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Modeling Population Patterns of Chemotactic Bacteria1

in Homogeneous Porous Media2

Florian Centler, Ingo Fetzer, Martin Thullner3

Department of Environmental Microbiology, UFZ - Helmholtz Centre for Environmental4

Research, Permoserstraße 15, D-04318 Leipzig, Germany5

Abstract6

The spatio-temporal distribution of subsurface microorganisms determines7

their efficiency in providing essential ecosystem services such as the degrada-8

tion of organic matter, the remineralization of carbon and nitrogen, or the9

remediation of anthropogenic contaminants. Populations of motile, chemo-10

tactic bacteria have been shown to be capable of pattern formation even in11

the absence of environmental heterogeneities. Focusing on the water satu-12

rated domain of the subsurface (e.g., aquatic sediments, porous aquifers), we13

analyze this innate capability of bacterial populations in an idealized model14

of a homogeneous, saturated porous medium. Considering a linear array of15

connected, identical microhabitats populated by motile, chemotactic bacte-16

rial cells, we identify prerequisites for pattern formation, analyze types of17

patterns, and assess their impact on substrate utilization. In our model,18

substrate supplied to the microhabitats facilitates bacterial growth, and mi-19

crobial cells can migrate between neighboring microhabitats due to i) random20

motility, ii) chemotaxis towards substrate, and iii) self-attraction. A precon-21

dition for inhomogeneous population patterns is analytically derived, stating22

that patterns are possible if the self-attraction exceeds a threshold defined23
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by the random motility and the steady state population density in the mi-24

crohabitats. An individual-based implementation of the model shows that25

static and dynamic population patterns can unfold. Degradation efficiency26

is highest for homogeneous bacterial distributions and decreases as pattern27

formation commences. If during biostimulation efforts the carrying capac-28

ity of the microhabitats is succesively increased, simulation results show that29

degradation efficiency can unexpectedly decrease when the pattern formation30

threshold is crossed.31

Key words: pattern formation, ecosystem services, biodegradation,32

chemotaxis, individual-based modeling33

1. Introduction34

Microbes inhabiting the subsurface domain drive many element cycles which35

are essential for natural ecosystems and highly desirable from an anthropic36

viewpoint. They are the main contributors to organic matter breakdown,37

cycling of carbon and nitrogen, and degradation of organic contaminants38

in the subsurface. The high spatial and temporal variability of the sub-39

surface domain poses a constant challenge to any microbial life present in40

this habitat. As a consequence, the organization of subsurface microbial life41

is complex. The spatial distribution of subsurface bacteria was shown to42

be highly variable down to the micro-scale, suggesting that bacterial life is43

inhomogeneously distributed, forming microbial ‘hot spots’ as local growth44

conditions vary significantly (Bundt et al., 2001; Nunan et al., 2003). This45

has profound implications for microbially mediated processes. Taking the46

mircrobial degradation of contaminants as an example, only the fraction of47
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the contaminant can be degraded that comes into close physical contact with48

the degrading bacteria. Accordingly, bacterial distribution affects contam-49

inant bioavailability and hence degradation efficiency (Harms and Bosma,50

1997; Dechesne et al., 2010). In the saturated zone of the subsurface, where51

the pore space is completely filled with water, as for example in aquatic52

sediments and aquifers, degradation can be enhanced if bacteria are able53

to detect contaminant concentration gradients and migrate towards regions54

of higher concentrations. This process, called chemotaxis, has indeed been55

shown to be beneficial in the context of bioremediation, where organic con-56

taminants serve as substrate for bacterial growth (Marx and Aitken, 2000;57

Parales et al., 2000; Ford and Harvey, 2007; Wang et al., 2008). Bacteria58

in soil often form microcolonies (Chenu et al., 2001; Dechesne et al., 2007).59

These can originate from a single individual, or be dynamically formed by ac-60

tive aggregation. Such aggregation can be induced by bacterial self-attraction61

mediated by the excretion of chemoattractants by the cells themselves (Mit-62

tal et al., 2003; Park et al., 2003). The amino acids aspartate and glycine63

have been shown to act as such chemoattractants (Budrene and Berg, 1995;64

Salman et al., 2006). High cell densities were shown to enhance resistance to65

environmental stress, for example antibiotics (Butler et al., 2010), promote66

gene transfer, and allow for efficient extracellular digestion. Furthermore,67

bacterial aggregation facilitates quorum sensing induced coordinated behav-68

ior such as biofilm formation. The microenvironment engineered by bacterial69

cells in aggregates provides a buffer against environmental fluctuations, en-70

hancing survival. Bacterial self-attraction has extensively been studied for its71

pattern formation capacity in experiments (see e.g., Budrene and Berg, 1991,72
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1995; Ben-Jacob, 2003) and by mathematical modelling (see e.g., Keller and73

Segel, 1970; Rosen, 1983; Woodward et al., 1995; Tyson et al., 1999; Painter74

and Hillen, 2002). In these studies, however, usually only one chemotaxis pro-75

cess is considered, with Saragosti et al. (2010) presenting a recent exception76

focusing on traveling pulses of bacteria. Even in homogeneous environments77

where local growth conditions do not vary, bacterial distributions can be in-78

homogeneous and dynamic. In an experimental setup, Keymer et al. (2006)79

studied a population of Escherichia coli cells colonizing a microfabricated lin-80

ear array of connected microhabitats. Rich metapopulation dynamics were81

observed even if all microhabitats were equal in all parameters including sub-82

strate supply. The experimental setup resembles a saturated porous medium83

as found in the natural subsurface, where microbial life is concentrated in84

microhabitats which are connected to each other by micropores allowing for85

diffusive substrate exchange and bacterial motion (Grundmann et al., 2001).86

Inspired by these results, we consider a similar setup in this theoretical study.87

Omiting and simplifying many aspects of natural saturated porous media as88

microbial habitats including advection and spatial complexity, we define a ho-89

mogeneous environment in our model with identical microhabitats and evenly90

distributed substrate supply. Under such conditions, any observed patterns91

can be directly attributed to the system’s innate pattern formation ability.92

While following the experimental setup of Keymer et al. (2006) closely in the93

formulation of our model, the aim of this work is not to reproduce experimen-94

tal results. Instead, we focus on first, identifying the determinants leading95

to spatial distribution patterns in our model system as a substitute for a sat-96

urated porous medium, and second, on the impact on degradation efficiency97
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as a desired ecosystem service. While most modeling studies take only one98

chemotaxis process into account, we consider two competing chemotactic99

processes. Chemotaxis towards substrate leads to bacterial dispersal and100

enhanced degradation efficiency in a system with homogeneously distributed101

substrate supply, whereas self-attraction leads to bacterial aggregation. Note102

that survival advantages of bacterial aggregates will not be relfected in the103

model.104

2. Model105

Following the experimental setup used by Keymer et al. (2006), we model a106

linear array of microhabitats resembling a saturated porous medium. A single107

bacterial species populates water filled microhabitats that are connected to108

the neighbouring microhabitats by channels, enabling bacterial cells to swim109

from one microhabitat to the next. Our model consists of two parts. The110

local model describes growth dynamics within microhabitats and the spatial111

model describes exchange processes between neighboring habitats (Figure 1).112

Local Model. For modeling bacterial growth dynamics, we employ the model113

already suggested by Keymer et al. (2006). Each microhabitat is treated as a114

homogeneous, well-stirred reactor. Its current state at time t is characterized115

by the number of bacterial cells occupying it p(t) ∈ [0, K] and substrate116

concentration c(t). Assuming an upper limit cmax for substrate concentration,117

substrate is considered in the model as a relative, unitless index s(t) :=118

c(t)/cmax ∈ [0, 1]. Bacterial population dynamics is assumed to follow logistic119

growth with the logistic term representing space limitation and an additional120

dependency on substrate concentration (Keymer et al., 2006):121
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dp

dt
= r(s) · p ·

(
1− p

K

)
, (1)

with carrying capacity K of a microhabitat and per capita growth rate r(s)122

for very small populations as defined by123

r(s) = μs− d, (2)

with parameter μ describing bacterial growth under maximal substrate con-124

centration (s = 1) and bacterial death controlled by parameter d. Sub-125

strate is supplied to the microhabitat by a generic capacitive process with126

rate parameter λ and consumed during bacterial growth in the microhabitat.127

Substrate dynamics is hence described by:128

ds

dt
= λ(1− s)− εμs

p

K
, (3)

with bacterial conversion efficiency ε. Note that the population density p is129

expressed in cells per habitat. Hence, the consumption term must be scaled130

to the size of the microhabitat. Assuming that the carrying capacity K scales131

linearly with microhabitat size, we use it as a substitute for microhabitat size.132

This ensures that the same number of cells leads to the consumption of the133

same amount of substrate molecules, independent of microhabitat size. The134

full dynamics within one habitat is then described by:135

dp

dt
= (μs− d) · p ·

(
1− p

K

)
=: g(p, s) (4)

ds

dt
= λ(1− s)− εμs

p

K
=: h(p, s). (5)
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Spatial Model. Bacterial migration between neighbouring microhabitats is136

governed by three aspects. First, motile cells perform a random-walk move-137

ment as they swim through the fluid medium by rotating their flagella. This138

process can be described as Fickian diffusion (Berg, 1983; Berg and Turner,139

1990). The diffusive flux is JD = −Dp ·∇p, with diffusion coefficient Dp. Sec-140

ond, cells respond to gradients in substrate concentration by directing their141

movement towards locations of higher concentration. Usually, the chemo-142

tactic flux is described as JC = χ(c, p) · ∇c, with chemotaxis response func-143

tion χ(c, p) and chemoattractant concentration c. For simplicity, we choose144

a chemotaxis response function which is linear in population density and in-145

dependent from chemoattractant concentration. Choosing a constant sensi-146

tivity for chemotaxis to substrate χs, our chemotactic flux towards substrate147

becomes Js = χs ·p ·∇s. For the third aspect of cell motility, we assume that148

bacterial cells excrete molecules that also act as chemoattractants. Instead149

of considering the chemoattractant explicitely in the model, we assume that150

its concentrations is proportional to bacterial cell density. Hence, the bac-151

terial flux due to self-attraction can be defined in analogy to the substrate152

chemotaxis as: Jp = χp · p · ∇p, with sensitivity χp. We assume a strictly153

additive integration of both chemotactic processes (Saragosti et al., 2010).154

The substrate is assumed to diffuse with diffusion coefficient Ds. Bringing155

it all together, the spatial processes are described by two partial differential156

equations:157
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∂p

∂t
= Dp · ∇2p− χs · ∇ · (p∇s)− χp · ∇ · (p∇p) (6)

∂s

∂t
= Ds · ∇2s. (7)

Note that the parameters Dp, Ds, χp, and χs are effective parameters that158

implicitely account for any flux restrictions imposed by the specific geometry159

of the corridors that connect neighboring microhabitats.160

Full Model. Combining the spatial model (Equations 6 and 7) with the local161

growth model (Equations 4 and 5) gives the full model:162

∂p

∂t
=Dp · ∇2p− χs · ∇ · (p∇s)− χp · ∇ · (p∇p)

+ g(p, s) =: u(p, s) (8)

∂s

∂t
=Ds · ∇2s

+ h(p, s) =: v(p, s). (9)

3. Model Analysis163

3.1. Local Model164

The local model (Equations 4 and 5) has three steady states with g(p∗, s∗) =165

0, h(p∗, s∗) = 0:166

(p∗1, s
∗
1) = (0, 1) (10)

(p∗2, s
∗
2) = (K,λ/(λ+ εμ)) (11)

(p∗3, s
∗
3) = (Kλ/ε(1/d− 1/μ), d/μ). (12)
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The first steady state refers to the trivial case of bacterial extinction. In167

the second steady state, the bacterial density is fixed to K, representing168

carrying capacity limited growth. An increase in substrate supply λ does not169

lead to an increase in population density, but only to an increase in substrate170

concentration. In the third state however, an increase in substrate supply171

translates into a larger population density, while substrate concentration is172

fixed. This state refers to growth limited by substrate supply. To elucidate173

the stability of these steady states, we perform a linear stability analysis.174

The system is linearized around the steady state and the evolution of a small175

perturbation is studied. If all eigenvalues of the system’s Jacobian matrix are176

negative, perturbations vanish with time. We find that asymptotic stability177

is given under following conditions for the three steady states:178

(p∗1, s
∗
1) : d > μ (13)

(p∗2, s
∗
2) : d < μλ/(λ+ εμ) (14)

(p∗3, s
∗
3) : d < μ, ε > λ(1/d− 1/μ). (15)

The extinction case (p∗1, s
∗
1) is only asymptotically stable if the parameter179

controlling death d exceeds the parameter controlling growth μ. The opposite180

must be true for the other two steady states to become stable. For the second181

steady state (p∗2, s
∗
2), parameter d is even more limited, as λ/(λ + εμ) < 1.182

This inequality can be rewritten as d < μs∗2. For the substrate limited steady183

state (p∗3, s
∗
3), the substrate conversion efficiency must exceed a threshold184

defined by the parameters for substrate supply, bacterial growth and death.185

This inequality can be rewritten to p∗3 < K. While the eigenvalues for the186
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first two steady states are never complex, the eigenvalues for the third steady187

state can be complex for certain parameter settings1, indicating oscillatory188

behavior. For a specific example, parameter regions with signs of eigenvalues189

are shown in Figure 2 for steady states two and three. The bifurcation190

diagram in Figure 3 illustrates how the system undergoes a transcritical191

bifurcation. For large values of λ, steady state two is asymptotically stable192

and steady state three unstable. Decreasing λ, the stability properties are193

switched at the bifurcation point, where saddle nodes collide with stable194

nodes. Decreasing λ further, a second bifurcation occurs for steady state195

three where the stable node becomes a stable spiral.196

3.2. Full Model197

Mass exchange between microhabitats in the full model is driven by spatial198

gradients. If all microhabitats have identical population densities and sub-199

strate concentrations, spatial gradients vanish and exchange processes will200

not change the system’s state. Hence, if the spatial model is homogeneously201

initialized with population densities and substrate concentrations of a steady202

state of the local model, also the full model is at steady state. To assess the203

stability of the steady state in the full model, a second linear stability analy-204

sis needs to be performed. Again, we have to analyze whether a perturbation205

of the spatial system in steady state is amplified or decays over time. In cases206

where perturbations do not fade, spatial patterns can emerge. We restrict207

our analysis to a one-dimensional domain of length L with spatial coordi-208

nate x. We follow the evolution of small perturbations around any spatially209

1λ < 4d2(μ− d)/μ2, ε > 4λd(μ− d)2/(μ(4d2(μ− d)− λμ2))

10



homogeneous steady state (p(x), s(x)) = (p∗, s∗), which is assumed to be210

asymptotically stable in the local model. We define the perturbation as:211

d(x, t) :=

⎛
⎝p(x, t)− p∗

s(x, t)− s∗

⎞
⎠ . (16)

The time evolution of the perturbation d is given by212

∂d

∂t
= Ad

=

⎛
⎝up us

vp vs

⎞
⎠

p∗,s∗

d

=

⎛
⎝Dp∇2 − χpp

∗∇2 + g∗p −χsp
∗∇2 + g∗s

h∗p Ds∇2 + h∗s

⎞
⎠ d, (17)

with up denoting the partial derivative of u with respect to p, and us, vp, vs213

accordingly, and writing g∗p short for gp(p
∗, s∗), and g∗s , h

∗
p, h

∗
s accordingly.214

With solutions of the form d ∼ cos(kx)eλt, with wavenumber k = nπ/L, n a215

whole number, the sign of λ decides on the fate of the perturbation. From216

the solution follows: ∇2d = −k2d. Setting this into Equation 17, we can217

compute λ as the eigenvalues of A. They are determined by:218

∣∣∣∣∣∣
−k2Dp + k2χpp

∗ + g∗p − λ k2χsp
∗ + g∗s

h∗p −k2Ds + h∗s − λ

∣∣∣∣∣∣ = 0. (18)

This leads to:219

λ2 + a(k2)λ+ b(k2) = 0,with (19)
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a(k2) =(Ds +Dp − χpp
∗)k2 − (g∗p + h∗s) (20)

b(k2) =(Dp − χpp
∗)Dsk

4 − (Dph
∗
s + χsp

∗h∗p − χpp
∗h∗s +Dsg

∗
p)k

2+

g∗ph
∗
s − g∗sh

∗
p. (21)

Spatial patterns can form if λ has positive real components, as perturbations220

do not fade in this case. This is true if a(k2) < 0 or b(k2) < 0. Assuming221

that the steady state (p∗, s∗) is asymptotically stable in the local model, it222

follows that both of its eigenvalues λ1,2
l are negative in the local model. From223 ∣∣∣∣∣∣

g∗p − λl g∗s

h∗p h∗s − λl

∣∣∣∣∣∣ = 0, with λ1,2
l < 0 follows: g∗p + h∗s < 0, g∗ph

∗
s − g∗sh

∗
p > 0.224

Using this we find that a(k2) < 0 for k > kcrit, if Ds + Dp − χpp
∗ ≤ 0.225

Furthermore, b(k2) < 0 is guaranteed for k > k′crit, if Dp − χpp
∗ < 0. And226

finally for Dp − χpp
∗ > 0, b(k2) might still become negative for kcrit,l < k <227

kcrit,h. Concluding, spatial patterns are in principle possible for Dp−χpp
∗ >228

0, albeit under a limited choice of wave numbers k. This limitation is relaxed229

for230

Dp − χpp
∗ < 0. (22)

Under this condition, spatial patterns can be expected.231

4. Individual-Based Model Implementation232

Microcolonies consisting of very few individual cells have been reported in233

the subsurface (Chenu et al., 2001; Grundmann, 2004). Since differential234

equation based modeling is not applicable to populations of few cells and235
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additionally, blow up is a problem in chemotaxis modeling using partial dif-236

ferential equations (see e.g., Perthame, 2007), we follow an individual-based237

approach. This approach has been successfully applied in microbial ecology,238

for example in the context of biofilms (see e.g., Kreft et al., 2001; Mabrouk239

et al., 2010). The differential equation based full model focusing on the240

population level is converted into a stochastic model implementation focus-241

ing on the single cell level for computational simulations. The simulation242

loop consists of two steps: First, the growth dynamics is simulated for each243

microhabitat in the array. In the second step, bacterial migration between244

neighboring microhabitats, and substrate diffusion is simulated. Within the245

individual-based simulation, each bacterial cell is considered separately. Bac-246

terial processes considered in the model are not assumed to depend on a247

specific state of the cells such as age or size, so that cells can be modeled as248

stateless entities. For the local model, we need to derive probabilities for the249

stochastically independent events of cell division Pμ and cell death Pd during250

each step of the simulation of length Δt. Rewriting Equation 4 as251

dp

dt
= p ·

(
μs− (μs− d)

p

K

)
− p · d (23)

allows us to assign the probabilities as:252

Pμ :=
(
μs− (μs− d)

p

K

)
·Δt (24)

Pd := d ·Δt. (25)

In the first step of the simulation loop, each bacterial cell has the chance253

to divide and die, in accordance with these probabilities. For each bacterial254
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cell, two uniformly distributed random numbers rμ and rd are drawn over255

the intervall [0, 1]. The cell divides in case of rμ < Pμ and (additionally) dies256

in case of rd < Pd. The time step size has to be small enough to ensure Pμ257

and Pd � 1. To derive probabilities for the migration of bacteria, we apply258

the standard central difference scheme to Equation 6. The resulting equation259

can be arranged to:260

pt+Δt
i = P0 · pti + P1 · pti+1 + P2 · pti−1, (26)

with261

P0 =1− 2DpΔt

(Δx)2
− χsΔt

(Δx)2
(si+1 − 2si + si−1)−

χpΔt

(Δx)2
(pi+1 − 2pi + pi−1) (27)

P1 =
DpΔt

(Δx)2
− χsΔt

4(Δx)2
(si+1 − si−1)− χpΔt

4(Δx)2
(pi+1 − pi−1) (28)

P2 =
DpΔt

(Δx)2
− χsΔt

4(Δx)2
(si−1 − si+1)− χpΔt

4(Δx)2
(pi−1 − pi+1), (29)

where pti describes the number of bacterial cells in microhabitat i at time t,262

si describes the substrate concentration in habitat i at time t and Δx de-263

scribes the distance between neighboring microhabitats. We follow Schofield264

et al. (2002) who take the coefficients P0, P1, and P2 to be proportional to265

the probability for a bacterial cell to remain at its current microhabitat (P0),266

move to the left microhabitat (P1), and move to the right microhabitat (P2).267

For simulating cell migration in each time step, a random number q is drawn268

for each bacterial cell in the array that is uniformly distributed over the in-269

terval [0,
∑

k Pk]. For q ∈ [0, P0[, the cell remains in its current microhabitat,270

14



for q ∈ [P0, P1[, the cell migrates to the left neighboring microhabitat and for271

q ∈ [P1, P2] it migrates to its right neighbor microhabitat. In order to avoid272

boundary effects at the edge of the microhabitat array, we employ periodic273

boundary conditions in which the array is wrapped around forming a ring, so274

that the rightmost habitat has the leftmost habitat as its right neighbor. If,275

after all migratory events have been performed, a habitat contains more cells276

than its carrying capacityK, cells are randomly moved from the overcrowded277

habitat to its neighboring habitats until all habitats contain at most K cells.278

For the substrate diffusion, the standard central difference scheme is directly279

applied to Equation 7.280

Parameter Settings. We simulate an array of 80 microhabitats. All pa-281

rameter values are summarized in Table 1. The parameters for the local282

model are taken from Keymer et al. (2006) who fitted them to experimen-283

tal data for a single habitat. With these parameter settings, only the third284

steady state, refering to substrate limited growth, is asymptotically stable285

with (p∗3, s
∗
3) = (2747 cells, 0.394). This steady state is a stable spiral. For286

the diffusion coefficient for substrate, we choose a value which is typical for287

small molecules (Berg, 1983), for example toluene or benzene. For the dif-288

fusion coefficient of the bacteria and their chemotactic sensitivity towards289

the substrate, we use experimentally derived values from Berg and Turner290

(1990). They set up capillary tubes with a diameter of 10 μm to simulate291

a porous medium consisting of straight pores. We vary the sensitivity for292

self-attraction over one order of magnitude. For the upper limit, we assume293

that the self-attraction migration flux does not exceed the flux due to chemo-294

taxis towards substrate, as the response to substrate is supposed to be the295
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most pronounced due to its direct evolutionary advantage. Assuming the296

maximum gradients for bacterial cells and substrate concentration, the con-297

tributions of both chemotactic processes to the migration probability become298

equal if setting χmax
p = χs/K. This defines the upper limit of the chemo-299

tactic sensitivity for self-attraction. In all simulation runs of the full model,300

each microhabitat in the array is initialized at steady state three of the local301

model with ((pt0 , st0) = (2747, 0.394)).302

5. Simulation Results303

5.1. Bacterial Growth in the Local Model304

First, only growth within a single habitat is considered and the deterministic305

solution of the local model (Equations 4 and 5) is compared to ten indepen-306

dent runs of the individual-based model. The system is initialized either with307

ten bacterial cells and maximal substrate concentration ((pt0 , st0) = (10, 1.0))308

or at steady state three ((pt0 , st0) = (2747, 0.394)). In the former case (Fig-309

ure 4, left), a damped oscillation around the steady state is visible after a310

first exponential growth phase, in accordance with steady state three be-311

ing a stable spiral. The stochastic runs generally follow the deterministic312

dynamics with stochastic fluctuations leading to a time offset and varying313

amplitudes, scattered around the deterministic amplitude. An erratic oscil-314

lation of the stochastic system around the deterministic solution is visible315

when the system is initialized at steady state three (Figure 4, right).316
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5.2. Homogeneous Bacterial Distributions in the Full Model317

According to Equation 22, homogeneous bacterial distributions can be ex-318

pected for the chosen parameter set if the chemotactic sensitivity towards319

the chemoattractant χp is below the critical value of χ∗p = 1.89× 10−9cm2/s.320

In this case, the whole microhabitat array is homogeneously populated over321

time except for stochastic fluctuations (Figure 5, left). If considering the322

evolution of mean values over all microhabitats, an oscillation in population323

density and substrate concentration close to the local steady state three be-324

comes apparent (Figure 5, right). A high population density is followed by a325

decrease in substrate concentration, which in turn leads to a decreasing pop-326

ulation. This allows the microhabitat to recover. With the ensuing increase327

in population density, the circle is closed. In this case, the mean dynamics328

of the whole system resembles the local dynamics. The array can be thought329

of as operating as one large microhabitat.330

5.3. Pattern Formation331

If the chemotactic sensitivity χp is set to values above the pattern formation332

threshold χ∗p, inhomogeneous spatial population distributions emerge. In the333

transition from homogeneous distributions to spatial structures, four types334

of distinct spatio-temporal distribution patterns can be distinguished (Fig-335

ure 6). Pattern formation starts shortly before the threshold χ∗p is reached.336

In the first pattern type, few microhabitats spontaneously become saturated337

with bacterial cells. Microhabitats in the vicinity of these static hot spots338

are depleted in bacteria, while distant microhabitats are still homogeneously339

populated. As χp is increased, more and more static hot spots form, until340

hot spots start to repeatedly form and disintegrate in Pattern Type 2. The341
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remaining microhabitats synchronously oscillate in population density. The342

formation of new hot spots is triggered by peaks in mean population density,343

whereas disintegration is induced by low mean densities. While some hot344

spots last for only one oscillation, others prevail over longer time periods.345

As χp is further increased, only few evenly distributed hot spots form in346

the array in Pattern Type 3 of the transition. They span up to two micro-347

habitats and occasionally shift to neighboring microhabitats. Increasing χp348

further leads to a dense pattern of static hot spots next to almost completely349

vacated microhabitats in the final Pattern Type 4 of the transition. The350

four transition pattern types also show distinct dynamics in the mean be-351

havior of the whole array (Figure 7). The trajectory of the mean population352

density and mean substrate concentration in Pattern Type 1 remains in the353

vicinity of the local steady state three, albeit shifted to a state of slightly354

lower density and higher substrate concentration. The dynamic pattern of355

Pattern Type 2 corresponds to a pronounced oscillation of the mean trajec-356

tory. As few moving hot spots form in Pattern Type 3, the mean trajectory357

settles in an oscillation of small amplitude far away from steady state three358

after an initial transient phase. For Pattern Type 4, the mean trajectory359

settles in an oscillation around a state of lower density and higher substrate360

concentration compared to steady state three, albeit in closer proximity to361

it than in Pattern Type 3. Here, the amplitude of the oscillation is smaller362

compared to the oscillation in the spatially homogeneous case (cf. insets in363

Figure 7 and Figure 5, right). Mean population density per microhabitat364

steadily decreases during the first three pattern types of the transition. Al-365

though density begins to recover in the Pattern Type 4, the level achieved366
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under homogeneous colonization is not reached again (Figure 8). Due to fast367

substrate diffusion, substrate gradients remain small in the microhabitat ar-368

ray and play a minor role in bacterial migration. A decrease by a factor of 50369

brings the substrate diffusion coefficient into the range that has been reported370

for the herbicide atrazine in soil (Ritter et al., 1973). Under these conditions,371

substrate gradients affect bacterial migration. A typical simulation run with372

χp > χ∗p is shown in Figure 9. At the begining of the simulation, a tran-373

sient checkerboard pattern unfolds. Substrate is faster consumed in highly374

populated microhabitats. This makes neighboring microhabitats of lower cell375

densities more and more attractive, eventually leading to a migration to these376

microhabitats. Vacated microhabitats recover in substrate concentration due377

to permanent substrate supply, again becoming attractive for recolonization.378

After approximately ten minutes, traveling waves emerge that sweep through379

the array, attracted by fresh microhabitats and leaving substrate depleted mi-380

crohabitats behind. On collision, migratory waves create temporal hot spots381

that finally dissolve and release further migration waves. Despite the highly382

structured spatio-temporal bacterial distribution, the mean behavior of the383

whole array shows little variability (Figure 9, right). As bacterial activity is384

concentrated in few microhabitats, an overall state of lower mean population385

density and higher mean substrate concentration is assumed in comparison386

to the local steady state three.387

5.4. Effect of Biostimulation on Substrate Utilization388

In order to enhance the remediation of contaminated field sites, biostimula-389

tion has been proposed (Wenderoth et al., 2003). For example, additional390

terminal electron acceptors can be injected into the contaminated subsurface391
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to stimulate growth of degrading bacteria. In our model, the carrying capac-392

ity K describes the maximum number of cells that can be supported in one393

microhabitat. This limit depends on microhabitat size, and can additionally394

also depend on further requirements for bacterial growth, for example ter-395

minal electron acceptors such as nitrate or sulfate, which are not explicitely396

considered in our model. Hence, an addition of terminal electron accep-397

tors translates into an increase of K in our model. Combining the pattern398

formation condition Equation 22 with the condition for steady state three399

representing substrate limited growth (Equation 12) leads to:400

Dp < Kχpλ/ε · (1/d− 1/μ) (30)

as the condition for pattern formation. This formulation makes it evident401

that an increasing value of K due to biostimulation efforts can lead to the402

pattern formation condition to become true and hence the emergence of spa-403

tially inhomogeneous bacterial population patterns. To evaluate the resulting404

effect on substrate degradation as an desired ecosystem function, we perform405

a series of simulation runs with increasing K values and consider the mean406

consumption rate and mean population density over the whole array and en-407

tire simulation time, excluding the initial transient phase (Figure 10). The408

consumption rate is computed as substrate concentration decrease due to mi-409

crobial growth (second summand in Equation 5, but without scaling factor410

K). Chemotactic sensitivity towards chemoattractant is set to 1.3 × 10−9411

cm2/s. Under these parameter settings, the pattern formation threshold for412

the carrying capacity K is K∗ = 14560 bacterial cells. The response to bios-413

timulation can be divided into three stages (Figure 10). For low K values,414
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the array is homogeneously populated and its dynamics follows the dynamics415

of the local model. An increase in K leads to a linear increase in popula-416

tion density and consumption rate. As the pattern formation threshold K∗
417

is almost reached, the population density and consumption rate decrease,418

despite the availabilty of better growth conditions due to larger K values.419

As bacterial activity becomes concentrated in hot spot microhabitats, sub-420

strate available in microhabitats of low bacterial density is no longer utilized.421

Hence, the onset of spatial pattern formation leads to a nonlinear response to422

biostimulation. The trend is reversed at K values above 16000 cells, where423

the linear response resumes. As more and more fully saturated microhabitats424

form, more substrate can be utilized. However, the maximum consumption425

rate given by steady state three of the local model cannot be reached again426

once the pattern formation threshold has been crossed.427

6. Discussion428

Studying the dynamics of a single bacterial species colonizing a linear ar-429

ray of connected microhabitats in a simplistic model resembling a saturated430

porous medium led to three main results. The first result was obtained by431

an analytical analysis that revealed a critical threshold above which spatially432

inhomogeneous population patterns are possible. The existence of patterns433

depends on the relation between bacterial parameters and environmental fac-434

tors. This becomes apparent if the pattern formation condition (Equation 30)435

is rewritten as:436

21



growth︷ ︸︸ ︷
ε

μd

μ− d
·

motility︷︸︸︷
Dp

χp︸ ︷︷ ︸
bacterial physiology

< K · λ︸ ︷︷ ︸
environmental factors

. (31)

This relation indicates that for fixed environmental factors, faster bacterial437

growth, a lower random motility, as well as an increased affinity to fellow438

bacteria will increase the likelihood of inhomogeneous bacterial distributions.439

The parameter values for bacterial growth and death used in the simulations440

were taken from experimental data on E. coli cells. The chosen maximal441

bacterial growth rate of 0.15 min−1 is beyond the capacity of typical soil442

bacteria. If both growth and death rate are reduced by the same factor to443

values more realistic for soil bacteria, the growth term in Equation 31 gets444

reduced by the same factor. This shifts the pattern formation threshold445

to lower values of χp, making inhomogeneous distributions more probable.446

This trend however is counteracted if for the environmental factors a lower447

carrying capacity or substrate supply rate is chosen, in accordance with sub-448

strate usually being scarce in subsurface environments. Bacterial physiology449

parameters can vary between bacterial species. Hence, under a given envi-450

ronment, one species might tend to form patterns while the other does not.451

And vice versa, if environmental factors vary over space and time, a species452

might tend to form patterns only in specific locations and during distinct453

periods of time. Both the diffusion constant for substrate and the chemotac-454

tic sensitivity towards the substrate do not appear in the pattern formation455

condition. Under the homogeneous environment conditions considered in456

our model, they hence have no influence on the existence of patterns in the457
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model. As the second result of this study, the potential types of spatio-458

temporal patterns were identified using individual-based simulation runs. It459

is well known that complex patterns can spontaneously emerge in coupled460

reaction-diffusion systems even under homogeneous environments (Turing,461

1952). Turing patterns of bacteria have already been reported in a sediment462

modeling study by Baurmann et al. (2004). For parameter settings far away463

from the pattern formation threshold, static patterns emerged in our model:464

homogeneous bacterial distributions if parameters were set to values below465

the threshold, and a pattern of saturated microhabitats next to virtually466

empty microhabitats if parameter values exceeded the threshold. The whole467

array operates as one large microhabitat for homogeneous bacterial distri-468

butions. For inhomogeneous distributions, the mean behavior of the whole469

microhabitat array deviates from the local model’s dynamics and a state470

of lower mean population density and higher mean substrate concentration471

is assumed. Furthermore, the variability of mean bacterial population and472

substrate concentration over time was reduced in these cases. Hence, un-473

der pattern formation, the spatial interactions exerted a stabilizing effect on474

habitat dynamics. Dynamic patterns were found for parameter values in the475

vicinity of the pattern formation threshold. In particular, if substrate diffu-476

sion was decreased, dynamic checkerboard and wave patterns emerged. Such477

wave like motions have also been observed in experimental setups (Keymer478

et al., 2006; Saragosti et al., 2010). As the third result of this study, the onset479

of pattern formation was found to cause a non-linear response to biostimu-480

lation efforts. It has been experimentally shown that aggregated bacterial481

distribution patterns lead to reduced biodegradation (Dechesne et al., 2010).482
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A similar phenomenon was observed in our model. Biodegradation efficiency483

decreased as the pattern formation threshold was exceeded and the bacterial484

distribution became inhomogeneous. As bacterial activity becomes concen-485

trated in few hot spots, substrate in microhabitats of low bacterial density486

is no longer degraded efficiently. This fraction of the substrate is no longer487

bioavailable due to the absence of bacteria, and the overall degradation per-488

formance falls short of the expectation derived from the local dynamics. This489

is a common observation when applying laboratory results to the field-scale.490

In our model, pattern formation is the cause leading to reduced bioavailability491

and hence, reduced overall degradation performance. In a field application,492

however, the non-linear response to biostimulation can only be observed if the493

microhabitats are homogeneously colonized in the pristine state. And even494

then, it could be argued that by further increasing biostimulation after the495

onset of pattern formation and ancompanying decrease in degradation per-496

formance, the linear response will resume. In this study, a simplistic model497

has been used that omits and simplifies many aspects of the subsurface as498

a bacterial habitat. For example, a water phase was assumed to be present499

that connects neighbouring microhabitats, advection has been neglected, and500

microhabitats were identical, mimicking a homogeneous environment. Fur-501

thermore, microhabitats were treated as well-mixed, neglecting any sub-scale502

spatial features, and only a single bacterial species has been considered in503

contrast to the tremendous diversity of soil bacteria. These simplifications,504

however, allowed us to analytically derive a condition for pattern formation,505

and uncover mechanisms driving spatio-temporal bacterial distribution, that506

are also plausible driving forces for the dynamics in real soil systems. Bacte-507
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rial growth was modeled following a modified logistic growth model suggested508

by Keymer et al. (2006). Note however, that the analytical derivation of the509

pattern formation condition did not depend on a particular growth model.510

The existence of an asymptotically stable steady state was the only assump-511

tion regarding the local growth model. Hence, the results are also valid512

if a different growth model is used, for example if bacterial growth follows513

Monod-type kinetics. The model can easily be extended to become a more514

faithful representation of the subsurface environment. Spatial inhomogeneity515

of the environment can be included by varying carrying capacity and sub-516

strate inflow over microhabitats. The influence of heterogeneities imposed by517

the environment on the innate pattern formation capability of bacterial pop-518

ulations can then be studied. Furthermore, an additional bacterial species519

can be included. In such a scenario, bacterial interactions and coexistence in520

spatially structured environments can be assessed. If parameters describing521

bacterial physiology including chemotactic sensitivities are subjected to ran-522

dom mutations on cell division, the evolution of survival strategies of both523

species can be analyzed. In the presented work, mathematical and computa-524

tional modeling was applied as a suitable tool to advance our understanding525

of the dynamics of microbial processes in the subsurface. While not all pa-526

rameters of interest are necessarily available at the desired spatio-temporal527

resolution in experimental setups, computational models are not constrained528

by such limitations. This makes them well suited to identify key mechanisms529

behind microbially driven dynamics in the subsurface.530
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Tables635

Table 1: Parameter values for individual-based simulations, based on typical values for

E. coli

Parameter Value Reference

μ bacterial growth 0.15 min−1 Keymer et al. (2006)

d bacterial death 0.059 min−1 Keymer et al. (2006)

K carrying capacity of microhabitats 10000 cells Keymer et al. (2006)

λ substrate inflow 0.004 min−1 Keymer et al. (2006)

ε conversion efficiency 0.15 Keymer et al. (2006)

Ds substrate diffusion coefficient 9× 10−6 cm2/s Berg (1983)

Dp bacterial diffusion coefficient 5.19× 10−6 cm2/s Berg and Turner (1990)

χs chemotactic sensitivity to substrate 1.3× 10−3 cm2/s Berg and Turner (1990)

χp chemotactic sensitivity to bacteria 1.3× 10−9 − 1.3× 10−8 cm2/s

Δx distance between microhabitats 0.005 cm Keymer et al. (2006)

Δt time step size 1 s
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Figure 1: Key processes considered in the local (left) and spatial part (right) of the full

model. Substrate supply to microhabitats is controlled by the rate parameter λ, bacterial

cells consume substrate with conversion efficiency ε and undergo cell divisions and cell

death controlled by the rate parameters μ and d, respectively. Microhabitats are treated

as well-stirred reactors that can hold a maximum of K cells. In a linear arrangement,

neighboring habitats are connected by corridors through which substrate diffuses and cells

can migrate due three processes, controlled by parameters as indicated.
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Figure 2: Stability of steady states two and three of the local model using values for

parameters μ, d, and K as given in Table 1. The signs of the two eigenvalues are shown

for steady state two (left) and steady state three (right) in λ−ε parameter space. Regions

with saddle nodes are marked with (-,+), regions with stable nodes with (-,-), and regions

with stable spirals with (-,-)∗.
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Figure 3: Bifurcation diagram for the local model using parameter values given in Table 1.

Stable node as solid line, saddle point as dotted line, and stable spiral as dash-dotted line.

For large λ values, steady state two (p∗2, s
∗
2) is asymptotically stable, and steady state

three (p∗3, s
∗
2) is unstable. When decreasing λ, stability properties are first swapped at a

transcritical bifurcation, and a further bifurcation ends in a stable spiral for steady state

three.
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Figure 4: Growth dynamics in the local model. The deterministic solution of the local

growth model is compared to ten independent individual-based model runs. The system

is initialized either with ten bacterial cells and maximal substrate concentration (left), or

at steady state three (p∗3 = 2747, s∗3 = 0.394) (right).
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Figure 5: Homogeneous bacterial distribution for simulation runs with χp < χ∗
p.

Spatio-temporal bacterial distribution (left), and mean behavior of the whole array over

time (right) for a typical simulation run with χp = 1.3 × 10−9 cm2/s. The mean values

oscillate around steady state three of the local model (right, inset). The system is homo-

geneously initialized in steady state three, and all other parameters are given in Table 1.
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Figure 6: Spatio-temporal bacterial distribution patterns for individual simulation runs

representing the four types of pattern as the pattern formation threshold χ∗
p is exceeded.

Pattern formation commences shortly before χ∗
p = 1.89× 10−9 cm2/s is reached and leads

to few static hot spots in Pattern Type 1 (χp = 1.71 × 10−9 cm2/s), transient hot spots

in Pattern Type 2 (χp = 1.91× 10−9 cm2/s), moving hot spots in Pattern Type 3 (χp =

2.07×10−9 cm2/s), and dense static hot spots in Pattern Type 4 (χp = 1.3×10−8 cm2/s).

The system is homogeneously initialized in steady state three, and all other parameters

are given in Table 1.
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Figure 7: Temporal evolution of mean behavior over space of bacterial population and

substrate concentration. Shown data are individual simulation runs representing the four

types of pattern: few static hot spots (Pattern Type 1), transient hot spots (Pattern

Type 2), moving hot spots (Pattern Type 3), and dense static hot spots (Pattern Type 4).

The system is initialized in steady state three of the local model as indicated by p∗3 and s∗3.
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Figure 8: Changes of mean microhabitat population size when crossing the pattern for-

mation threshold χ∗
p. Symbols and error bars represent averages and standard deviations

over ten independent simulation runs. Pattern formation commences shortly before χ∗
p is

reached and consists of four types of distinct spatio-temporal population patterns.
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Figure 9: Spatio-temporal bacterial distribution (left), and mean behavior of bacterial pop-

ulation and substrate concentration over time (right) for a substrate diffusion coefficient

50 times lower than in other simulation runs (Ds = 1.8 × 10−7 cm2/s). The chemotactic

sensitivity towards chemoattractant is set to a value above the pattern formation thresh-

old (χp = 1.99 × 10−9 cm2/s). The system is homogeneously initialized in steady state

three, and all other parameters are given in Table 1.
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Figure 10: Response to biostimulation (increasing K values). After an initially linear

response of population density (left) and substrate consumption rate (right) to biostim-

ulation matching steady state three of the local model (p∗3), biodegradation performance

transiently decreases as pattern formation commences close to K∗ = 14560 bacterial cells.

Mean over ten independent simulation runs, error bars indicate standard deviation.
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* pattern formation depends on bacterial physiology and environmental parameters 
* inhomogeneous bacterial distributions lead to reduced substrate utilization 
* onset of pattern formation leads to nonlinear response during biostimulation 




