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Abstract 1 

Which punishment or rewards are most effective at maintaining cooperation in public 2 

goods interactions and deterring defectors who are willing to freeload on others’ 3 

contribution? The sanction system is itself a public good and can cause problematic 4 

“second-order free riders” who do not contribute to the provisions of the sanctions and thus 5 

may subvert the cooperation supported by sanctioning. Recent studies have shown that 6 

public goods games with punishment can lead to a coercion-based regime if participation in 7 

the game is optional. Here, we reveal that even with compulsory participation, rewards can 8 

maintain cooperation within an infinitely large population. We consider three strategies for 9 

players in a standard public goods game: to be a cooperator or a defector in a standard 10 

public goods game, or to be a rewarder who contributes to the public good and to a fund 11 

that rewards players who contribute during the game. Cooperators do not contribute to the 12 

reward fund and are therefore classified as second-order free riders. The replicator 13 

dynamics for the three strategies exhibit a rock-scissors-paper cycle, and can be analyzed 14 

fully, despite the fact that the expected payoffs are nonlinear. The model does not require 15 

repeated interaction, spatial structure, group selection, or reputation. We also discuss a 16 

simple method for second-order sanctions, which can lead to a globally stable state where 17 

100% of the population are rewarders. 18 

Keywords: evolutionary game theory; cooperation; sanction; second-order social dilemma; 19 

rock-scissors-paper cycle   20 
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1. Introduction 1 

An enduring conundrum in the biological and social sciences is how cooperation can 2 

emerge and be maintained in a sizable group containing exploiters. The conundrum is the 3 

so-called social dilemma [1, 2] because its nature is described as follows: groups of 4 

cooperators outperform groups of defectors, whereas in a mixed group defectors always 5 

outperform cooperators. This represents common conflicts between a social optimum and 6 

individual interests very well, and it has traditionally been modeled as the public goods 7 

game in many experimental and theoretical studies [3]. 8 

In the public goods game (PGG), cooperators confer benefits on others with some cost to 9 

themselves, whereas defectors exploit the benefits without such contribution to others. 10 

Defection is the selfish choice that results in a decrease in the total benefit to the group, but 11 

defection is rational from the evolutionary viewpoint because of a higher individual payoff, 12 

with no cost. Thus, natural selection will often drive elimination of cooperation. Classical 13 

and evolutionary game studies have, however, identified supportive mechanisms under 14 

which cooperation is nonetheless sustained, such as repeated interactions [4, 5], reputation 15 

[6, 7], spatial structure [8, 9], and group selection [10, 11]. 16 

Punishment of defectors and rewards for cooperators are also major factors that maintain 17 

cooperation between self-interested individuals, as suggested by growing experimental and 18 

theoretical evidence [12–32]. However, sanctions are costly, and therefore pose the next 19 

conundrum: how costly sanctioning can subsist in the presence of those who freeload on 20 

others’ contributions to sanctions. This issue is the “second-order social dilemma” [12, 14], 21 

which has been particularly well addressed, in the case of costly punishment. One of 22 

possible solutions is to punish second-order freeloaders as well [13, 15, 24, 32]. 23 

At the same time, there is the issue of how costly punishment can emerge [21, 33]. In a 24 

population of defectors, a rare punisher suffers enormous costs because of the need to 25 

continuously punish defectors. However, recent studies have shown that punishment-based 26 
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cooperation can emerge if participation in the PGG is optional rather than compulsory [20, 1 

21, 26, 32]. We note that optional participation is another way to maintain cooperation 2 

[33–39], which can lead to “rock-scissors-paper”-type cyclic domination, well-known in 3 

evolutionary game theory [40, 41], among cooperators, defectors, and loners who earn a 4 

small but fixed payoff, instead of participating in the PGG [37–39]. Interestingly, Sigmund 5 

et al. [32] have found that when it comes to punishing second-order freeloaders, natural 6 

selection favors pool-punishment rather than peer-punishment. Peer-punishment is a 7 

sanctioning technique which has been the most widely used form of punishment in PGGs in 8 

which players decide whether to impose fines on exploiters after the PGG. By contrast, in 9 

pool-punishment, players have to decide whether to contribute to a punishment fund before 10 

the PGG [14], analogous to forming a volunteer band of watchmen in advance. 11 

While optional participation could be required for a population to evolve from a stalemate 12 

where everybody defects to a coercion-based regime, there problems associated with opting 13 

out of a public goods project, such as global environmental issues, remain [21]. When 14 

participation is compulsory, peer-rewarding can cause cyclical dynamics in infinite 15 

populations if reputation alone is important (for pair-wise interactions see Sigmund et al. 16 

[16]; for interactions of arbitrary size see Hauert [30]). In contrast, reputation is given less 17 

weight in finite populations [29].  18 

In this work, we explore the effects of pool-rewarding in compulsory PGGs with infinite 19 

populations. Similar to pool-punishment, players first decide whether to contribute to a 20 

reward fund. After a one-shot PGG among all group members, the common fund is divided 21 

equally among those players who contributed, irrespective of their contribution to the fund. 22 

While the list of real-world examples of reward funds is too long to list, we shall consider a 23 

generous voluntary fund which may be threatened with collapse by second-order 24 

freeloaders. We propose a minimalistic model for infinite populations that does not require 25 

repeated interactions, reputation, spatial structure, group selection, or optional participation. 26 

We also compare two types of benefit-sharing models, which differ on whether or not a 27 
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contributor in the PGG may oneself benefit, thus corresponding to “weak altruism” and 1 

“strong altruism” [42, 43]. The evolution of cooperation is investigated by means of the 2 

replicator dynamics [40, 41]. 3 

2. The game-theoretical model 4 

Consider an infinitely large, well-mixed population of constant size. From time to time, a 5 
group of N  players is randomly formed from the population (where 2N ≥ ). The PGG is 6 
of a one-shot version. Each player is asked to contribute 1 0c >  to the public good. The 7 
contributions are then distributed in the following different ways: in the case of weak 8 
altruism (WA), the contribution, 1c , will be multiplied by 1 1r >  and then equally shared 9 
among all N  players in the group, but in the case of strong altruism (SA), it will be 10 
shared among 1N −  other co-players only. In both cases, if all group members contribute, 11 
they obtain a payoff of 1 1( 1) 0r c− > . The PGG with SA is a social dilemma for any rate of 12 

1r , and the PGG with WA, also for 1r N< . Indeed, in each case, a player that does not 13 
contribute to the public goods can get an improved payoff by 1c  with SA, and by 14 

( )1 11 / 0c r N− >  with WA, no matter what the other players do. For the PGG with WA, 15 
we assume 1r N< , as the social dilemma would otherwise be completely relaxed due to 16 
the benefits by switching to a contributor.       17 
Next, we introduce the following pool-rewarding mechanism. Before participating in the 18 
PGG, each player is first asked to contribute 2 0c >  to a fund to reward cooperative 19 
behaviors in the PGG. The integrated contribution to the reward fund is multiplied by 20 

2 1r > , and after the PGG distributed equally to those who have contributed to the public 21 
good, if any. 22 
We consider the following three strategies: rewarders (R) who contribute both to the PGG 23 
and to the reward fund, cooperators (C) who contribute to the PGG but not to the reward 24 
fund, and defectors (D) who contribute neither to the PGG nor to the reward. If all S  25 
contributors in the PGG are R-players, they each obtain a net reward of 2 2( 1) 0r c− > , and 26 
if all of them are C-players, they obtain nothing. The rewarding system is a second-order 27 
social dilemma for 2r S<  because withdrawing one’s contribution to the reward fund can 28 
increase individual payoff by ( )2 21 / 0c r S− > . 29 
We note that pool-rewarding itself is another case of weak altruism: an R-player is allowed 30 

to obtain a return from contributing to the reward fund. We do not eliminate a return for 31 

individuals who choose to contribute to rewards. R-players would be more likely to evolve 32 

with it than without it. In the latter case D-players dominate (See Appendix A.1 for details). 33 
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Nevertheless, it is not clear whether or not such weakly altruistic, reward system can subsist 1 

in the presence of second-order freeloaders. Indeed, the funding stage is set up before the 2 

PGG and thus R-players cannot avoid the risk of being exploited by C-players. 3 

We denote the expected payoff values for R-, C-, and D-players with RP , CP , and DP , 4 
respectively. The frequencies of the three strategies are expressed as x , y , and z  5 

( 1x y z+ + = ). The average payoff for the population is given by R C DP xP yP zP= + +
G

. The 6 
strategy’s expected payoff is supposed to be the sum of the payoff from the PGG and from 7 
the reward fund. The replicator equations are written as  8 

,   ,   R C Dx x P P y y P P z z P P⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − = − = −⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

G G G
.                              (1) 9 

We first calculate the expected payoffs from the PGG. In the case of WA, a D-player in a 10 
group with S  contributors obtains a benefit of 1 1 /rc S N  ( 0 1S N≤ ≤ − ). Hence, the 11 
expected payoff is given by 12 

( )
1

1 1 1 1

0

1
1

N
S N S

D
S

N rc SP z z
S N

−
− −

=

−⎛ ⎞
= −⎜ ⎟

⎝ ⎠
∑   13 

1 1
1      1 (1 )r c z
N

⎛ ⎞= − −⎜ ⎟
⎝ ⎠

,                                                (2a) 14 

where ( ) 11
1 S N SN

z z
S

− −−⎛ ⎞
−⎜ ⎟

⎝ ⎠
 is the probability that S  of 1N −  co-players in the PGG 15 

are contributors. In the case of SA, a D-player in the group obtains a benefit of 16 
1 1 / ( 1)r c S N − , and calculating the expected payoff as in Eq. (2a), 17 

( )1
1 1 1DP rc z= − .                                                       (2b)  18 

Both the expected payoffs for R- and C-players (denoted by 1
RP , resp. 1

CP ) are reduced 19 
from 1

DP , by the cost for a contributor σ: ( )1 11 /c r Nσ = −  in the case of WA and 1cσ =  20 
in the case of SA. 21 
Regarding the reward system, the expected payoff for D-players is 2 0DP = . A C-player in a 22 
group with S  contributors and Rn  R-players (and thus RS n−  C-players) receives a 23 
reward of 2 2 /Rr c n S  ( 0 1Rn S≤ ≤ − ). Hence, the expected reward for a C-player in a group 24 
with S  contributors is  25 

11
2 2 2

0

1
( )

1 1

R R

R

n S nS
R

C
n R

S r c nx yP S
n z z S

− −−

=

−⎛ ⎞⎛ ⎞ ⎛ ⎞= ⎜ ⎟⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠⎝ ⎠
∑ ,  26 

2 2
1            1 ,

1
xr c

S z
⎛ ⎞⎛ ⎞= −⎜ ⎟⎜ ⎟−⎝ ⎠⎝ ⎠

              27 
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(3) 1 

where 
11

1 1

R Rn S n

R

S x y
n z z

− −−⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠⎝ ⎠

 is the probability that Rn  of the other 1S −  2 

contributors are R-players. Consequently, the expected reward for a C-player is  3 

( ) 12 2

1

1
1 ( )

1

N
S N S

C C
S

N
P z z P S

S
− −

=

−⎛ ⎞
= −⎜ ⎟−⎝ ⎠
∑   4 

( )2 2
1      1

1 1

Nz xr c
N z z

⎛ ⎞− ⎛ ⎞= −⎜ ⎟⎜ ⎟⎜ ⎟− −⎝ ⎠⎝ ⎠
.              5 

(4) 6 
Among S  contributors, switching from R to C yields ( )2 21 /c r S− . Thus, the expected 7 

net reward for an R-player, 2
RP , is reduced from 2

CP  by 8 

( ) 1 2 2
2 2

1

1 11 1 1
1 1

NN
S N S

S

N r r zc z z c
S S N z

− −

=

− ⎛ ⎞⎛ ⎞ −⎛ ⎞− − = −⎜ ⎟⎜ ⎟ ⎜ ⎟− −⎝ ⎠⎝ ⎠ ⎝ ⎠
∑   9 

                                  ( )F z=∶ .                             (5) 10 

( )F z  has a unique root z  in the open interval (0,1)  if, and only if, 21 ,r N< <  because 11 
( )F z  is monotonic, ( ) ( )2 20 1 / 0F c r N= − > , and ( ) ( )2 21 1 0F c r= − < . Therefore, the 12 

advantage C-players have over R-players will change from positive to negative as z  13 

increases across z . 14 
Integrating the above results, we can determine that 1 2

R R RP P P= + , 1 2
C C CP P P= + , and 15 

1 2
D D DP P P= + , and obtain a simple expression for the average payoff for the population 16 

( ) ( )1 1 2 21 (1 ) 1P c r z c r x= − − + −
G

,                                        (6) 17 
both for the WA and SA cases. 18 
3. Dynamics 19 

The evolutionary dynamics of the three strategies take place in the state space 20 
( ){ }3 , , : , , 0, 1S x y z x y z x y z= ≥ + + = . The three homogeneous states in which 100% of 21 

the population are R-players ( 1x = ), C-players ( 1y = ), and D-players ( 1z = ) correspond to 22 
three vertices of the simplex 3S  (which we denote by R, C, and D, respectively). These 23 
are obviously fixed points for the replicator system Eq. (1). There are no other fixed points 24 
on the boundary of 3S  for non-degenerate cases. Indeed, on the edge C-D: 0x = , 25 

( ) ( ) ( )1 1 0D Cz P P z z z zσ= − − = − > , where ( )1 11 /c r Nσ = −  in the case of WA and 26 

1cσ =  in the case of SA. Thus, the evolution on the edge C-D is unidirectional from C to D. 27 
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On the edge R-C: 0z =  and on the edge D-R: 0y = , resulting in 1 

( ) ( ) ( ) ( )2 21 1 / 1C Ry P P y y c r N y y= − − = − − and 2 

( ) ( ) ( ) ( )2 21 [ 1 ] 1R Dx P P x x c r x xσ= − − = − − − , respectively. The evolution on both edges is 3 
unidirectional and its direction depends on the magnitude of the relationship between 2r  4 
and N , and between ( )2 2 1c r −  and σ , respectively. 5 
To analyze the dynamics in the interior of 3S , let us introduce a new variable 6 

/ (1 )f x z= − , which represents the fraction of contributors in the PGG that are also 7 
rewarders. This yields  8 

( ) ( )2 1 ( )
(1 ) C R

xyf P P f f F z
z

= − − = − −
−

.                                    (7) 9 

Substituting (1 )x f z= −  and Eq. (6) into Dz z P P⎛ ⎞= −⎜ ⎟
⎝ ⎠

G
 yields 10 

( ) ( )2 21 [ 1 ]z z z c r f σ= − − − − .                                           (8) 11 
3.1. The global attractor D 12 

Supposing ( )2 2 1 0c r σ− − < , then the direction of evolution on the edge D-R is from R to 13 

D. Eq. (8) yields 0z >  in the interior of 3S . Thus, there is no interior fixed point and all 14 
interior orbits converge to the vertex D, which is a global attractor (Fig. 1a). If 2r N< , the 15 
direction of evolution on the edge R-C is from R to C; if 2r N>  and otherwise, it is from 16 
C to R; and when 2r N= , the edge R-C consists of unstable fixed points. We note that if 17 

2 1r < , then ( )2 2 1 0c r σ− − <  holds. In the boundary case that ( )2 2 1 0c r σ− − = , 0z =  18 
holds when 1f =  and thus, the edge D-R is a line of fixed points. If 2r N< , the edge is 19 

separated into an unstable segment ( 0 z z≤ < ) and a stable one ( 1z z< ≤ ). Since 0z >  20 
holds in the interior of 3S , all interior orbits converge to the stable segment (Fig. 1b). If 21 

2r N≥ , then the edge D-R has no unstable segment. Random drift and occasional invasion 22 
of the missing C-player will eventually send the state within the stable segment to the 23 
vertex D, in the long run. 24 
[Fig. 1 is around here] 25 

3.2. The global attractor R 26 
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Supposing ( )2 2 1 0c r σ− − >  and 2r N> , then the direction of evolution on the edge D-R 1 

is from D to R, and from C to R on the edge R-C. The fact that ( ) 0F z <  in the open 2 

interval (0,1)  yields 0x >  in the interior of 3S . Thus, there is no interior fixed point and 3 
all interior orbits converge to the vertex R, which is a global attractor (Fig. 2). If 2r N= , 4 
then the edge R-C is a line of fixed points, which consists of an unstable segment 5 
( 0 RCx x≤ < ) and a stable one ( 1RCx x< ≤ ), where RCx  is given by ( )2 2/ [ 1 ]c rσ −  as a 6 

non-trivial solution of Eq. (8). The fact that all interior states satisfy 0x >  leads the 7 
population to evolve towards the stable segment. Thus, random drift and occasional 8 
invasion of the missing D-player will eventually bring the population to the vertex R, in the 9 
long run. 10 
[Fig. 2 is around here]  11 

3.3. The mixture equilibrium of the three strategies 12 

Supposing that ( )2 2 1 0c r σ− − >  and 21 r N< < , the direction of evolution on the edge 13 
D-R is from D to R, and from R to C on the edge R-C. Thus, the three edges of 3S  form a 14 

heteroclinic cycle of a rock-scissors-paper type. We now have a unique interior root z  of 15 

( )F z  and ( )2 20 / [ 1 ] 1f c rσ< = − <∶ . From Eqs. (7) and (8), we see that there is a unique 16 

interior fixed point ( , , )Q x y z= , with 17 

1 ,   (1 ) 1x f z y f z⎛ ⎞ ⎛ ⎞= − = − −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

.                                         (9) 18 

The mixture equilibrium, Q, is a center, i.e., it is neutrally stable and surrounded by closed 19 
orbits that fill the interior of 3S  (Fig. 3). This results because the equations of Eqs. (7) and 20 
(8) can be expressed in the form of a Hamiltonian system, H, and now H has a strict 21 

maximum at the unique fixed point ( , )f z  corresponding to Q (See Appendix A.2 and 22 
[30] for details). 23 
Given 1c , 1r , and N , which are all original parameters for the PGG, the location of Q can 24 
be determined by the remaining parameters, 2c  and 2r . According to Eq. (9), Q lies on 25 

the line (1/ 1)y f x= − , independent of the group size, N . As N  increases, Q moves 26 

toward the vertex D along the line y  and 1z →  as N →∞ . On the other hand, as N  27 

decreases, Q moves in the opposite direction and z  decreases to 22 / 1 0r − > , which 28 
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occurs when 2N = . In other extreme cases, where 2 1r = , 2r N= , ( )2 2 1c r σ− = , and 1 

2c = ∞ , Q arrives at the vertex D, the edges R-C, D-R, and C-D, respectively. 2 
[Fig. 3 is around here] 3 

4. Discussion 4 

Conflict between contributors and freeloaders in public-goods interactions is inevitable. 5 
How can we avoid conflict between contributors and freeloaders? An effective solution is 6 
to set up a reward fund for cooperative behaviors. The key conditions for the reward system 7 
necessary to maintain cooperation with free riders in public goods games (PGGs) are given 8 
by 9 
( )2 2 1c r σ− > ,                                                         (10) 10 

where ( )1 11 /c r Nσ = −  in the case of weak altruism and 1cσ =  in the case of strong 11 
altruism. Eq. (10) means that the optimum group reward should exceed the cost for a 12 
contributor in the PGG, which is relaxed by a self-returning benefit of 1 1 /rc N  in the case 13 
of weak altruism. In infinite populations, it has been determined that peer-rewarding is a 14 
potent motivator, but only if reputation is important [16, 30]. However, in pool-rewarding, 15 
this is not the case. With such attractive rewards, cooperative investments in both the PGG 16 
and the reward fund can subsist, even when second-order freeloaders can dominate the 17 
rewarding system, i.e., for 2r N< . In the case, the replicator dynamics exhibit a 18 
rock-scissors-paper cycle among the three strategies: defectors who never contribute 19 
(first-order freeloaders), cooperators who contribute only in the PGG (second-order 20 
freeloaders), and rewarders who contribute to both. 21 
The cyclical evolutionary scenario can be described as follows. If most players are 22 

rewarders, the reward system is actually a second-order social dilemma and thus 23 

cooperators spread. If cooperators are prevalent, it is better to become a defector due to the 24 

social dilemma. If most players are defectors, the number of beneficiaries of the reward is 25 

usually small enough to subvert cooperator dominance over rewarders, and thus the number 26 

of rewarders increases. If the number of rewarders increases sufficiently, then the 27 

second-order dilemma returns. In this scenario, traditional defectors play a pivotal role in 28 

maintaining the cyclic domination among the three strategies. The moderate advantage 29 

defectors have over cooperators, given by σ, prevents the second-order dilemma from 30 

eliminating rewarders and then ensures that rewarders, not cooperators, dominate. 31 
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Global environmental and energy issues often appear to be compulsory public goods 1 
projects, such that in the short-term cooperation will yield only very little benefit and the 2 
social optimum is not to cooperate. The situation is not a social dilemma, and has thus 3 
remained outside the scope of studies on the evolution of cooperation in large groups. In 4 
our model, this may correspond to the case where 10 1r≤ < . We remark that the results 5 
shown hold even when 10 1r≤ < , and thus pool-rewarding is applicable to a broader range 6 
of public-goods interactions. 7 
We note that in the extreme case where 1 0r = , our model is significantly similar to an 8 
earlier public goods game with optional participation [37, 38, 39]. Indeed, the PGG 9 
degenerates into a game in which there is no longer benefit from contribution 1c . Each 10 
player therefore seems to have the option to avoid the participation fee of 1c , instead of 11 
taking part in another PGG with a cost of 2c  and a multiplier of 2r . This is just an 12 
implementation of the inverse form of the loner’s option. 13 
A fascinating extension of this work is to consider second-order sanctions [13, 15, 24, 32]. 14 
Indeed, in our model, it looks practical for the rewarding system to mete out punishment on 15 
cooperators (second-order freeloaders) in such a way that will reduce rewards for those [12]. 16 
Let us see how, for instance, reducing rewards to cooperators by %a  changes the 17 
dynamics. According to preliminary numerical simulations, the existing interior fixed point 18 
Q is destabilized (Fig. 4), and for discount rates a higher than a threshold value, the 19 
population can converge to a state of 100% rewarders, irrespective of the initial conditions 20 
(Fig. 4b). As increasing a crosses the threshold, a new mixture equilibrium P, of 21 
cooperators and rewarders, enters the state space 3S  and is unstable within the 22 
rewarder-cooperator boundary (See Appendix A.3 for details). If defectors (first-order 23 
freeloaders) are absent, the population cannot avoid the resulting coordination problem: 24 
depending on the initial condition, the population evolves to become either 100% rewarders 25 
or 100% cooperators. Otherwise, interestingly, the population can make an end run around 26 
the bistability and establish the social optimum. It would be a rather intriguing issue for 27 
future research to theoretically analyze the result that reward-based cooperation will 28 
necessarily become globally stable, whenever it cannot be invaded by second-order 29 
freeloaders. By contrast, in the case of pool-punishment, punishment-based cooperation can 30 
never become globally stable, even if second-order sanctions are assumed, because a state 31 
of 100% first-order freeloaders remain stable [44]. 32 
[Fig. 4 is around here] 33 

One important issue we left out is the effects of economies and diseconomies of scale on 34 

the provision of sanctions. So far we have focused on linear cost-benefit functions for 35 

rewarding, whereby any group of rewarders generates the same per capita group benefit. 36 

According to Mathew and Boyd [33], the existing interior fixed point of the optional public 37 

goods game becomes an attractor for decreasing returns and a repeller for increasing returns. 38 
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In practice, the rich dynamics afforded by scale would provide many options for the proper 1 

design of sanctioning systems to support the evolution of cooperation. 2 

 3 

Appendix 4 

A.1. The strongly altruistic rewarding 5 

We here turn to a strongly altruistic variant of pool-rewarding, in which the rewards 6 
resulting from an R-player will be shared among other contributors only. We assume that if 7 
there exists no other contributor, the investment to the incentive from a single R-player will 8 
be exactly refunded to her. The expected reward for a C-player turns into  9 

( )2 1
2 2 1

1
N

C
xP r c z

z
−⎛ ⎞= −⎜ ⎟−⎝ ⎠

, 10 

and that for an R-player is reduced from 2
CP  by the expected incentive cost ( )1

2 1 Nc z −− . 11 
Eqs. (7) and (8) turn into  12 

( )( )1
2 1 1 Nf c f f z −= − − − , 13 

( ) ( )1
2 2(1 )[ 1 1 ]Nz z z c r f z σ−= − − − − − . 14 

Since f  is negative in the interior of the state space 3S , 3int S , there is no interior fixed 15 

point. If ( )2 2 1 0c r σ− − ≤ , then 0z >  holds in 3int S , and thus, all interior orbits 16 
converge to the vertex D.  17 

If ( )2 2 1 0c r σ− − > , the system has a new equilibrium at ( ) ( )

1
1

2 2

, 1, 1
1

N

f z
c r

σ −
⎛ ⎞

⎛ ⎞⎜ ⎟= −⎜ ⎟⎜ ⎟⎜ ⎟−⎝ ⎠⎜ ⎟
⎝ ⎠

 18 

on the edge D-R, which is a source. The vertex D is a sink, while the vertex R still remains 19 

a saddle. We consider the z-isocline that is the set where 0z = : in 3 int S , this is the set 20 

where 
( )( )1

2 2 1 1 N
f

c r z
σ

−
=

− −
. The interior component forms a curve that connects the 21 

new fixed point and the point ( ) ( )2 2

, ,0
1

f z
c r

σ⎛ ⎞
= ⎜ ⎟⎜ ⎟−⎝ ⎠

 on the edge R-C, and divides 3int S  22 
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to two regions: one region where 0z <  and the other where 0z > . The last one includes 1 

the vicinity of the edge C-D given by 0x = . Since 0f <  holds in 3 int S , any interior 2 

orbit which starts in the state with 0z <  has to travel to the region where 0z > . Hence, 3 
all interior orbits converge to the vertex D.   4 
A.2. The Hamiltonian System 5 

Divide the right-hand side of Eqs. (7) and (8) by the function ( )1 (1 )f f z z− − , which is 6 

positive for any ( ),f z  in the interior of the unit square [ ]20,1 . Hence, 7 

( ) ( )2 2( 1)( ) : ,     : .
(1 ) (1 )

c r fF zf g z z l f
z z f f

σ − −−
= = − = = −

− −
  8 

This transformation corresponds to a change in velocity and does not affect orbit. Let us 9 
introduce ( ) ( ), ( )H f z G z L f= +∶ , where ( )G z  and ( )L f  are primitives of ( )g z  and 10 
( )l f , respectively: 11 

( ) ( ) ( ) ( )2
2 2 21 log 1 log 1rG z c z c r z R z

N
⎛ ⎞= − + − − +⎜ ⎟
⎝ ⎠

, 12 

( ) ( ) ( )2 2log [ 1 ]log 1L f f c r fσ σ= + − − − . 13 

with ( )R z  bounded on [ ]0,1 . Thus, we obtain the Hamiltonian system 14 

,     H Hf z
z f

∂ ∂
= − =

∂ ∂
. 15 

Because the system is conservative and the Hamiltonian attains a strict global maximum at 16 

( , )f z  if ( )2 2 1 0c r σ− − >  and 21 r N< < , the interior equilibrium Q  is a stable point 17 

surrounded by closed orbits. Indeed, all interior orbits are closed: ( )G z →−∞  as 0,1 z →  18 

if 21 r N< <  and ( )L f →−∞  as 0,1 f →  if ( )2 20 1c rσ< < − . Hence, H →−∞  19 

uniformly near the boundary of [ ]20,1  and thus all constant level sets of H  are closed 20 

curves around ( , )f z . The solutions have to remain on the constant level sets and thus 21 
return to their starting points. 22 
 23 
 24 
 25 
A.3. The second-order sanctioning 26 

We examine an extensive model in which rewards for cooperators (second-order 27 
freeloaders) will be reduced by 100 %α  ( 0 1α≤ ≤ ), under the assumptions that 28 
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( )2 2 1c r σ− >  and 21 r N< < . In the extension, the expected payoff for a cooperator is 1 
given by  2 

( )
2

2 2
1(1 ) 1

1 1

N

C
z xP r c

N z z
α

⎛ ⎞− ⎛ ⎞= − −⎜ ⎟⎜ ⎟⎜ ⎟− −⎝ ⎠⎝ ⎠
, 3 

and, Eqs. (7) and (8) turn to   4 

( ) ( ) ( )2 21 [ ( 1 ( )) ]f f f F z c r F z fα= − − − − + , 5 

( ) ( ) ( )2 2 2 21 [ 1 ( 1 ( )) (1 )]z z z c r f c r F z f fσ α= − − − − − − + − . 6 
In the interior of 3S , there exists at most one fixed point ( , )Q QQ f z=  such that 7 

( )2 2(1 ) 1Qf c r
σ

ασ α
=

+ − −
 and ( ) ( )2 2 1QF z c r= −  

1
Q

Q

f
f

α
α−

. 8 

The fact that ( )F z  is monotonically decreasing and ( ) 0QF z ≥  yields that 0 Qz z< ≤ , 9 

where z  is the unique solution of ( ) 0F z = . Qf  increases and Qz  decreases, with 10 
increasing α. This implies that as α increases, Q moves towards the edge R-C. As α crosses 11 

a threshold Pα  given by 
( )2 2

(0)
1 (0)

F
c r F− +

, a new equilibrium with 12 

( )
2

2

( , ) ,0
1

N rf z
r Nα

⎛ ⎞−
= ⎜ ⎟⎜ ⎟−⎝ ⎠

 enters the edge R-C through the vertex R, which then turns into a 13 

sink. The boundary equilibrium, P, is a saddle point, unstable within the edge and stable to 14 
invasion of defectors. As α further increases, P moves towards the vertex C, and when α 15 

crosses another threshold Qα  given by (0)
(0)

F
Fσ +

, Q exits 3S  through P, which then 16 

turns into a source. For larger values of α, 3S  has no interior equilibrium but P still 17 
remains within the edge. Preliminary numerical simulations imply that Q is a source for α > 18 
0, and all interior orbits converge, if 0 Pα α< < , to a heteroclinic cycle on the boundary of 19 

3S , and if 1Pα α< ≤ , to the vertex R. 20 
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Figure Captions 1 

Figure 1. Defectors (first-order freeloaders) prevail. Oscillations do not occur and the 2 
interior state space has no fixed point. (a) All interior states evolve towards the vertex D. 3 
(b) In the boundary case that ( )2 2 1 0c r σ− − = , the edge D-R is a line of fixed points. All 4 
interior orbits converge to a stable (lower) segment of the edge. Random drift and 5 
occasional invasion of the missing C-player will eventually send the state to the vertex D. 6 
Parameters: 5N = ; 1 3r = ; 2 1c = ; 2 1.2r =  (a) or 1.4 (b); 0.4σ = ; and 1 1c =  (in the 7 
case of WA), 1 0.4c =  (in the case of SA). 8 
Figure 2. Rewarders prevail. Oscillations do not occur and all interior states evolve 9 
towards the vertex R. The interior state space has no fixed point. Parameters: 5N = ; 10 

1 3r = ; 2 1c = ; 2 5.5r = ; 0.4σ = ; and 1 1c =  (in the case of WA), 1 0.4c =  (in the case 11 
of SA). 12 
Figure 3. Rock-scissors-paper cycles. All three corners of the simplex 3S  are saddle 13 
points and the boundary of 3S  represents a heteroclinic cycle. The interior of 3S  has a 14 
unique fixed point Q , which is a center surrounded by closed orbits. Parameters: 5N = ; 15 

1 3r = ; 2 1c = ; 2 3r = ; 0.4σ = ; and 1 1c =  (in the case of WA), 1 0.4c =  (in the case of 16 
SA).   17 
Figure 4. The effects of second-order sanctions. (a) The existing interior fixed point Q  18 
turns into a repeller by cutting off %a  rewards for cooperators. The population converges 19 
to a heteroclinic cycle on the boundary of 3S . (b) For a sufficiently high a , the vertex R 20 
can be a global attractor. At the same time, 3S  has a boundary fixed point P , which 21 
divides the basins of attraction of rewarders and cooperators on the edge R-C and is stable 22 
if there is an invasion of defectors. Parameters: 5N = ; 1 3r = ; 2 1c = ; 2 3r = ; 0.4σ = ; 23 
and 1 1c =  (in the case of WA), 1 0.4c =  (in the case of SA). The rewards are cut by the 24 
following percentages (a) 10a =  and (b) 20a = .   25 
   26 
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 1 
Highlights 2 
> We investigate how a reward fund affects the evolution of cooperation.  3 
> The reward fund can evolve in the presence of second-order free riders. 4 
> Rewarders, second-, and first-order free riders can form a rock-scissors-paper cycle.  5 
> The replicator dynamics can fully be analyzed despite the nonlinear payoff functions.  6 
> The model does not require iterated game, reputation, or optional participation. 7 
 8 




