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Which punishment or rewards are most effective at maintaining cooperation in public goods interactions and deterring defectors who are willing to freeload on others' contribution? The sanction system is itself a public good and can cause problematic "second-order free riders" who do not contribute to the provisions of the sanctions and thus may subvert the cooperation supported by sanctioning. Recent studies have shown that public goods games with punishment can lead to a coercion-based regime if participation in the game is optional. Here, we reveal that even with compulsory participation, rewards can maintain cooperation within an infinitely large population. We consider three strategies for players in a standard public goods game: to be a cooperator or a defector in a standard public goods game, or to be a rewarder who contributes to the public good and to a fund that rewards players who contribute during the game. Cooperators do not contribute to the reward fund and are therefore classified as second-order free riders. The replicator dynamics for the three strategies exhibit a rock-scissors-paper cycle, and can be analyzed fully, despite the fact that the expected payoffs are nonlinear. The model does not require repeated interaction, spatial structure, group selection, or reputation. We also discuss a simple method for second-order sanctions, which can lead to a globally stable state where 100% of the population are rewarders.

Introduction

An enduring conundrum in the biological and social sciences is how cooperation can emerge and be maintained in a sizable group containing exploiters. The conundrum is the so-called social dilemma [START_REF] Dawes | Social dilemmas[END_REF][START_REF] Kollock | Social dilemmas: the anatomy of cooperation[END_REF] because its nature is described as follows: groups of cooperators outperform groups of defectors, whereas in a mixed group defectors always outperform cooperators. This represents common conflicts between a social optimum and individual interests very well, and it has traditionally been modeled as the public goods game in many experimental and theoretical studies [START_REF] Ledyard | Public Goods: A Survey of Experimental Research[END_REF].

In the public goods game (PGG), cooperators confer benefits on others with some cost to themselves, whereas defectors exploit the benefits without such contribution to others.

Defection is the selfish choice that results in a decrease in the total benefit to the group, but defection is rational from the evolutionary viewpoint because of a higher individual payoff, with no cost. Thus, natural selection will often drive elimination of cooperation. Classical and evolutionary game studies have, however, identified supportive mechanisms under which cooperation is nonetheless sustained, such as repeated interactions [START_REF] Trivers | The evolution of reciprocal altruism[END_REF][START_REF] Axelrod | The evolution of cooperation[END_REF], reputation [START_REF] Nowak | Evolution of indirect reciprocity by image scoring[END_REF][START_REF] Milinski | Reputation helps to solve the 'tragedy of the commons[END_REF], spatial structure [START_REF] Nowak | Evolutionary games and spatial chaos[END_REF][START_REF] Killingback | Variable investment, the Continuous Prisoner's Dilemma, and the origin of cooperation[END_REF], and group selection [START_REF] Wilson | Reintroducing group selection to the human behavioral sciences[END_REF][START_REF] Traulsen | Evolution of cooperation by multilevel selection[END_REF].

Punishment of defectors and rewards for cooperators are also major factors that maintain cooperation between self-interested individuals, as suggested by growing experimental and theoretical evidence . However, sanctions are costly, and therefore pose the next conundrum: how costly sanctioning can subsist in the presence of those who freeload on others' contributions to sanctions. This issue is the "second-order social dilemma" [START_REF] Oliver | Rewards and punishments as selective incentives for collective action: theoretical investigations[END_REF][START_REF] Yamagishi | The provision of a sanctioning system as a public good[END_REF], which has been particularly well addressed, in the case of costly punishment. One of possible solutions is to punish second-order freeloaders as well [START_REF] Axelrod | An evolutionary approach to norms[END_REF][START_REF] Boyd | Punishment allows the evolution of cooperation (or anything else) in sizable groups[END_REF][START_REF] Kiyonari | Cooperation in the social dilemma: free riding may be thwarted by second-order reward rather than by punishment[END_REF][START_REF] Sigmund | Social learning promotes institutions for governing the commons[END_REF].

At the same time, there is the issue of how costly punishment can emerge [START_REF] Hauert | Via freedom to coercion: the emergence of costly punishment[END_REF][START_REF] Mathew | When does optional participation allow the evolution of cooperation?[END_REF]. In a population of defectors, a rare punisher suffers enormous costs because of the need to continuously punish defectors. However, recent studies have shown that punishment-based cooperation can emerge if participation in the PGG is optional rather than compulsory [START_REF] Fowler | Altruistic punishment and the origin of cooperation[END_REF][START_REF] Hauert | Via freedom to coercion: the emergence of costly punishment[END_REF][START_REF] Silva | Freedom, enforcement, and the social dilemma of strong altruism[END_REF][START_REF] Sigmund | Social learning promotes institutions for governing the commons[END_REF]. We note that optional participation is another way to maintain cooperation [START_REF] Mathew | When does optional participation allow the evolution of cooperation?[END_REF][START_REF] Orbell | Social welfare, cooperator's advantage, and the option of not playing the game[END_REF][START_REF] Aktipis | When to walk away and when to stay: cooperation evolves when agents can leave unproductive partners and groups[END_REF][START_REF] Sasaki | Probabilistic participation in public goods games[END_REF][START_REF] Hauert | Volunteering as red queen mechanism for cooperation in public goods games[END_REF][START_REF] Hauert | Replicator dynamics for optional public goods games[END_REF][START_REF] Semmann | Volunteering leads to rock-paper-scissors dynamics in a public goods game[END_REF], which can lead to "rock-scissors-paper"-type cyclic domination, well-known in evolutionary game theory [START_REF] Hofbauer | Evolutionary Games and Population Dynamics[END_REF][START_REF] Sigmund | Evolutionary dynamics of biological games[END_REF], among cooperators, defectors, and loners who earn a small but fixed payoff, instead of participating in the PGG [START_REF] Hauert | Volunteering as red queen mechanism for cooperation in public goods games[END_REF][START_REF] Hauert | Replicator dynamics for optional public goods games[END_REF][START_REF] Semmann | Volunteering leads to rock-paper-scissors dynamics in a public goods game[END_REF]. Interestingly, Sigmund et al. [START_REF] Sigmund | Social learning promotes institutions for governing the commons[END_REF] have found that when it comes to punishing second-order freeloaders, natural selection favors pool-punishment rather than peer-punishment. Peer-punishment is a sanctioning technique which has been the most widely used form of punishment in PGGs in which players decide whether to impose fines on exploiters after the PGG. By contrast, in pool-punishment, players have to decide whether to contribute to a punishment fund before the PGG [START_REF] Yamagishi | The provision of a sanctioning system as a public good[END_REF], analogous to forming a volunteer band of watchmen in advance.

While optional participation could be required for a population to evolve from a stalemate where everybody defects to a coercion-based regime, there problems associated with opting out of a public goods project, such as global environmental issues, remain [START_REF] Hauert | Via freedom to coercion: the emergence of costly punishment[END_REF]. When participation is compulsory, peer-rewarding can cause cyclical dynamics in infinite populations if reputation alone is important (for pair-wise interactions see Sigmund et al. [START_REF] Sigmund | Reward and punishment[END_REF]; for interactions of arbitrary size see Hauert [START_REF] Hauert | Replicator dynamics of reward & reputation in public goods games[END_REF]). In contrast, reputation is given less weight in finite populations [START_REF] Forsyth | Public goods games with reward in finite populations[END_REF].

In this work, we explore the effects of pool-rewarding in compulsory PGGs with infinite populations. Similar to pool-punishment, players first decide whether to contribute to a reward fund. After a one-shot PGG among all group members, the common fund is divided equally among those players who contributed, irrespective of their contribution to the fund.

While the list of real-world examples of reward funds is too long to list, we shall consider a generous voluntary fund which may be threatened with collapse by second-order freeloaders. We propose a minimalistic model for infinite populations that does not require repeated interactions, reputation, spatial structure, group selection, or optional participation.

We also compare two types of benefit-sharing models, which differ on whether or not a contributor in the PGG may oneself benefit, thus corresponding to "weak altruism" and "strong altruism" [START_REF] Fletcher | A simple and general explanation for the evolution of altruism[END_REF][START_REF] Fletcher | The evolution of altruism: game theory in multilevel selection and inclusive fitness[END_REF]. The evolution of cooperation is investigated by means of the replicator dynamics [START_REF] Hofbauer | Evolutionary Games and Population Dynamics[END_REF][START_REF] Sigmund | Evolutionary dynamics of biological games[END_REF].

The game-theoretical model

Consider an infinitely large, well-mixed population of constant size. From time to time, a group of N players is randomly formed from the population (where 2 N ≥ ). The PGG is of a one-shot version. Each player is asked to contribute 1 0 c > to the public good. The contributions are then distributed in the following different ways: in the case of weak altruism (WA), the contribution, 1 c , will be multiplied by [START_REF] Dawes | Social dilemmas[END_REF] we assume 1 r N < , as the social dilemma would otherwise be completely relaxed due to the benefits by switching to a contributor.

Next, we introduce the following pool-rewarding mechanism. Before participating in the PGG, each player is first asked to contribute 2 0 c > to a fund to reward cooperative behaviors in the PGG. The integrated contribution to the reward fund is multiplied by 2 1 r > , and after the PGG distributed equally to those who have contributed to the public good, if any. We consider the following three strategies: rewarders (R) who contribute both to the PGG and to the reward fund, cooperators (C) who contribute to the PGG but not to the reward fund, and defectors (D) who contribute neither to the PGG nor to the reward. If all S contributors in the PGG are R-players, they each obtain a net reward of 2 2

( 1) 0 r c -> , and if all of them are C-players, they obtain nothing. The rewarding system is a second-order social dilemma for 2 r S < because withdrawing one's contribution to the reward fund can increase individual payoff by ( )

2 2 1 / 0 c r S - > .
We note that pool-rewarding itself is another case of weak altruism: an R-player is allowed to obtain a return from contributing to the reward fund. We do not eliminate a return for individuals who choose to contribute to rewards. R-players would be more likely to evolve with it than without it. In the latter case D-players dominate (See Appendix A.1 for details).

Nevertheless, it is not clear whether or not such weakly altruistic, reward system can subsist in the presence of second-order freeloaders. Indeed, the funding stage is set up before the PGG and thus R-players cannot avoid the risk of being exploited by C-players.

We denote the expected payoff values for R-, C-, and D-players with R P , C P , and D P , respectively. The frequencies of the three strategies are expressed as x , y , and z 

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ = - = - = - ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ G G G . ( 1 
)
We first calculate the expected payoffs from the PGG. In the case of WA, a D-player in a group with S contributors obtains a benefit of 1 1 / r c S N ( 0 1 S N ≤ ≤ -). Hence, the expected payoff is given by ( )

1 1 1 1 1 0 1 1 N S N S D S N r c S P z z S N - -- = - ⎛ ⎞ = - ⎜ ⎟ ⎝ ⎠ ∑ 1 1 1 1 (1 ) r c z N ⎛ ⎞ = - - ⎜ ⎟ ⎝ ⎠ , (2a) 
where ( )

1 1 1 S N S N z z S -- - ⎛ ⎞ - ⎜ ⎟ ⎝ ⎠
is the probability that S of 1 Nco-players in the PGG are contributors. In the case of SA, a D-player in the group obtains a benefit of 1 1 / ( 1) r c S N -, and calculating the expected payoff as in Eq. (2a), ( ) ( )

1 1 1 1 D P rc z = -. ( 2b 
1 1 1 / c r N σ = - in the case of WA and 1 c σ =
in the case of SA.

Regarding the reward system, the expected payoff for D-players is 2 0

D P = . A C-player in a
group with S contributors and R n R-players (and thus

R S n - C-players) receives a reward of 2 2 / R r c n S ( 0 1 R n S ≤ ≤ -).
Hence, the expected reward for a C-player in a group with S contributors is

1 1 2 2 2 0 1 ( ) 1 1 R R R n Sn S R C n R S r c n x y P S n z z S -- - = - ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ = ⎜ ⎟⎜ ⎟ ⎜ ⎟ - - ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ∑ , 2 2 1 1 , 1 x r c S z ⎛ ⎞⎛ ⎞ = - ⎜ ⎟⎜ ⎟ - ⎝ ⎠⎝ ⎠ (3) 
where

1 1 1 1 R R n Sn R S x y n z z -- - ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎜ ⎟⎜ ⎟ ⎜ ⎟ - - ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
is the probability that R n of the other 1 Scontributors are R-players. Consequently, the expected reward for a C-player is ( )

1 2 2 1 1 1 ( ) 1 N S N S C C S N P z z P S S - - = - ⎛ ⎞ = - ⎜ ⎟ - ⎝ ⎠ ∑ ( ) 2 2 1 1 1 1 N z x r c N z z ⎛ ⎞ - ⎛ ⎞ = - ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ - - ⎝ ⎠ ⎝ ⎠ . (4) 
Among S contributors, switching from R to C yields ( )

2 2 1 / c r S -
. Thus, the expected net reward for an R-player, 2 R P , is reduced from 2 C P by ( )

1 2 2 2 2 1 1 1 1 1 1 1 1 N N S N S S N r r z c z z c S S N z - - = - ⎛ ⎞ ⎛ ⎞ - ⎛ ⎞ - - = - ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ - - ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ∑ ( ) F z =∶ . (5) 
( ) F z has a unique root z in the open interval (0,1) if, and only if,

2 1 , r N < < because ( ) F z is monotonic, ( ) ( ) 2 2 0 1 / 0 F c r N = -
> , and ( ) ( ) 

( ) ( ) 1 1 2 2 1 (1 ) 1 P c r z c r x = - -+ - G , (6) 
both for the WA and SA cases.

Dynamics

The evolutionary dynamics of the three strategies take place in the state space 

( ) ( ) 2 1 ( ) (1 ) C R xy f P P f f F z z = - - = - - - . (7) 
Substituting (1 ) x f z = and Eq. ( 6) into S , all interior orbits converge to the stable segment (Fig. 1b). If S . Thus, there is no interior fixed point and all interior orbits converge to the vertex R, which is a global attractor (Fig. 2). If 2 r N = , then the edge R-C is a line of fixed points, which consists of an unstable segment ( 0

D z z P P ⎛ ⎞ = - ⎜ ⎟ ⎝ ⎠ G yields ( ) ( ) 2 2 1 [ 1 ] z z z c r f σ = -- - -. (8 
RC x x ≤ <
) and a stable one ( 1

RC x x < ≤ ), where RC
x is given by ( )

2 2 / [ 1 ] c r σ -
as a non-trivial solution of Eq. ( 8). The fact that all interior states satisfy 0 x > leads the population to evolve towards the stable segment. Thus, random drift and occasional invasion of the missing D-player will eventually bring the population to the vertex R, in the long run.

[Fig. 2 is around here] ( )

The mixture equilibrium of the three strategies

2 2 0 /[ 1] 1 f c r σ < = -< ∶
. From Eqs. ( 7) and ( 8), we see that there is a unique interior fixed point ( , , )

Q x y z = , with 1 , (1 ) 1 x f z y f z ⎛ ⎞ ⎛ ⎞ = - = - - ⎜ ⎟ ⎜ ⎟ ⎝ ⎠ ⎝ ⎠ . (9) 
The mixture equilibrium, Q, is a center, i.e., it is neutrally stable and surrounded by closed orbits that fill the interior of 3 S (Fig. 3). This results because the equations of Eqs. ( 7) and ( 8) can be expressed in the form of a Hamiltonian system, H, and now H has a strict maximum at the unique fixed point ( , ) f z corresponding to Q (See Appendix A.2 and [START_REF] Hauert | Replicator dynamics of reward & reputation in public goods games[END_REF] for details). [Fig. 3 is around here]

Discussion

Conflict between contributors and freeloaders in public-goods interactions is inevitable.

How can we avoid conflict between contributors and freeloaders? An effective solution is to set up a reward fund for cooperative behaviors. The key conditions for the reward system necessary to maintain cooperation with free riders in public goods games (PGGs) are given by ( )

2 2 1 c r σ -> , ( 10 
)
where ( )

1 1 1 / c r N σ =
in the case of weak altruism and 1 c σ = in the case of strong altruism. Eq. ( 10) means that the optimum group reward should exceed the cost for a contributor in the PGG, which is relaxed by a self-returning benefit of 1 1 / r c N in the case of weak altruism. In infinite populations, it has been determined that peer-rewarding is a potent motivator, but only if reputation is important [START_REF] Sigmund | Reward and punishment[END_REF][START_REF] Hauert | Replicator dynamics of reward & reputation in public goods games[END_REF]. However, in pool-rewarding, this is not the case. With such attractive rewards, cooperative investments in both the PGG and the reward fund can subsist, even when second-order freeloaders can dominate the rewarding system, i.e., for 2 r N < . In the case, the replicator dynamics exhibit a rock-scissors-paper cycle among the three strategies: defectors who never contribute (first-order freeloaders), cooperators who contribute only in the PGG (second-order freeloaders), and rewarders who contribute to both.

The cyclical evolutionary scenario can be described as follows. If most players are rewarders, the reward system is actually a second-order social dilemma and thus cooperators spread. If cooperators are prevalent, it is better to become a defector due to the social dilemma. If most players are defectors, the number of beneficiaries of the reward is usually small enough to subvert cooperator dominance over rewarders, and thus the number of rewarders increases. If the number of rewarders increases sufficiently, then the second-order dilemma returns. In this scenario, traditional defectors play a pivotal role in maintaining the cyclic domination among the three strategies. The moderate advantage defectors have over cooperators, given by σ, prevents the second-order dilemma from eliminating rewarders and then ensures that rewarders, not cooperators, dominate.

Global environmental and energy issues often appear to be compulsory public goods projects, such that in the short-term cooperation will yield only very little benefit and the social optimum is not to cooperate. The situation is not a social dilemma, and has thus remained outside the scope of studies on the evolution of cooperation in large groups. In our model, this may correspond to the case where 1 0 1 r ≤ < . We remark that the results shown hold even when 1 0 1 r ≤ < , and thus pool-rewarding is applicable to a broader range of public-goods interactions.

We note that in the extreme case where 1 0 r = , our model is significantly similar to an earlier public goods game with optional participation [START_REF] Hauert | Volunteering as red queen mechanism for cooperation in public goods games[END_REF][START_REF] Hauert | Replicator dynamics for optional public goods games[END_REF][START_REF] Semmann | Volunteering leads to rock-paper-scissors dynamics in a public goods game[END_REF]. Indeed, the PGG degenerates into a game in which there is no longer benefit from contribution 1 c . Each player therefore seems to have the option to avoid the participation fee of 1 c , instead of taking part in another PGG with a cost of 2 c and a multiplier of 2 r . This is just an implementation of the inverse form of the loner's option.

A fascinating extension of this work is to consider second-order sanctions [START_REF] Axelrod | An evolutionary approach to norms[END_REF][START_REF] Boyd | Punishment allows the evolution of cooperation (or anything else) in sizable groups[END_REF][START_REF] Kiyonari | Cooperation in the social dilemma: free riding may be thwarted by second-order reward rather than by punishment[END_REF][START_REF] Sigmund | Social learning promotes institutions for governing the commons[END_REF].

Indeed, in our model, it looks practical for the rewarding system to mete out punishment on cooperators (second-order freeloaders) in such a way that will reduce rewards for those [START_REF] Oliver | Rewards and punishments as selective incentives for collective action: theoretical investigations[END_REF].

Let us see how, for instance, reducing rewards to cooperators by % a changes the dynamics. According to preliminary numerical simulations, the existing interior fixed point Q is destabilized (Fig. 4), and for discount rates a higher than a threshold value, the population can converge to a state of 100% rewarders, irrespective of the initial conditions (Fig. 4b). As increasing a crosses the threshold, a new mixture equilibrium P, of cooperators and rewarders, enters the state space 3 S and is unstable within the rewarder-cooperator boundary (See Appendix A.3 for details). If defectors (first-order freeloaders) are absent, the population cannot avoid the resulting coordination problem:

depending on the initial condition, the population evolves to become either 100% rewarders or 100% cooperators. Otherwise, interestingly, the population can make an end run around the bistability and establish the social optimum. It would be a rather intriguing issue for future research to theoretically analyze the result that reward-based cooperation will necessarily become globally stable, whenever it cannot be invaded by second-order freeloaders. By contrast, in the case of pool-punishment, punishment-based cooperation can never become globally stable, even if second-order sanctions are assumed, because a state of 100% first-order freeloaders remain stable [START_REF] Sigmund | Social control and the social contract: the emergence of sanctioning systems for collective action[END_REF].

[Fig. 4 is around here]

One important issue we left out is the effects of economies and diseconomies of scale on the provision of sanctions. So far we have focused on linear cost-benefit functions for rewarding, whereby any group of rewarders generates the same per capita group benefit.

According to Mathew and Boyd [START_REF] Mathew | When does optional participation allow the evolution of cooperation?[END_REF], the existing interior fixed point of the optional public goods game becomes an attractor for decreasing returns and a repeller for increasing returns.

In practice, the rich dynamics afforded by scale would provide many options for the proper design of sanctioning systems to support the evolution of cooperation.

Appendix

A.1. The strongly altruistic rewarding

We here turn to a strongly altruistic variant of pool-rewarding, in which the rewards resulting from an R-player will be shared among other contributors only. We assume that if there exists no other contributor, the investment to the incentive from a single R-player will be exactly refunded to her. The expected reward for a C-player turns into ( )

2 1 2 2 1 1 N C x P r c z z - ⎛ ⎞ = - ⎜ ⎟ - ⎝ ⎠ ,
and that for an R-player is reduced from 2 C P by the expected incentive cost ( )

1 2 1 N c z - - .
Eqs. ( 7) and ( 8) turn into ( )(

)

1 2 1 1 N f c f f z - = - - - , ( 
) ( )

1 2 2 (1 )[ 1 1 ] N z z z c r f z σ - = -- - - -.
Since f is negative in the interior of the state space 3 S , 

1 1 2 2 , 1, 1 1 N f z c r σ - ⎛ ⎞ ⎛ ⎞ ⎜ ⎟ = - ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ - ⎝ ⎠ ⎜ ⎟ ⎝ ⎠
on the edge D-R, which is a source. The vertex D is a sink, while the vertex R still remains a saddle. We consider the z-isocline that is the set where 0 z = : in 

A.2. The Hamiltonian System

Divide the right-hand side of Eqs. ( 7) and ( 8) by the function ( ) 

1 (1 ) f f z z - - , 
( 1) ( ) : , : .

(1 )

c r f F z f g z z l f z z f f σ - - - = =- = =- - -
This transformation corresponds to a change in velocity and does not affect orbit. Let us introduce ( ) ( )

, ( ) H f z G z L f = + ∶
, where ( ) G z and ( ) L f are primitives of ( ) g z and ( ) l f , respectively:

( ) ( ) ( ) ( ) 2 2 22 1 log 1 log 1 r G z c z c r z R z N ⎛ ⎞ = - + - -+ ⎜ ⎟ ⎝ ⎠ , ( ) ( ) ( ) 2 2 log 
[ 1 ]log 1 L f f c r f σ σ = + -- -.
with ( ) R z bounded on [ ] 0,1 . Thus, we obtain the Hamiltonian system

, H H f z z f ∂ ∂ = - = ∂ ∂ .
Because the system is conservative and the Hamiltonian attains a strict global maximum at

( , ) f z if ( ) 2 2 1 0 c r σ --> and 2 1 r N < < , the interior equilibrium Q is a stable point
surrounded by closed orbits. Indeed, all interior orbits are closed: ( ) In the interior of 3 S , there exists at most one fixed point ( , )

G z → -∞ as 0,1 z → if 2 1 r N < < and ( ) L f → -∞ as 0,1 f → if ( ) 2 
Q Q Q f z = such that ( ) 2 2 
(1 ) 1

Q f c r σ ασ α = + - - and ( ) ( ) 2 2 1 Q F z c r = - 1 Q Q f f α α - .
The fact that ( ) F z is monotonically decreasing and ( )

0 Q F z ≥ yields that 0 Q z z < ≤ ,
where z is the unique solution of ( ) 0 > The reward fund can evolve in the presence of second-order free riders.

> Rewarders, second-, and first-order free riders can form a rock-scissors-paper cycle.

> The replicator dynamics can fully be analyzed despite the nonlinear payoff functions.

> The model does not require iterated game, reputation, or optional participation.

  ). The average payoff for the population is given by expected payoff is supposed to be the sum of the payoff from the PGG and from the reward fund. The replicator equations are written as , ,

) 1 RP , resp. 1 CP ) are reduced from 1 DP

 111 Both the expected payoffs for R-and C-players (denoted by , by the cost for a contributor σ:

  Therefore, the advantage C-players have over R-players will change from positive to negative as z increases across z .Integrating the above results, we can determine that = + , and obtain a simple expression for the average payoff for the population

WA and 1 c

 1 . The three homogeneous states in which 100% of the population are R-players ( 1 x = ), C-players ( 1 y = ), and D-players ( 1 z = ) correspond to three vertices of the simplex 3 S (which we denote by R, C, and D, respectively). These are obviously fixed points for the replicator system Eq. (1). There are no other fixed points on the boundary of 3 S for non-degenerate cases. Indeed, on the edge C-Dσ = in the case of SA. Thus, the evolution on the edge C-D is unidirectional from C to D.On the edge R-. The evolution on both edges is unidirectional and its direction depends on the magnitude of the relationship between 2 rand N , and between and σ , respectively.To analyze the dynamics in the interior of 3 S , let us introduce a new variable / (1 ) f x z = -, which represents the fraction of contributors in the PGG that are also rewarders. This yields

  , then the direction of evolution on the edge D-R is from R to D. Eq. (8) yields 0 z > in the interior of 3 S . Thus, there is no interior fixed point and all interior orbits converge to the vertex D, which is a global attractor (Fig.1a). If 2 r N < , the direction of evolution on the edge R-C is from R to C; if 2 r N > and otherwise, it is from C to R; and when 2 r N = , the edge R-C consists of unstable fixed points. We note that if and thus, the edge D-R is a line of fixed points. If 2 r N < , the edge is separated into an unstable segment ( 0 z z ≤ < ) and a stable one ( 1 z z < ≤ ). Since 0 z > holds in the interior of 3

  the edge D-R has no unstable segment. Random drift and occasional invasion of the missing C-player will eventually send the state within the stable segment to the vertex D, in the long run.[Fig.1is around here] the direction of evolution on the edge D-R is from D to R, and from C to R on the edge R-C. The fact that ( ) 0 F z < in the open interval (0,1) yields 0 x > in the interior of 3

  the direction of evolution on the edge D-R is from D to R, and from R to C on the edge R-C. Thus, the three edges of 3 S form a heteroclinic cycle of a rock-scissors-paper type. We now have a unique interior root z of ( ) F z and

Given 1 c , 1 r

 1 , and N , which are all original parameters for the PGG, the location of Q can be determined by the remaining parameters, 2 c and 2 r . According to Eq. (9), the group size, N . As N increases, Q moves toward the vertex D along the line y and 1 z → as N → ∞ . On the other hand, as N decreases, Q moves in the opposite direction and z decreases to

2 c

 2 = ∞ , Q arrives at the vertex D, the edges R-C, D-R, and C-D, respectively.

3 int

 3 , the system has a new equilibrium at ( ) ( )

3 int

 3 component forms a curve that connects the new fixed point and the point ( ) ( ) the edge R-C, and divides 3 int S to two regions: one region where 0 z < and the other where 0 z > . The last one includes the vicinity of the edge C-D given by 0 x = . Since 0 f < holds in 3 int S , any interior orbit which starts in the state with 0 z < has to travel to the region where 0 z > . Hence, all interior orbits converge to the vertex D.

  which is positive for any ( ) , f z in the interior of the unit square [ ]

2 0, 1 A. 3 .

 213 , H → -∞ uniformly near the boundary of [ ] and thus all constant level sets of H are closed curves around ( , ) f z . The solutions have to remain on the constant level sets and thus return to their starting points. The second-order sanctioningWe examine an extensive model in which rewards for cooperators (second-order freeloaders) will be reduced by 100 % α

F, Q exits 3 S, to a heteroclinic cycle on the boundary of 3 S

 33 z = . Q f increases and Q z decreases, with increasing α. This implies that as α increases, Q moves towards the edge R-C. As α R-C through the vertex R, which then turns into a sink. The boundary equilibrium, P, is a saddle point, unstable within the edge and stable to invasion of defectors. As α further increases, P moves towards the vertex C, and when α crosses another threshold Q through P, which then turns into a source. For larger values of α, 3 S has no interior equilibrium but P still remains within the edge. Preliminary numerical simulations imply that Q is a source for α > 0, and all interior orbits converge, if 0
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