so that ( ) is low, we are more determined in traversing the neighborhood of , when selecting as our starting point. Now, an extremal case would be a line graph starting from . In case of a social ontology this is tantamount to a very deep, but narrow ontology. Dehmer [START_REF] Dehmer | Information Processing in Complex Networks: Graph Entropy and Information Functionals[END_REF] has generalized the vertex-related entropy to arrive at a class of entropy measures of graphs -we use its variant from [START_REF] Dehmer | On entropy-based molecular descriptors: statistical analysis of real and synthetic chemical structures[END_REF]:

c ( ) = - ∑ ∈ c ( ) ∑ ∈ c ( ) log ( c ( ) ∑ ∈ c ( ) ) (2) 
where

c ( ) = ( ) ∑ =1 | ( )| ; ( ) = { ∈ | ( , ) = } (3) 
( , ) is the geodesic distance of and in , c ′ = ( 1 , . . . , ( ) ) is a vector of weights ≥ 0, ∑ > 0, used to bias the so-called -spheres , and 2. In this article, we experiment with exponentially and logistically decaying weights. This is done in order to simulate processes of growth and of disintegration of spreading activation [START_REF] Gärdenfors | Conceptual Spaces[END_REF]. In this way, we obtain a scheme for experimenting with entropy-related measures where a genetic algorithm is used to finally select those measures that are most characteristic of ontologies. All in all, we experiment with 45 entropy, centrality and compactness-related measures as elements of Class 2 indices [see 57, 74 for thorough discussions of them].

Imbalance

Social ontologies have been contrasted with classification schemes (e.g., the DDC), terminological ontologies (e.g., WordNet), and formal ontologies (e.g., the Suggested Upper Merged Ontology) [START_REF] Sowa | Knowledge Representation: Logical, Philosophical, and Computational Foundations[END_REF]. Using a small range of topological indices, the membership of an ontology to one of these classes has been correctly predicted in 93% of the ontologies considered [START_REF] Mehler | A Quantitative Graph Model of Social Ontologies by Example of Wikipedia[END_REF]. As these indices are indicative of different types of ontologies, they may also be indicative of different families of social ontologies. We aim to test this assumption by utilizing the approach of [START_REF] Mehler | A Quantitative Graph Model of Social Ontologies by Example of Wikipedia[END_REF], which basically explores the imbalance of the graphs spanned by ontologies as follows: let = ( , ) be a directed graph and ∈ be a distinguished vertex (e.g., the one that denotes the main category in the ontology represented by ). Further, let : 1 ( ) → [0, 1] be an interval-scaled function such that ∀ ∈ { 1 , . . . , } = 1 ( ) : ( ) ≥ 0 and ∑ =1 ( ) = 1 so that we get a feature vector q( ) = ( ( 1 ), . . . , ( )

) ′ = ( 1 , . . . , ) ′ (4) 
as input to the relative entropy to measure the balance of from the point of view of with respect to :

RH (q( )) = (q( )) log 2 = - ∑ =1 log 2 log 2 ∈ [0, 1] (5) 
Finally, we define a measure of imbalance of in induced by by means of the redundancy measure [START_REF] Cover | Elements of Information Theory[END_REF]:

( ) = (q( )) = 1 -RH (q( )) ∈ [0, 1] (6) 
Equation 6 gives a scheme for measuring the imbalance of a digraph from the point of view of the distinguished vertex according to the attribute . By varying this attribute we get alternative measures of imbalance of . Following [START_REF] Mehler | A Quantitative Graph Model of Social Ontologies by Example of Wikipedia[END_REF], we consider the depth, width, level, order, length (the number of leafs within the scope of the focal node), complexity (the number of immediate constituents) and dependency (as a function of the number of vertices subordinated in a treelike structure [START_REF] Altmann | Allgemeine Sprachtypologie[END_REF]) as different attributes. Taking the main category as the distinguished vertex, these attributes allow for characterizing ontologies with respect to their intricacy of design, richness of detail and related structural Page 17 of 34 A c c e p t e d M a n u s c r i p t attributes. We experiment with 52 such Class 3 indices [see 68 for a thorough discussion of them]. We expect that social ontologies that belong to different language families are quite distinguishable by these attributes as they reflect the specifics of the class of graphs instantiated by these ontologies, that is, GNAGs.

Quantitative Network Analysis

Using the structural information captured by topological indices of social ontologies, we can classify this sort of networks by means of cluster analysis. More specifically, we apply Quantitative Network Analysis (QNA) [START_REF] Mehler | Structural Similarities of Complex Networks: A Computational Model by Example of Wiki Graphs[END_REF][START_REF] Mehler | A Quantitative Graph Model of Social Ontologies by Example of Wikipedia[END_REF] in order to learn classes of social ontologies by virtue of their structure, while disregarding any content units (i.e., names of vertices). QNA basically integrates vector representations of complex networks with hierarchical cluster analysis. The cluster analysis is complemented by a subsequent partitioning, where the number of classes is determined in advance. In this sense, QNA is semi-supervised. We experiment with single, complete, average, and weighted linkage, while we use the Mahalanobis distance, the (standardized) Euclidean distance and two distance measures based on Pearson's correlation coefficient and on the cosine measure, respectively, to compute pairwise object distances.

Roughly speaking, QNA takes the space of input objects together with the parameter space of linkage methods and distance measures to find out the parameter constellation, which best separates the data in terms of the corresponding gold standard [see 57 for a thorough explanation of this approach]. Note that we use -measure statistics (i.e., the harmonic mean of precision and recall) to evaluate our classification results. 11 Note also that QNA integrates a genetic search of the best performing subset of topological indices that maximizes the -score of the corresponding classification. As a matter of fact, this search tries to find the optimal feature set, but may also stop at a local maximum. In order to handle correlations between different indices and to scale down the parameter space, we use the Mahalanobis distance whenever possible.

Experimentation

A Pilot Study: Network-Based Classification of Languages

In this section, we present a pilot study to automatically classify languages into genealogical groups based on syntactic networks. We do that to get insights into the possibilities of network-based language classification in general. This pilot study serves as a linguistically well-motivated basis of comparison to evaluate the outcomes of our social-ontology-based approach. In order to provide this basis of comparison, we use a syntactic resource to generate the networks in this pre-test. This relates to so-called Global Syntactic Dependency Networks (GSDN) as introduced by Ferrer i Cancho et al. [START_REF] Ferrer I Cancho | Patterns in syntactic dependency networks[END_REF]. In graph theoretical terms, A c c e p t e d M a n u s c r i p t GSDNs are undirected networks with multiple edges. Vertices of a GSDN represent word forms of a dependency treebank 12 , while edges represent syntactic dependency relations. A GSDN of a particular language is constructed from its corresponding treebank as exemplified in Figure 6. The input treebank is parsed sentence by sentence so that word forms are added as vertices to the target network. Vertices are inserted only once. 13 If in subsequent sentences a vertex (word) appears again as part of a new dependency relation, more edges are added to it (e.g., book in Figure 6).

We construct GSDNs from 12 dependency treebanks as listed in Table 4. In order to test whether GSDNs reflect genealogical differences of languages, we represent them by means of a subset of 24 of the 109 features (see Section 5.2) and make the resulting vectors an input to QNA (see Section 5.3). Our aim is to classify the vectors into three genetic groups (i.e., Slavic, Germanic, and Romanic). In addition, we apply two baseline scenarios to evaluate the goodness of our results. Both scenarios randomly assign languages to one of the three groups. The known-partition-scenario has knowledge about the cardinality of each target class, whereas the equi-partition-scenario assumes an equal size of each group. The computation of the baselines is repeated 1,000 times so that finally their average -scores are considered.

The results of the pilot study are presented in Table 5. Surprisingly, we get a maximum -score of 1, which is produced by using only 8 features as a result of applying a genetic search for the best performing subset of features. language classification by means of GSDNs. However, if we take all 24 features into account, the corresponding -score falls down to 63%, which is still above the corresponding baseline of around 55%. Obviously, some of the features in this set of topological indices bias the classification. On the other hand, a small range of only 8 indices suffices to separate the languages correctly. This subset includes, amongst others, the cluster coefficient of Watts and Strogatz [START_REF] Watts | Collective Dynamics of 'Small-World' Networks[END_REF], the of the power law of the corresponding degree distribution and the centrality measures considered here. 14The dendrogram in Figure 7 shows that although languages are grouped correctly into clusters, the similarities within the cluster do not always coincide with their exact inner-family resemblance. Within the Germanic cluster, for example, Swedish is more related to Dutch than to Danish, which is counterintuitive. However, within the Slavic cluster languages are grouped correctly (i.e., Slovene-Bulgarian are both South-Slavic) -see [START_REF] Pustylnikov | Typology by means of Language Networks. Enhancing Typological Methods by an Integrated View on Language[END_REF] for a thorough discussion of GSDN-based language classifications.

In any event, the results of our pilot study show that network-based language classification is a promising approach. At the same time, an -score of 1 is a high barrier to be mastered by a social-ontology-based approach, which is evaluated next.

Testing the Variant of the Sapir-Whorf Hypothesis: Language Classification based on Social Ontologies

In regards to social ontologies, our version of the SWH contends that language imprints on distributed cognition in such a way that related languages of the same genealogical family are manifested by structurally similar social ontologies (see Section 2). Conversely, our hypothesis implies that unrelated languages, which belong to different genealogical families, result in dissimilar topologies of the corresponding ontologies. We are now in a position to test this hypothesis based on our model of Generalized Nearly Acyclic Graphs (GNAG), their quantitative fingerprints and Quantitative Network Analysis (QNA) (as described in Section 5.1-5.3). We start with a reconstruction of the pilot study in Section 6.1. That is, we refer to exactly the same 12 languages as in experiment E0 (see Tables 5 and2), however, we use GNAGs (as models of social ontologies) instead of GSDNs to obtain a representation model of these languages (see Section 5). This is done to test the expressiveness of GNAGs as input to QNA compared to the more classical approach based on GSDNs. A negative result would mean that the classification based on dependency networks outperforms the one based on social ontologies. The result would even be worse if the latter approach performs as inefficiently as the corresponding baseline scenario. In this case, the similarities of the topologies of social ontologies would tell us nothing about the family resemblances of the corresponding languages.

Table 6 shows that the opposite is true: on the one hand, we obtain the Page 21 of 34

A c c e p t e d M a n u s c r i p t result that the -score of social-ontology-based classifications is on average (.6492) nearly 10% above the corresponding baselines of .553 and .54. Moreover, all three language families are perfectly separated if a search on the best performing subset of topological indices in Class 4 (Sensitivity Analysis -SA) is performed by means of a genetic search algorithm. In this case, we calculate an -score of 1. This highest possible -score is computed by means of 7 features only. These are Newman's assortativity index, the graph centrality, the entropy of the standardized closeness centrality, the entropy (variance) of the (cumulative) distribution of geodesic root-related distances, the spheral graph entropy of Bonchev [START_REF] Bonchev | Information Theoretic Indices for Characterization of Chemical Structures[END_REF], and Dehmer's [START_REF] Dehmer | Information Processing in Complex Networks: Graph Entropy and Information Functionals[END_REF] graph entropy based on linearly decreasing weights. Figure 8 displays the dendrogram, which results from performing experiment E1 by means of these indices: while the group of Romanic languages seems to be plausibly ordered, the Germanic and the Slavic group are not. Interestingly, this dendrogram groups Dutch and Swedish near to each other just as the GSDN-based dendrogram in Figure 7 (although in both cases this is counterintuitive from the point of view of genealogy). In any event, an -score of 1 is beyond what could be initially expected. As one cannot perform better than by an -score of 1, this is an argument in support of our approach. Note that if we take all 34 indices of Class 4 into account, the -score falls to 52% (below both baselines). Once again, there are many features in this set of indices which negatively affect the separation of the focal classes. This observation is recurrent (in all experiments E0-E6) so that sensitivity analyses are an indispensable ingredient of the sort of classification considered here.

Though on a lower level, the same relation (between the full range of indices and its best performing subset) appears in case of Class best performing subset of topological indices, we get an -score of around 69% in the case of GNAG-related indices and of 67% in the case of IT-related indices.

If we do the same in the case of NT-related indices of Class 1, we get a much higher -score of more than 83%. That is, by exploring only five indices, we classify up to 83% (or ten of twelve languages) correctly. These NT-related features are not the usual suspects: once again, this is Newman's assortativity index [START_REF] Newman | The structure and function of complex networks[END_REF] together with the expected geodesic distance in corresponding regular and random graphs of equal order, the diameter, and the (weighted) cluster coefficient [START_REF] Serrano | Correlations in weighted networks[END_REF].

Obviously, this is a very compact and space efficient representation of structures as complex as social ontologies. Thus, it is a good choice to use this feature model if time and space are critical parameters. However, if one needs to combine space efficiency with classification accuracy, then the 7 SA-related indices of Class 4 are the first choice. Note that if we consider all features in a single experiment without any sensitivity analysis, the -score is half as high as in case of the best classifier and even falls below the baseline.

To summarize our findings in experiment E1, we do not falsify our variant of the SWH, but retain it until any later falsification. In other words, the languages considered in experiment E1 (see Table 6 and2) are distinguished by the topologies of their corresponding social ontologies such that they are classifiable by QNA into 3 families as predicted by our version of the SWH.

The situation is less obvious, if we enlarge the set of languages to be classified. Table 7 and 8 report continuations of experiment E1 by experiments E2 and E3 (for the target languages see Table 2). In these cases, if we classify 28 languages into 3 families according to the similarities of the topologies of their ontologies: here, the highest -score falls to 78% and, further, to 69%, if we classify 38 languages as listed in Table 2. In both cases, a genetic search of the best A c c e p t e d M a n u s c r i p t performing subset of SA-related indices guarantees the highest -scores. Tables 7 and8 also show that IT-and GNAG-related indices perform above 70% and 65%, respectively, where GNAG-related indices perform better than IT-related indices in experiment E2 and E3, although they are outperformed by SA-related features. From the point of view of linguistic modeling, this supports a network model beyond the classical approach in network theory with its focus on simple graphs. In any event, the baseline scenarios are outperformed in experiment E2 and E3 by all approaches considered here -as well as by their average -score. Note that GNAG-and IT-related indices are better performing in experiment E2 compared to experiment E1, although the set of languages considered in E1 is a subset of those classified in E2. At first glance, this result is surprising. However, it is explained by the usage of a genetic algorithm to search the best performing subset, which does not necessarily output the optimal subset. Thus, our finding may indicate the existence of better performing subsets in experiment E1 than those we found so far.

From the point of view of experiment E2 and E3, we obtain a positive and a negative result: On the one hand, we still have reasonably large -scores above the baselines. However, if we compare these findings with experiment E1 (see Table 6), we notice a large loss in -score due to an enlargement of the set of languages being classified. Thus, our approach is still informative about genealogical resemblances of the languages under consideration, but to a lesser degree than expected according to experiment E1 and the results reported by Table 6. In any event, our findings are still higher than what is expected by chance. Note also that it is reasonable to expect better results if we continue to study more expressive and separable topological indices. Again, the values in Table 7 and 6).

Testing Nisbett's Hypothesis

Our findings regarding the variant of the SWH do not tell us anything about the validity of Nisbett's Hypothesis (see Section 5.3), quite simply as experiments E1-E3 only consider Western languages. However, it is more likely that Nisbett's Hypothesis stands up to falsification, if this also holds for our variant of the SWH. Basically, this expectation is supported by three experiments on Nisbett's Hypothesis as summarized in Tables 9, 10 and 11.

Table 9 starts by separating 3 Sinitic languages and 1 Japonic language from all 38 Western languages that have been considered in experiment E3 (see Table 2). First, we observe a good classification with an -score of nearly 95%, if we select, once more, a subset of SA-related features by a genetic search. 15Secondly, we observe an -score of nearly 90% corresponding to approximately 38 correctly classified languages, if we consider only 6 indices from network theory (feature class 1). As before, this set includes the diameter, the (weighted) cluster coefficient and the expected geodesic distance in corresponding regular and random graphs of equal order, but now supported by the cluster coefficient of [START_REF] Watts | Collective Dynamics of 'Small-World' Networks[END_REF] and the expected cluster value in a regular graph of equal order.

Furthermore, we see that the baseline scenario that assumes an equi-partition among both target classes is clearly outperformed. However, the random scenario that is informed about the cardinalities of the target classes performs at a high level of nearly 82% -this high random value is due to the largely different sizes of the classes. In any event, experiment E4 does not contradict our variant of Nisbett's Hypothesis. This also holds for Experiment .64368 equi-partition Table 10), which additionally considers Korean as an Eastern language -in accordance with Nisbett [START_REF] Nisbett | The Geography of Thought. How Asians and Westeners Think Differently[END_REF]. We even observe a small gain in -score, which means that both target classes are better separable if Korean is considered too. The -scores are much higher than the corresponding random baselines so that we still view our variant of Nisbett's Hypothesis as being not falsified.

Next we consider experiment E6 as summarized in Table 11. It continues experiment E5 by additionally viewing 3 Sundic languages as representatives of the group of Eastern languages in the sense of Nisbett. Actually, this extension is excluded by Nisbett, since these Sundic languages have not been influenced in the same ways as the Sinitic, Japonic and Korean languages considered here. Thus, we expect a larger loss in -score that questions this extension of the class of Eastern languages. This is, in fact, reported by Table 11. In experiment E6, the difference between the best performing classification, on the one hand, and the best performing baseline, on the other, is less then 10%. If we look back at Table 8, we see that in this worst performing experiment on the SWH, the corresponding difference is more than 20% and, thus, much larger. Therefore, we conclude that there is a higher loss in -score, if we make the questionable extension of the group of Eastern languages (in the sense of Nisbett) by Sundic languages -in accordance to what is predicted by Nisbett's Hypothesis.

All in all, the experiments E4-E6 do not falsify our variant of Nisbett's Hypothesis, and thus we retain it. This means that Western and Eastern languages are distinguishable by topological dissimilarities of their Wikipedia-based social ontologies. This is a new and certainly unexpected result from the point of view of language classification, which -together with the experiments on our variant of the SWH -demonstrates the power of network-theoretical analyses of linguistic systems.

A c c e p t e d M a n u s c r i p t with a sensitivity analysis. This selection is deterministic as it selects all indices with a sensitivity of at least 95% or even of 100% as in the case of experiments on the SWH. That is, only indices, which in a reference corpus of 160 ontologies separate at least 152 graphs correctly, are collected in Class 4 of SA-related features. Because of this determinism, the selection can be automatized. This is a strong argument to look for more expressive sensitivity analyses, which may help to improve network-based structural classification.

Generally speaking, our reasons to apply network theory in the area of language classification can be summarized as follows:

1. Firstly, our aim is to model linguistic structures beyond tree-like graphs.

We aim to explore systems, which recently evolved in web-based communication. These systems are characterized by the networking of hundreds and thousands of vertices beyond tree-like models to which linguistics traditionally pertains. In this sense, the networking of web-based units relates to a rapidly emerging field of linguistic manifestation. The present article has shown that this networking is even indicative of family resemblances of languages. So network models of the sort presented here are interesting for general linguistics -at least as comparative studies. 2. Secondly, we stress the expressiveness of structural models in classifying linguistic units beyond content-based models traditionally used in computational linguistics [START_REF] Kemp | The discovery of structural form[END_REF]. This accentuation of structure modeling is in line with Dimter's [START_REF] Dimter | Textklassenkonzepte heutiger Alltagssprache[END_REF] experiment on text typology and its algorithmic reconstruction [START_REF] Mehler | Structural Classifiers of Text Types: Towards a Novel Model of Text Representation[END_REF]. Dimter shows that, obviously, structure is an underestimated source of identifying linguistics types. We extend this approach to linguistic networks and show that purely structure-based classifications are successful in this area too. This raises the question about the expressiveness of structure-based classifications in computational linguistics in general to which our article contributes. 3. Thirdly, our experiment complements recent approaches to use web-based resources in NLP. These approaches have in common that they explore the structure of Wikipedia and related resources to derive representation models in text categorization [START_REF] Gabrilovich | Overcoming the brittleness bottleneck using Wikipedia: Enhancing text categorization with encyclopedic knowledge[END_REF], to compute semantic relatedness [START_REF] Yeh | WikiWalk: Random walks on Wikipedia for Semantic Relatedness[END_REF], or to induce topic labels [START_REF] Waltinger | Social Semantics and its Evaluation by Means of Semantic Relatedness and Open Topic Models[END_REF]. Based on our findings, we get a first insight into the context-sensitivity of such approaches. That is, we observe that networks of different language families vary to an extent that makes them automatically separable. If this finding is continuously confirmed, algorithms for NLP, which structurally explore such resources, become context-dependent -at least on the level of the underlying language family. In such a case, the average geodesic distance, for example, would mean something else, say, in Sundic vs. Slavic linguistic networks. Following this line of research, network-theoretical research as the one presented here can contribute to NLP.

Generally speaking, our findings indicate the reliability of a novel source of language classification based on human computation as manifested by wiki A c c e p t e d M a n u s c r i p t media. Other than the (e.g., graphemical, morphological, lexical, or syntactic) representation models traditionally used for genealogical classification, we successfully classify languages by means of resources of the social web. One might object that our approach is lexical as it starts with exploring conceptual systems manifested by lexemes. However, this is not true as we only explore structural characteristics of these resources, while we disregard any content units. To the best of our knowledge this is the first such approach to language classification.

Conclusion

In this article, we presented a network-theoretical approach to language classification. Our study is a first attempt to classify languages by means of the topological characteristics of social ontologies generated in these languages. We have tested two related hypotheses: a variant of the Sapir-Whorf Hypothesis and a variant of Nisbett's Hypothesis on differences in Western and Eastern cultures. In this way, we gained access to structural analyses of linguistic networks by example of Wikipedia-based social ontologies as a new resource of language classification.

In support of the SWH, we successfully classified languages into three genealogical groups. We also outperformed corresponding baselines of random classification. Concerning Nisbett's variant of the SWH, we obtained a similar result by separating Western and Eastern languages. As predicted by Nisbett, the classification worsened by extending the corpus of Eastern languages by Sundic languages. In any event, enlarging the number of classes may worsen our results as well as we observed in our experiments. Obviously, the results obtained could have been biased by the number of classes and related factors such as the size of the language families, the validity of the underlying corpora and the independence of the data sources. Thus, we aim to examine these factors in further studies to undermine our findings. Additionally, future work will address the construction of more elaborate baselines, and checking the extensibility of our approach to other kinds of social ontologies. Further, we plan to build more expressive graph models in conjunction with topological indices that are more separable to get better classification results. We also want to extend sensitivity analyses as the one based on Konstantinova's index of degeneration to get classifiers that can be reliably transferred to other areas of linguistic networks. Finally, we will make larger classification experiments to extend the range of language families covered by our approach. 
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Figure 1 :

 1 Figure 1: Left (top): Hyperonyms and hyponyms from the point of view of the category 'Mammal' in the category graph of the English Wikipedia. Arcs go from the superordinate category to its subordinate. Right (top): a cyclic structure of three categories in the social ontology of the German Wikipedia. Bottom: Cyclic structures in the social ontology of the Turkish Wikipedia.

  be the unique path in from to such that ( ) = { 0 , . . . , } is the set of all vertices on that path. A Directed Generalized Tree = ( , 1..5 , ) based on the kernel Page 11 of 34 A c c e p t e d M a n u s c r i p t

Figure 2 :

 2 Figure 2: The largest connected component of the category system of the Friulian Wikipedia (A), the Northern Sami Wikipedia (B) and the Moksha Wikipedia (C) -Moksha is an Uralic language spoken in Mordovia. It belongs, with Northern Sami, to the Finno-permic languages.

Definition 2 .Figure 3 :

 23 Figure 3: Left: the ratio of depth and width of the largest connected component ( -axis) in relation to the order ( -axis) of 160 social ontologies in our SOC. Right: the ratio /| | of the number of vertices that belong to cycles and the order | | of the ontologies ( -axis) as a function of | | ( -axis).

Figure 4 :

 4 Figure 4: (a): A directed tree rooted by vertex 1. (b): a generalized directed tree with the same kernel hierarchical structure in conjunction with four upward arcs, one downward and one lateral arc[START_REF] Mehler | Generalized Shortest Paths Trees: A Novel Graph Class Applied to Semiotic Networks[END_REF]. (c): a structural scenario that resembles social ontologies, that is, a graph with two sources, 1 and , whose kernel (resulting from deleting all upward and lateral arcs) spans a directly acyclic graph.
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Figure 5 :

 5 Figure 5: Sensitivity measure of 109 indices based on the approach of [69]. The horizontal line denotes the 95% limit.
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 t is the diameter of . By varying c, we get different instances of the class of entropy measures in Equation

Figure 6 :

 6 Figure 6: Three steps in creating a GSDN by processing the first three sentences in a dependency treebank.
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Figure 7 :

 7 Figure 7: The dendrogram of the best performing classification of 12 languages into three classes in experiment E0 (see Table5).

  Figure 7: The dendrogram of the best performing classification of 12 languages into three classes in experiment E0 (see Table5).

Table 5 :

 5 Experiment E0 testing a version of the Sapir-Whorf Hypothesis: -scores of classifying 12 languages into 3 families based on GSDNs using 24 indices from Information Theory and Network Theory.

  procedure-score scope source QNA[Mahalanobis,hierarchical,complete] 1 8/24 IT & NT QNA[Correlation,hierarchical,single] .63248 24/24 IT & NT AVG .81624 over non-random approaches random baseline II .553 known partition random baseline I .54 equi-partition

  1 indices (based on Network Theory -NT), Class 2 indices (based on Information Theory -IT), and Class 3 indices (based on GNAGs): if we perform a genetic search of the A c c e p t e d M a n u s c r i p t

  8 do not falsify our variant of the SWH. At this point, we are in a position to examine the social ontology-related variant of Nisbett's Hypothesis.

  A c c e p t e d M a n u s c r i p t

Figure 8 :

 8 Figure 8: The dendrogram of the best performing classification of 12 languages into three classes in experiment E1 (see Table6).
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Table 1 :

 1 

Table 4 :

 4 The 12 treebanks that have been used to generate GSDNs in the pilot study.

	Treebank	Language	| |	| | Reference
	Alpino Treebank v.1.2	Dutch	28,475 102,184	[80]
	Danish Dependency Treebank v.1.0	Danish	19,133	50,858	[81]
	A sample of sentences of the				
	Dependency Grammar Annotator	Romanian	8,867	23,901	[82]
	Russian National Corpus	Russian	58,283 177,942	[83]
	A sample of the Slovene				
	Dependency Treebank v.0.4	Slovene	8,342	20,453	[84]
	Talkbanken05 v.1.1	Swedish	25,097 126,526	[85]
	Turin University Treebank v.0.1	Italian	7,984	24,269	[86]
	Catalan Dependency Treebank (CESS)	Catalan	38,882 215,308	[87]
	Spanish Dependency Treebank (Cast3LB) Spanish	17,101	56,911	[88]
	Prague Dependency Treebank 2.0	Czech	146,504 696,379	[89]
	BulTreeBank	Bulgarian	32,421	95,698	[90]
	Tiger Treebank	German	2,465	4,399	[91]

Table 6 :

 6 Experiment E1 on a version of the Sapir-Whorf Hypothesis: -scores of classifying 12 languages into 3 families based on social ontologies by means of 4 classes of topological indices from Sensitivity Analysis (SA), Graph Theory (GNAG), Information Theory (IT) and Network Theory (NT).

	procedure	-score	scope source	class
	QNA[Mahalanobis,hierarchical,complete]	1.0	7/34 SA	4
	QNA[std. Euclidean,hier.,complete]	.52381	34/34 SA	4
	QNA[std. Euclidean,hier.,complete]	.6963	22/52 GNAG	3
	QNA[Euclidean,hierarchical,single]	.51429	52/52 GNAG	3
	QNA[Euclidean,hierarchical,Ward]	.67424	17/45 IT	2
	QNA[std. Euclidean,hier.,average]	.5812	45/45 IT	2
	QNA[std. Euclidean,hier.,average]	.8381	5/12 NT	1
	QNA[correlation,hierarchical,complete]	.4963	12/12 NT	1
	QNA[correlation,hierarchical,complete]	.51852 109/109 all features	
	AVG (over non-random approaches)	.6492		
	random baseline II	.553 known partition	
	random baseline I	.54 equi-partition	

Table 7 :

 7 Experiment E2 on a version of the Sapir-Whorf Hypothesis: -scores of classifying 28 languages into 3 families based on social ontologies by means of 4 classes of topological indices from Sensitivity Analysis (SA), Graph Theory (GNAG), Information Theory (IT) and Network Theory (NT).

	procedure	-score	scope source	class
	QNA[Mahalanobis,hierarchical,complete]	.78223	26/34 SA	4
	QNA[std. Euclidean,hier.,complete]	.50022	34/34 SA	4
	QNA[Mahalanobis,hierarchical,complete]	.72801	18/52 GNAG	3
	QNA[cosine,hierarchical,complete]	.50866	52/52 GNAG	3
	QNA[Mahalanobis,hierarchical,complete]	.68052	18/45 IT	2
	QNA[correlation,hierarchical,single]	.50597	45/45 IT	2
	QNA[correlation,hierarchical,weighted]	.61267	4/12 NT	1
	QNA[correlation,hierarchical,single]	.50022	12/12 NT	1
	QNA[correlation,hierarchical,complete]	.49366 109/109 all features	
	AVG (over non-random approaches)	.5902		
	random baseline II	.47214 known partition	
	random baseline I	.4725 equi-partition	

Table 8 :

 8 Experiment E3 testing a version of the Sapir-Whorf Hypothesis: -scores of classifying 38 languages into 3 families based on social ontologies by means of 4 classes of topological indices from Sensitivity Analysis (SA), Graph Theory (GNAG), Information Theory (IT) and Network Theory (NT).

	procedure	-score	scope source	class
	QNA[Mahalanobis,hierarchical,complete]	.6969	16/34 SA	4
	QNA[std. Euclidean,hier.,single]	.49579	34/34 SA	4
	QNA[correlation,hierarchical,complete]	.65439	22/52 GNAG	3
	QNA[correlation,hierarchical,single]	.49579	52/52 GNAG	3
	QNA[Mahalanobis,hierarchical,complete]	.65038	19/45 IT	2
	QNA[correlation,hierarchical,single]	.49421	45/45 IT	2
	QNA[Mahalanobis,hierarchical,complete]	.56273	2/12 NT	1
	QNA[correlation,hierarchical,single]	.49579	12/12 NT	1
	QNA[correlation,hierarchical,single]	.49421 109/109 all features	
	AVG (over non-random approaches)	.56		
	random baseline II	.44965 known partition	
	random baseline I	.4511 equi-partition	

Table 9 :

 9 Experiment E4 testing a version of Nisbett's Hypothesis: -scores of classifying 42 languages into Western and Eastern languages based on their social ontologies by means of 4 classes of topological indices from Sensitivity Analysis (SA), Graph Theory (GNAG), Information Theory (IT) and Network Theory (NT). The Eastern class includes 3 Sinitic and 1 Japonic language.

	procedure	-score	scope source	class
	QNA[Mahalanobis,hierarchical,Ward]	.94505	41/87 SA	4
	QNA[correlation,hierarchical,single]	.9085	34/87 SA	4
	QNA[cosine,hierarchical,single]	.9085	26/52 GNAG	3
	QNA[correlation,hierarchical,average]	.87322	52/52 GNAG	3
	QNA[Euclidean,hierarchical,average]	.92393	18/45 IT	2
	QNA[correlation,hierarchical,single]	.86443	45/45 IT	2
	QNA[Mahalanobis,hierarchical,complete]	.9085	6/12 NT	1
	QNA[correlation,hierarchical,single]	.9085	12/12 NT	1
	QNA[correlation,hierarchical,single]	.9085 109/109 all features	
	AVG (over non-random approaches)	.9055		
	random baseline II	.81954 known partition	
	random baseline I			

As of October

2009, there are Wikipedias for 271 languages, each of which includes a category system that manifests conceptual structures shared by the underlying community of wikilocutors (see http://meta.wikimedia.org/wiki/List_of_Wikipedias/sortable).2 See, for example, http://de.wikipedia.org/wiki/Wikipedia:Kategorien in relation to http://en.wikipedia.org/wiki/Wikipedia:Categorization.

In a pretest, we successfully automatized Dimter's experiment by classifying more than 30,000 texts into 31 text classes[START_REF] Mehler | Structural Classifiers of Text Types: Towards a Novel Model of Text Representation[END_REF][START_REF] Pustylnikov | Structural Differentiae of Text Types. A Quantitative Model[END_REF]. This has been done by accentuating the structureoriented stance of Dimter's experiment. In our trials, we deleted any content words so that the classifier had no information about the length of the words, nor about numbers and their text position -actually, this information was retained in Dimter's experiment. The only information used by our algorithm was the logical document structure of input texts (in terms of the hierarchical nesting of sections, captions, paragraphs and sentences) while it disregarded all lexical information (except from the number of tokens). Based on this information, more than 70% of the texts were classified correctly.

Of course, this differentiation in behavior does not imply any difference in cognitive abilities[START_REF] Mcdonough | Development of language-specific categorization of spatial relations from pre-linguistic to linguistic stage a preliminary study[END_REF][START_REF] Casasanto | Who's Afraid of the Big Bad Whorf? Crosslinguistic Differences in Temporal Language and Thought[END_REF].

However, recent investigations question a direct correlation between stability and borrowability of words[START_REF] Holman | Explorations in automated language classification[END_REF].

The data was downloaded in November and December, 2008.

It can be downloaded from www.linguistic-networks.net (Resources/Corpora/Social Software). Note that we have transformed all ontologies into GraphML[START_REF] Brandes | GraphML Progress Report: Structural Layer Proposal[END_REF] in order to secure the text-technological sustainability of our social ontology corpus.

Note that, as defined in Definition 1, ( ) ⊆ is the set of vertices on the path .

As GNAGs are more restricted than general networks, the exponent of the power law that best fits to the out-degree distribution of vertices[START_REF] Barabási | Emergence of Scaling in Random Networks[END_REF] together with its adjusted coefficient of determination[START_REF] Mehler | Structural Similarities of Complex Networks: A Computational Model by Example of Wiki Graphs[END_REF] do not make sense as indices here.

Interestingly, ws , br and diameter, for example, are deselected in this way.

Precision and recall are computed with respect to a gold standard which in our case is the partition of the set of languages into language families. ranges in the interval [0, 1]. 1 indicates a perfect and 0 the worst classification.

A dependency treebank is a corpus in which each sentence is annotated regarding its syntactic dependency structure[START_REF] Wallis | Searching treebanks and other structured corpora[END_REF].

Note that multiple edges are represented by edge weights, which denote frequencies of co-occurrence.

Note that we use the -coefficient only in the case of those networks that have at least 2,000 vertices as displayed in Table4.

Note that we consider now a set of 87 indices as elements of Class 4. These are indices, which are degenerated by at most 5% (see Section 5.2).

A c c e p t e d M a n u s c r i p t .62477 equi-partition

Discussion

Before we start a more general discussion of our findings, we hint at two characteristics of our numerical results. Firstly, if we compare the feature classes 1, 2 and 3 and disregard Class 4 of SA-related features for a while, we see that GNAG-related features mostly perform best in our experiments on the SWH, while IT-related features perform better in our experiments on Nisbett's Hypothesis. At least from the point of view of experiment E2-E3 this means that social ontologies are better separated by means of indices, which reflect their characteristics in terms of generalized acyclic graphs. This is an argument in favor of more informative graph models beyond the simple graphs traditionally analyzed in complex network theory [START_REF]Large Scale Structure and Dynamics of Complex Networks[END_REF].

Secondly, our results show that selections of indices according to Konstantinova's index of degeneration (see Section 5.2) perform best if being combined