Asymptotic Analysis for Schrödinger Hamiltonians via Birkho-Gustavson Normal Form
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Introduction

The topic under consideration in this paper is the computation of the Birkho-Gustavson normal form and its application to the calculation of the quantum mechanical spectra of Schrödinger operators.

An old and important problem in quantum mechanics is the investigation of the discrete spectrum of selfajoint operators. There are several classical methods for the numerical computation of eigenvalues. Many of them amount to writing a nite dimensional approximation of the operator in a suitable basis, and performing numerical diagonalization. It is well known that the choice of basis is delicate and crucial : a bad choice can easily lead to very poor numerical accuracy. With this respect, when quantum Birkho-Gustavson normal form can be used, they generally give excellent results.

(0) 2000 MSC : 58K50, 81S10, 81Q10

The theory of normal forms is one of the theories that allow us to analyse the spectrum of a Hamiltonian near an equilibrium position of a smooth potential. This mathematical theory has a rather long history, dating back to Poincaré, and has received much attention. The rst rigorous set-up, in the framework of Hamiltonian classical mechanics, was given in [START_REF] Birkho | Dynamical systems[END_REF] by Birkho in the case where the quadratic approximation of the hamiltonian is a sum of harmonic oscillators with non-resonant frequencies; it has been extended then to the resonant case by Gustavson [START_REF] Gustavson | On constructing formal integrals of a Hamiltonian system near an equilibrium point[END_REF].

Several physicists in the 1980's have started to think about a quantum version of the Birkho-Gustavson normal form (BGNF). The main idea is based on two steps. The rst one is the classical step: nd the normal form by canonical transformations of the coordinates and momenta; the second one is to quantize this normal form. The rst step is well studied and now considered rather straightforward, but the quantization of the normal form addresses the fundamental question of how to quantize a classical problem in which the coordinates and momenta does not appear in a simple manner. Even in the Birkho-Gustavson procedure, it is not clear a priori which quantization scheme would be the most natural. One can consult for this the works of M. K. Ali [START_REF] Ali | The quantum normal form and its equivalents[END_REF] where he makes the comparison between various notions of quantization.

The BGNF played an important role in classical mechanics in permitting, for example, to investigate the stability of elliptic trajectories [START_REF] Eckhardt | Birkho-Gustavson normal form in classical and quantum mechanics[END_REF]. It has been applied with remarkable success in molecular physics and became a very powerful tool, attested by the excellent numerical results obtained in [START_REF] Swimm | Semiclassical calculations of vibrational energy levels for nonseparable systems using the Birkho-Gustavson normal form[END_REF] and more recently in [START_REF] Joyeux | Gustavson's procedure and the dynamics of highly excited vibrational states[END_REF] and [START_REF] Robert | Canonical perturbation theory versus Born-Oppenheimer-type separation of motions: the vibrational dynamics of C 3[END_REF].

On the mathematics side, the development of sophisticated tools for performing functional analysis in phase space, starting with pseudodifferential operators, microlocal and semiclassical analysis, has been very important for a better understanding and more accurate applications of quantum normal forms. The BGNF for pseudodierential operators near a non-degenerate minimum of the symbol has been used by several authors, see for example the works of Bambusi [START_REF] Bambusi | Semiclassical normal forms[END_REF] about semiclassical normal forms; also the article by Sjöstrand [START_REF] Sjostrand | Semi excited states in nondegenerate potential wells[END_REF] that treats the nonresonant case and the one by Charles and Vu Ngoc [START_REF] Charles | Spectral asymptotics via the semiclassical Birkho normal form[END_REF] for the resonant case.

The goal of this article is to exhibit explicit calculations of the BGNF in some simple resonant situations which can be encountered in physical models, like small molecules. This article is organized as follows :

In section 2, we rst start with recalling the procedure that leads Schrödinger operators P = -h 2 2 ∆ + V (x), when V is a smooth potential, to their Birkho-Gustavson normal form P = Ĥ2 + K, where commutes with the harmonic oscillator Ĥ2 . In this procedure, the quantization and normalization steps are combined at each order, contrary to, for instance, [START_REF] Sjostrand | Semi excited states in nondegenerate potential wells[END_REF], where quantization was applied only after the full classical normal form was obtained.

In section 3, we calculate the BGNF in the 1:1, 1:2 and 1:3 resonances. We introduce the creation and annihilation operators and Bargmann transform and nally we inject everything in Bargmann space. This allows an easy computation of the principal coecients of the normal form in the three cases.

In section 4, one of the main goals of this work, we calculate the spectrum σ(P ) of the operator P thanks to the analysis of the spectrum σ( K) of the restriction of K to the eigenspaces of Ĥ2 . Since Ĥ2 and K commute, one nally gets the spectrum of P , up to a small error term, simply by adding to σ( K) the corresponding explicit eigenvalue of Ĥ2 .

All the results in sections 3 and 4 were carefully done by hand. However, it is clear that the computation of higher order approximations, involving higher order terms of the Birkho-Gustavson normal form, becomes very soon intractable for human abilities. On the other hand, the normal form algorithm is clear enough to be implemented on a computer. We propose in section 5 a program, whose code is available on-line (1) , which is based on the non-commutative calculus of Weyl algebra and that can easily give the quantum Birkho-Gustavson normal form of a given Hamiltonian up to any order.

BGNF theorem

We recall the Birkho-Gustavson normal form theorem, BGNF, which is fundamental for this work.

Consider on L 2 (R n ) the Schrödinger operator

P = - 2 2 ∆ + V (y) (1) 
where > 0, ∆ is the n-dimensional Laplacian and V is a smooth real potential on R n , having a non-degenerate global minimum at 0 which we shall call here the origin. By a linear unitary change of variables in local coordinates near 0, one can assume that the hessian matrix

V ′′ (0) is diagonal, let (ν 2 1 , ..., ν 2 
n ) be its eigenvalues, with ν j > 0. The rescaling

x j =
√ ν j y j transforms P into a perturbation of the harmonic oscillator

Ĥ2 : P = Ĥ2 + W (x) (2) 
(1) http://blogperso.univ-rennes1.fr/san.vu-ngoc/public/divers/ birkhoff_0.4.tgz

with Ĥ2 = n j=1 ν j 2 -2 ∂ 2 ∂x 2 j + x 2 j
, where W (x) is a smooth potential of order O( |x| 3 ) at the origin. We work with the space

E = C[[x, ξ, ]] = C[[x 1 , ..., x n , ξ 1 , ..., ξ n , ]] x = (x 1 , ..., x n ) , ξ = (ξ 1 , ..., ξ n )
of formal power series of (2n + 1) variables with complex coecients, where the degree of the monomial x α ξ β ℓ is dened to be |α|

+ |β| + 2ℓ, α, β ∈ N n , ℓ ∈ N.
Let D N be the nite dimensional vector space spanned by monomials of degree N and O N the subspace of E consisting of formal series whose cocients of degree < N vanish. Let A ∈ E, we shall need in this article the Weyl bracket [., .] W dened on polynomials by :

[f, g] W = σ W ( f g -g f ) , for all f, g ∈ E (3) 
where f and g are the (formal) Weyl quantizations of symbols f and g, and σ W is the complete Weyl symbol map. The Weyl quantization of a polynomial in (x, ξ) consists in replacing x j by the multiplication by x j operator, and ξ j by i ∂ ∂x j , and averaging all the possible orderings of the variables x an ξ. Thus, for instance, the Weyl quantization of x 1 ξ 1 is the dierential operator i (x 1 ∂ ∂x 1 + 1 2 ). Then the bracket dened in (3) can be computed recursively according to the rules [x j , x k ] W = ξ j , ξ k W = [ , x j ] W = , ξ j W = 0 and ξ j , x k W = δ j,k , where δ j,k is the Kronecker index.

The formal quantum Birkho normal form can be expressed as follows :

Theorem 1 (BGNF Theorem) Let H 2 ∈ D 2 and L ∈ O 3 , then there exists A ∈ O 3 and K ∈ O 3 such that : e i -1 ad A (H 2 + L) = H 2 + K (BGNF)
where

K = K 3 + K 4 + ..., with K j ∈ D j commutes with H 2 : [H 2 , K] W = 0
Moreover if H 2 and L have real coecients then A and K can be chosen to have real coecients as well.

Notice that the sum

e i -1 ad A (H 2 + L) = ∞ l=0 1 ℓ! i ad A ℓ (H 2 + L) (4) 
is usually not convergent in the analytic sense, even if L comes from an analytic function, but it is always convergent in the topology of E because the map

B → i ad A (B) = i [A, B] W sends O N into O N +1
The equation (BGNF) is called the Birkho-Gustavson normal form of the operator P at the origin. [START_REF] Bargmann | On a Hilbert Space of Analytic Functions and an Associated Integral Transform, Part I[END_REF] Birkho-Gustavson normal form in the 1:1, 1:2 and 1:3 resonances 3.1 Creation and annihilation operators Let X j denote the operator of multiplication by x j and Y j the operator

∂ ∂x j in L 2 (R n ) . a j ( ) = 1 √ 2 (X j + Y j ) = 1 √ 2 (x j + ∂ ∂x j ) (5) 
b j ( ) = 1 √ 2 (X j -Y j ) = 1 √ 2 (x j - ∂ ∂x j )
are respectively called the operators of creation and annihilation in

L 2 (R n ) .
The operators a j ( ) and b j ( ) formally satisfy :

a * j ( ) = b j ( ) , b * j ( ) = a j ( ) [a j ( ) , b k ( )] = δ jk , [a j ( ) , a k ( )] = 0 , [b j ( ) , b k ( )] = 0
While rewriting Ĥ2 according to a j ( ) and b j ( ) , one gets,

Ĥ2 = n j=1 ν j (a j ( ) b j ( ) - 1 2 ) 
(6)

Bargmann representation

In this paragraph, we recall some standard results concerning the space B F of Bargmann-Fock (simply called the Bargmann space) and the Bargmann transform. For more details one can consult [START_REF] Bargmann | On a Hilbert Space of Analytic Functions and an Associated Integral Transform, Part I[END_REF].

Let us consider the space

B F =    ϕ (z) holomorphic function on C n ; C n |ϕ (z)| 2 dµ n (z) < +∞   
where dµ n (z) is the Gaussian measure dened by dµ n (z) = π -n e -|z| 2

d n z = π -n e -|z| 2
d n xd n y. B F is a Hilbert space when it is equipped with the natural inner product :

< f, g >= C n f (z) g (z)dµ n (z) Theorem 2 ([3]
) There exists a unitary mapping

T B from L 2 (R n ) to B F dened by (T B f ) (z) = 2 n/4 (2π ) 3n/4 R n f (x) e -1 2 (z 2 +x 2 )+ √ 2xz π -n d n x (7) 
T B is called the Bargmann transform.

We recall that Ĥ2 is essentially self-adjoint with a discrete spectrum σ( Ĥ2 ) which consists of the eigenvalues:

λ N = < ν, α > + |ν| 2 = N + |ν| 2 , N =< ν, α >= n j=1 ν j α j ν = (ν 1 , ..., ν n ), α = (α 1 , ..., α n ) ∈ N n and |ν| = n j=1 ν j .
The associated eigenspaces are H N = vect {ψ α (x) ; < ν, α >= N } where

ψ α (x) = e -1 2
x 2 P α (x) are the standard Hermite functions (here P α (x) is a polynomial of degree |α|) which constitute an orthonormal hilbertian basis

{ψ α (x)} α of L 2 (R n ).
Then we have the following theorem :

Theorem 3 The isometry T B sends the functions {ψ α (x)} α∈N n to the functions z α √ α! α∈N n which constitute an orthonormal hilbertian basis of

B F .
In the Bargmann representation of quantum mechanics, physical states are mapped into entire functions of a complex variable z, whereas the creation and annihilation operators play the role of dierentiation and multiplication with respect to z, respectively.

Proposition 4 If we denote by Z j the operator of multiplication by z j and D j the operator ∂ ∂z j on B F , then :

T B (a j ( )) T -1 B = D j and T B (b j ( )) T -1 B = Z j (8) 
The Bargmann transform of the harmonic oscillator is given by

ĤB 2 = T B Ĥ2 T -1 B = n j=1 ν j (z j ∂ ∂z j + 1 2 ) (9) 
and the eigenspace associated to the eigenvalue λ N is the linear subspace spanned by the functions

z α 1 √ α 1 ! z α 2 √ α 2 ! such that ν 1 α 1 + ν 2 α 2 = N : H B N = vect ϕ α = ϕ (α 1 ,α 2 ) = z α 1 √ α 1 ! z α 2 √ α 2 ! ; ν 1 α 1 + ν 2 α 2 = N 3.3 BGNF in the 1:1 resonance
Consider the following harmonic oscillator

Ĥ2 = 1 2 -2 ∂ 2 ∂x 2 1 + x 2 1 + 1 2 -2 ∂ 2 ∂x 2 2 + x 2 2
with symbol

H 2 = |z 1 | 2 + |z 2 | 2 where z j = 1 √ 2 x j + iξ j ; j = 1, 2.
The Bargmann transform of H 2 is given by

ĤB 2 = T B H 2 T -1 B = z 1 ∂ ∂z 1 + z 2 ∂ ∂z 2 + 1
Suppose now we are in the situation of the BGNF theorem (cf. equation ( 2)) : we want to understand the spectrum of an operator of the form H 2 + L, where L is a perturbation term of order at least 3. From the theorem, it is enough to study the spectrum of the normalized perturbation K (see [START_REF] Charles | Spectral asymptotics via the semiclassical Birkho normal form[END_REF]). The crucial question is therefore to compute the rst non-trivial term of the symbol K. Throughout the paper, when K is a formal series in E, we use the notation K j to denote the homogeneous part of degree j, and

K (N ) := K 0 + K 1 + • • • + K N .
Since [H 2 , K 3 ] W = 0 and thus {H 2 , K 3 } = 0, we have

K 3 = 2ℓ+|β|+|γ|=3 c (3) αβ ℓ z α z β such that < ν, β -α >= 0.
In other words, K 3 is a linear combination of order 3 monomials ℓ z α z β such that < ν, βα >= 0.

The condition of 1:1 resonance,

ν 1 = ν 2 = 1, is expressed by < ν, β -α >= 0 ⇔ α 1 + α 2 = β 1 + β 2
(res 1:1)

where α = (α 1 , α 2 ), β = (β 1 , β 2 ) ∈ N 2 .
We notice that no monomial exists in D 3 verifying at the same time |α| + |β| = 3 and the resonance relation (res 1 : 1). This means K 3 = 0. Thus we need to calculate K 4 , as a linear combination of monomials

z α 1 1 z α 2 2 z β 1 1 z β 2
2 of order 4. We check that the couples α = (α 1 , α 2 ) and β = (β 1 , β 2 ) which verify at the same time |α|+|β| = 4 and the resonance relation (res 1 : 1) are :

α = β = (1, 1) , α = β = (2, 0) , α = β = (0, 2) , α = (2, 0) and β = (0, 2) , α = (0, 2) and β = (2, 0)
Thus K 4 is generated by the monomials :

|z 1 | 2 |z 2 | 2 , |z 1 | 4 , |z 2 | 4 , z 2 1 z 2 2 , z 2 1 z 2 2 , 2
Since K is real, one can write

K 4 = λ 1 |z 1 | 4 + λ 2 |z 2 | 4 + λ 3 |z 1 | 2 |z 2 | 2 + λ 4 Re z 2 1 z 2 2 + λ 5 2 (10) 
Evaluation of coecients λ j :

By the BGNF, the order 4 perturbation W 4 turns into a new term K 4 which we will obtain as the projection onto the kernel of ad H 2 of the term

W 4 + i 2 [A 3 , W 3 ] W , (11) 
where A 3 is dened by the relation

W 3 = i ad H 2 (A 3 ) . ( 12 
)
Indeed, applying the theorem 1 of Birkho-Gustavson to

H 2 + W = H 2 + W 3 + W 4 + ..., we obtain polynomials A 3 ∈ D 3 and K 3 ∈ D 3 such as e i -1 ad A 3 (H 2 + W 3 + O 4 ) = H 2 + K 3 + O 4 (13) 
where K 3 and H 2 commute. We have

(13) ⇔ H 2 + W 3 + i [A 3 , H 2 ] W + O 4 = H 2 + K 3 + O 4 .
Since

D 3 = ker i -1 ad H 2 ⊕ Im i -1 ad H 2 , (14) 
we may split

W 3 = W 3,1 + i [H 2 , W 3,2 ] W where W 3,1 ∈ D 3 commutes with H 2 , and W 3,2 ∈ D 3 . Therefore K 3 = W 3,1 and we can set A 3 = W 3,2 ; however, in the 1 : 1 resonance, ker (i -1 ad H 2 ) ∩ D 3 = {0}, hence K 3 = W 1,3 = 0,
and therefore A 3 is dened by the relation [START_REF] Swimm | Semiclassical calculations of vibrational energy levels for nonseparable systems using the Birkho-Gustavson normal form[END_REF]. Now, let

A 3 = |α|+|β|=3 a α,β z α zβ and W 3 = |α|+|β|=3 c α,β z α zβ , then (12) 
gives:

|α|+|β|=3 c α,β z α zβ = i ad H 2 |α|+|β|=3 a α,β z α zβ = i |α|+|β|=3 h < ν, β -α > a α,β z α zβ
from where

a α,β = -i c α,β < ν, β -α > (15)
and from the 1 : 1 resonance relation we obtain

a α,β = -i c α,β β 1 + β 2 -α 1 -α 2 , ∀α, β ∈ N 2 ; |α| + |β| = 3
It remains to nd K 4 ; since K 3 = 0, the normal form writes

e i -1 ad (A 3 +A 4 ) (H 2 + W 3 + W 4 + O 5 ) = H 2 + K 4 + O 5 (16) with [K 4 , H 2 ] = 0.
We have

e i -1 ad (A 3 +A 4 ) (H 2 + W 3 + W 4 + O 5 ) = H 2 + W 3 + W 4 + i [A 3 , H 2 ] W + i [A 4 , H 2 ] W + i [A 3 , W 3 ] W + 1 2! i 2 [A 3 , [A 3 , H 2 ] W ] W + O 5 = H 2 + W 4 + i [A 3 , W 3 ] + i 2 A 3 , i [A 3 , H 2 ] + O 5 because from (12), we have, i [A 3 , H 2 ] W = -i [H 2 , A 3 ] W = -W 3 . So (16) ⇔ W 4 + i [A 4 , H 2 ] W + i [A 3 , W 3 ] W + i 2 A 3 , i [A 3 , H 2 ] W W + O 5 = R 4 + O 5 ⇔ W 4 + i [A 4 , H 2 ] W + i [A 3 , W 3 ] W - i 2 [A 3 , W 3 ] W + O 5 = R 4 + O 5 ⇔ W 4 + i [A 4 , H 2 ] W + i 2 [A 3 , W 3 ] W + O 5 = K 4 + O 5
and therefore K 4 must be the projection onto D 4 ∩ ker (i -1 ad H 2 ), in the splitting (14), of the term

W 4 + i 2 [A 3 , W 3 ] W . (17) 
In order to compute this projection, we express W 3 in terms of the more convenient complex variables :

z j = 1 √ 2 x j + iξ j , so x j = 1 √ 2 (z j + zj ),
and we get, by Taylor expansion:

W 3 = 1 2 √ 2.3! ∂ 3 W (0) ∂x 3 1 (z 1 + z1 ) 3 + ∂ 3 W (0) ∂x 3 2 (z 2 + z2 ) 3 + 3 ∂ 3 W (0) ∂x 2 1 ∂x 2 (z 1 + z1 ) 2 (z 2 + z2 ) + 3 ∂ 3 W (0) ∂x 1 ∂x 2 2 (z 1 + z1 ) (z 2 + z2 ) 2 = 1 2 √ 2.3! ∂ 3 W (0) ∂x 3 1 z 3 1 + 3z 2 1 z1 + 3z 1 z2 1 + z3 1 + ∂ 3 W (0) ∂x 3 2 z 3 2 + 3z 2 2 z2 + 3z 2 z2 2 + z3 2 +3 ∂ 3 V (0) ∂x 2 1 ∂x 2 z 2 1 z 2 + z 2 1 z2 + z2 1 z 2 + z2 1 z2 + 2z 1 z 2 z1 + 2z 1 z1 z2 + 3 ∂ 3 V (0) ∂x 1 ∂x 2 2 z 2 2 z 1 + z 2 2 z1 + z2 2 z 1 + z2 2 z1 + 2z 2 z 1 z2 + 2z 2 z2 z1 .
By the relation (15) we get

A 3 = -i 1 2 √ 2.3! ∂ 3 W (0) ∂x 3 1 - 1 3 z 3 1 -3z 2 1 z1 + 3z 1 z2 1 + 1 3 z3 1 + ∂ 3 W (0) ∂x 3 2 - 1 3 z 3 2 -3z 2 2 z2 + 3z 2 z2 2 + 1 3 z3 2 +3 ∂ 3 W (0) ∂x 2 1 ∂x 2 - 1 3 z 2 1 z 2 -z 2 1 z2 + z2 1 z 2 + 1 3 z2 1 z2 -2z 1 z 2 z1 + 2z 1 z1 z2 + 3 ∂ 3 W (0) ∂x 1 ∂x 2 2 - 1 3 z 2 2 z 1 -z 2 2 z1 + z2 2 z 1 + 1 3 z2 2 z1 -2z 2 z 1 z2 + 2z 2 z2 z1 Now, we must calculate i 2 [A 3 , W 3 ] W . By the Moyal Formula: i 2 [A 3 , W 3 ] W = 1 2 {A 3 , W 3 } - 2 2 3 3! Π 3 (A 3 , W 3 ) + O 5 (18) 
where we use the bidierential operator Π(f, g) := f Πg given by

{f, g} = f Πg = n j=1 ∂f ∂ξ j ∂g ∂x j - ∂f ∂x j ∂g ∂ξ j = -if ← - ∂ ∂ z - → ∂ ∂z - ← - ∂ ∂z - → ∂ ∂ z g ( 19 
)
and

Π 3 = i ← - ∂ 3 ∂ z3 - → ∂ 3 ∂z 3 -3 ← - ∂ 2 ∂ z2 - → ∂ 2 ∂z 2 ← - ∂ ∂z - → ∂ ∂ z + 3 ← - ∂ ∂ z - → ∂ ∂z ← - ∂ 2 ∂z 2 - → ∂ 2 ∂ z2 - ← - ∂ 3 ∂z 3 - → ∂ 3 ∂ z3 (20) = i n j=1 ← - ∂ 3 ∂ z3 j - → ∂ 3 ∂z 3 j -3 ← - ∂ 3 ∂ z2 j ∂z j - → ∂ 3 ∂z 2 j ∂ zj + 3 ← - ∂ 3 ∂ zj ∂z 2 j - → ∂ 3 ∂z j ∂ z2 j - ← - ∂ 3 ∂z 3 j - → ∂ 3 ∂ z3 j
Since A 3 and W 3 are in function of z α zβ , we can compute the Poisson brackets using the following nice formula :

Lemma 5 ∀α, β, α ′ , β ′ ∈ N n : z α zβ , z α ′ zβ ′ = -iz α+α ′ zβ+β ′ n j=1 α j β j α ′ j β ′ j 1 z j zj (21) Particular cases: z α , z β = 0 ; zα , zβ = 0 ; z α , zβ = -iz α zβ n j=1 α j β j 1 z j zj . Proof. z α zβ , z α ′ zβ ′ = -i n j=1 ∂z α 1 1 ...z αn n zβ 1 1 ...z β 1 1 ∂ zj ∂z α ′ 1 1 ...z α ′ n n zβ ′ 1 1 ...z β ′ 1 1 ∂z j - ∂z α 1 1 ...z αn n zβ 1 1 ...z β 1 1 ∂z j ∂z α ′ 1 1 ...z α ′ n n zβ ′ 1 1 ...z β ′ 1 1 ∂ zj = -i n j=1 β j α ′ j z α+α ′ -e j zβ+β ′ -e j -α j β ′ j z α+α ′ -e j zβ+β ′ -e j = -i n j=1 β j α ′ j -α j β ′ j z α+α ′ -e j zβ+β ′ -e j
which gives the result.

After a long but straightforward calculation by hand and via this last lemma, we arrive to gather all monomials of

1 2 {A 3 , W 3 }, that are in K 4 ,
and we obtain:

- 1 2 1 3!2 √ 2 2 60 ∂ 3 W (0) ∂x 3 1 2 + ∂ 3 W (0) ∂x 2 1 ∂x 2 2 |z 1 | 4 +60 ∂ 3 W (0) ∂x 3 2 2 + ∂ 3 W (0) ∂x 2 2 ∂x 1 2 |z 2 | 4 + 72 ∂ 3 W (0) ∂x 3 1 ∂ 3 W (0) ∂x 2 1 ∂x 2 + ∂ 3 W (0) ∂x 3 2 ∂ 3 W (0) ∂x 2 2 ∂x 1 + ∂ 3 W (0) ∂x 3 1 ∂ 3 W (0) ∂x 2 2 ∂x 1 + ∂ 3 W (0) ∂x 3 2 ∂ 3 W (0) ∂x 2 1 ∂x 2 +96 ∂ 3 W (0) ∂x 2 1 ∂x 2 2 + ∂ 3 W (0) ∂x 2 2 ∂x 1 2 |z 1 | 2 |z 2 | 2 -3 ∂ 3 W (0) ∂x 3 1 ∂ 3 W (0) ∂x 2 1 ∂x 2 + ∂ 3 W (0) ∂x 3 2 ∂ 3 W (0) ∂x 2 2 ∂x 1 + ∂ 3 W (0) ∂x 3 1 ∂ 3 W (0) ∂x 2 2 ∂x 1 + ∂ 3 W (0) ∂x 3 2 ∂ 3 W (0) ∂x 2 1 ∂x 2 Re z 2 1 z 2 2
and the second term of (18) is simply

- 2 2 3 3! Π 3 (A 3 , W 3 ) = 1 2 3 3! .192 1 2 √ 2.3! 2 ∂ 3 W (0) ∂x 3 1 2 + ∂ 3 W (0) ∂x 3 2 2 2 = 1 72 
∂ 3 W (0) ∂x 3 1 2 + ∂ 3 W (0) ∂x 3 2 2 2
Let's now, look for all monomials of W 4 that should belong to K 4 .

We have

W 4 (x 1 , x 2 ) = 1 4! ∂ 4 W (0) ∂x 4 1 x 4 1 + ∂ 4 W (0) ∂x 4 2 x 4 2 + 4 ∂ 4 W (0) ∂x 3 1 ∂x 2 x 3 1 x 2 + 4 ∂ 4 W (0) ∂x 3 2 ∂x 1 x 3 2 x 1 + 6 ∂ 4 W (0) ∂x 2 1 ∂x 2 2 x 2 1 x 2 2
We know from (10) that only the monomials x 4 1 , x 4 2 and x 2 1 x 2 2 in W 4 (x 1 , x 2 ) may contribute to K 4 . Now, if we let x j = 1 √ 2 (z j + zj ) , then:

x 4 1 = 1 4 (z 1 + z 1 ) 4 = 1 4 (z 4 1 + 4z 2 1 |z 1 | 2 + 6 |z 1 | 4 in K 4 + 4z 2 1 |z 1 | + z 4 1 ) x 4 2 = 1 4 (z 2 + z 2 ) 4 = 1 4 (z 4 2 + 4z 2 2 |z 2 | 2 + 6 |z 2 | 4 in K 4 + 4z 2 2 |z 2 | + z 4 2 ) x 2 1 x 2 2 = 1 4 (z 1 + z 1 ) 2 (z 2 + z 2 ) 2 = 1 4   z 2 1 z 2 2 + z 2 1 z 2 2 in K 4 + 2z 2 1 |z 2 | 2 + z 2 1 z 2 2 in K 4 + z 2 1 z 2 2 + 2z 2 1 |z 2 | 2 + 2z 2 2 |z 1 | 2 + 2 |z 1 | 2 z 2 2 + 4|z 1 | 2 |z 2 | 2 in K 4  
from where, we get the other part of the terms of K 4 , that is:

1 16 ∂ 4 W (0) ∂x 4 1 |z 1 | 4 + 1 16 ∂ 4 W (0) ∂x 4 2 |z 2 | 4 + 1 4 ∂ 4 W (0) ∂x 2 1 ∂x 2 2 |z 1 | 2 |z 2 | 2 + 1 8 ∂ 4 W (0) ∂x ∂x 2 2 Re z 2 1 z 2 2
nally we gather all terms that are in K 4 , and we obtain the coecients we were looking for:

Theorem 6 The quantum Birkho-Gustavson normal form of the Schrödinger hamiltonian in 1 :

1 resonance H 2 + W is equal to H 2 + K 4 + O 5 with K 4 = λ 1 |z 1 | 4 + λ 2 |z 2 | 4 + λ 3 |z 1 | 2 |z 2 | 2 + λ 4 Re z 2 1 z 2 2 + λ 5 2 ,
where

λ 1 = 1 16 ∂ 4 W (0) ∂x 4 1 - 1 2 1 3!2 √ 2 2 60 ∂ 3 W (0) ∂x 3 1 2 + ∂ 3 W (0) ∂x 2 1 ∂x 2 2 λ 2 = 1 16 
∂ 4 W (0) ∂x 4 2 - 1 2 
1 3!2 √ 2 2 60 ∂ 3 W (0) ∂x 3 2 2 + ∂ 3 W (0) ∂x 2 2 ∂x 1 2 λ 3 = 1 4 ∂ 4 W (0) ∂x 2 1 ∂x 2 2 + 72 ∂ 3 W (0) ∂x 3 1 ∂ 3 W (0) ∂x 2 1 ∂x 2 + ∂ 3 W (0) ∂x 3 2 ∂ 3 W (0) ∂x 2 2 ∂x 1 + ∂ 3 W (0) ∂x 3 1 ∂ 3 W (0) ∂x 2 2 ∂x 1 + ∂ 3 W (0) ∂x 3 2 ∂ 3 W (0) ∂x 2 1 ∂x 2 +96 ∂ 3 W (0) ∂x 2 1 ∂x 2 2 + ∂ 3 W (0) ∂x 2 2 ∂x 1 2 λ 4 = 1 8 ∂ 4 W (0) ∂x 2 1 ∂x 2 2 -3 ∂ 3 W (0) ∂x 3 1 ∂ 3 W (0) ∂x 2 1 ∂x 2 + ∂ 3 W (0) ∂x 3 2 ∂ 3 W (0) ∂x 2 2 ∂x 1 + ∂ 3 W (0) ∂x 3 1 ∂ 3 W (0) ∂x 2 2 ∂x 1 + ∂ 3 W (0) ∂x 3 2 ∂ 3 W (0) ∂x 2 1 ∂x 2 λ 5 = 1 72 
∂ 3 W (0) ∂x 3 1 2 + ∂ 3 W (0) ∂x 3 2 2
The Weyl quantization of K 4 gives a concrete representation of this normal form as a polynomial dierential operator :

K4 = λ 1 x 4 1 + 4 ∂ 4 ∂x 4 1 -2 2 x 2 1 ∂ 2 ∂x 2 1 -4 2 x 1 ∂ ∂x 1 -2 +λ 2 x 4 2 + 4 ∂ 4 ∂x 4 2 -2 2 x 2 2 ∂ 2 ∂x 2 2 -4 2 x 2 ∂ ∂x 2 -2 +λ 3 x 2 1 x 2 2 -2 x 2 1 ∂ 2 ∂x 2 1 -2 x 2 2 ∂ 2 ∂x 2 2 + 4 ∂ 2 ∂x 2 1 ∂ 2 ∂x 2 2 (22) +λ 4 x 2 1 x 2 2 + 2 x 2 1 ∂ 2 ∂x 2 2 + 2 x 2 2 ∂ 2 ∂x 2 1 + 4 ∂ 2 ∂x 2 1 ∂ 2 ∂x 2 2 -4 2 x 1 x 2 ∂ ∂x 1 ∂ ∂x 2 + 2 2 x 1 ∂ ∂x 1 + 2 2 x 2 ∂ ∂x 2 + 2 +λ 5 2
Using the creation and annihilation operators we get:

K4 = 2 2 λ 1 a 2 1 ( ) b 2 1 ( ) + b 2 1 ( ) a 2 1 ( ) -1 +2 2 λ 2 a 2 2 ( ) b 2 2 ( ) b 2 2 ( ) a 2 2 ( ) -1 +2 2 λ ( 3 a 1 ( ) b 1 ( ) a 2 ( ) b 2 ( ) (23) + b 1 ( ) a 1 ( ) b 2 ( ) a 2 ( ) - 1 2 +2 2 λ 4 [a 2 1 ( ) b 2 2 ( ) + a 2 2 ( ) b 2 1 ( )]) +λ 5 2
and by using Bargmann representation, we get

KB 4 = T B K 4 T -1 B = 2 2 λ 1 1 + 4z 1 ∂ ∂z 1 + 2z 2 1 ∂ 2 ∂z 2 1 +λ 2 1 + 4z 2 ∂ ∂z 2 + 2z 2 2 ∂ 2 ∂z 2 2 +λ 3 1 + z 1 ∂ ∂z 1 + z 2 ∂ ∂z 2 + 2z 1 z 2 ∂ 2 ∂z 1 ∂z 2 +λ 4 z 2 1 ∂ 2 ∂z 2 2 + z 2 2 ∂ 2 ∂z 2 1 +λ 5 2 = 2 2 2λ 1 z 2 1 ∂ 2 ∂z 2 1 + 2λ 2 z 2 2 ∂ 2 ∂z 2 2 + 2λ 3 z 1 z 2 ∂ 2 ∂z 1 ∂z 2 + λ 4 z 2 1 ∂ 2 ∂z 2 2 + z 2 2 ∂ 2 ∂z 2 1 + (4λ 1 + λ 3 ) z 1 ∂ ∂z 1 + (4λ 2 + λ 3 ) z 2 ∂ ∂z 2 + λ 1 + λ 2 + λ 3 + λ 5 2 (24) 
3.4 BGNF in the 1:2 resonance (Fermi resonance)

Let

H 2 = 1 2 -2 ∂ 2 ∂x 2 1 + x 2 1 + -2 ∂ 2 ∂x 2 2 + x 2 2
with symbol

H 2 = |z 1 | 2 + 2 |z 2 | 2
where z j = 1 √ 2 x j + iξ j ; j = 1, 2. The Bargmann transform of H 2 is given by

H B 2 = T B H 2 T -1 B = z 1 ∂ ∂z 1 + 2z 2 ∂ ∂z 2 + 3 2
Since [H 2 , K 3 ] W = 0, and thus {H 2 , K 3 } = 0, it is sucient to calculate

K 3 = 2ℓ+|β|+|γ|=3 c (3) αβ ℓ z α z β such that < ν, β -α >= 0.
The condition of 1:2 resonance, ν 1 = 1, ν 2 = 2, is expressed by

< ν, β -α >= 0 ⇔ α 1 + 2α 2 = β 1 + 2β 2 (res 1:2) where α = (α 1 , α 2 ),β = (β 1 , β 2 ) ∈ N 2 .
To obtain K 3 , it is necessary to look for all monomials of order 3 that satisfy the Fermi resonance relation (res 1 : 2). The couples α = (α 1 , α 2 ) and β = (β 1 , β 2 ) which verify at the same time |α| + |β| = 3 and the resonance relation (res 1 : 2) are : α = (0, 1) and β = (2, 0) α = (2, 0) and β = (0, 1) Thus, K 3 is generated by the monomials

z 2 z 2 1 , z 2 1 z 2
Since K is real, we can write

K 3 = µ Re(z 2 1 z 2 ) = µ 2 (z 2 z 2 1 + z 2 1 z 2 ), µ ∈ R (25) 
Evaluation of coecient µ :

The term of third degree in Taylor series of W near the origine is

W 3 (x 1 , x 2 ) = 1 3! ∂ 3 W (0) ∂x 3 1 x 3 1 + ∂ 3 W (0) ∂x 3 2 x 3 2 + 3 ∂ 3 W (0) ∂x 2 1 ∂x 2 x 2 1 x 2 + 3 ∂ 3 W (0) ∂x 2 2 ∂x 1 x 2 2 x 1 where W (x 1 , x 2 ) = j 3 W j (x 1 , x 2 )
given in formula (2). If we put x j = 1 √ 2 (z j + z j ) , We remark that, only the coecient of x 2 1 x 2 in W 3 (x 1 , x 2 ) corresponds to the coecient of K 3 , because:

x 2 1 x 2 = 1 2 √ 2   z 2 1 z 2 + z 2 1 z 2 + z 2 1 z 2 in K 3 + z 2 1 z 2 + 2 |z 1 | 2 z 2 + 2 |z 1 | 2 z 2  
we obtain, the term in K 3 :

1 2 . 1 2 √ 2 ∂ 3 W (0) ∂x 2 1 ∂x 2 (z 2 1 z 2 + z 2 1 z 2 ) = 1 2 √ 2 ∂ 3 W (0) ∂x 2 1 ∂x 2 Re(z 2 1 z 2 )
Theorem 7 The quantum Birkho-Gustavson normal form of the Schrödinger

hamiltonian in 1 : 2 resonance H 2 + W is equal to H 2 + K 3 + O 4 with K 3 = µ Re(z 2 1 z 2 )
where

µ = 1 2 √ 2 ∂ 3 W (0) ∂x 2 1 ∂x 2
The calculation of K3 Weyl quantization of K 3 give us:

K3 = µ Re (z 2 1 z 2 ) = x 2 1 x 2 -2 2 x 1 ∂ ∂x 1 ∂ ∂x 2 + 2 x 2 ∂ 2 ∂x 2 1 -2 ∂ ∂x 2
Using the creation and annihilation operators we get,

K3 = √ 2µ 3/2 a 2 ( ) b 2 1 ( ) + a 2 1 ( ) b 2 ( ) (26) 
and by using Bargmann representation, we get

K B 3 = T B K 3 T -1 B = √ 2µ 3/2 z 2 ∂ 2 ∂z 2 1 + z 2 1 ∂ ∂z 2 (27) 
3.5 BGNF in the 1:3 resonance Now, we consider

H 2 = 1 2 -2 ∂ 2 ∂x 2 1 + x 2 1 + 3 2 -2 ∂ 2 ∂x 2 2 + x 2 2
with symbol

H 2 = |z 1 | 2 + 3 |z 2 | 2
where z j = 1 √ 2 x j + iξ j ; j = 1, 2. The Bargmann transform of H 2 is given by

H B 2 = T B H 2 T -1 B = z 1 ∂ ∂z 1 + 3z 2 ∂ ∂z 2 + 2
The condition of 1:3 resonance, ν 1 = 1, ν 2 = 3 is expressed by the resonance relation :

< ν, β -α >= 0 ⇔ α 1 + 3α 2 = β 1 + 3β 2 (res 1:3) where α = (α 1 , α 2 ), β = (β 1 , β 2 ) ∈ N 2
We see that no monomial exists in D 3 verifying at the same time |α| + |β| = 3 and the resonance relation (res 1 : 3) .This means K 3 = 0. Thus, we need to calculate K 4 ∈ D 4 satisfying the relation (res 1 : 3) .

We check that the couples α = (α 1 , α 2 Thus, K 4 is generated by the monomials :

|z 1 | 4 , |z 2 | 4 , |z 1 | 2 |z 2 | 2 , z 3 1 z 2 , z 3 1 z 2 , 2 since K is real, on can write K 4 = γ 1 |z 1 | 4 + γ 2 |z 2 | 4 + γ 3 |z 1 | 2 |z 2 | 2 + γ 4 Re z 3 1 z 2 + γ 5 2 (28)
Evaluation of the coecients γ j : We have to calculate

A 3 = |α|+|β|=3 a α,β z α zβ
where the coecients a α,β are given by the formula (15) , we get:

A 3 = -i 1 2 √ 2.3! ∂ 3 W (0) ∂x 3 1 - 1 3 z 3 1 -3z 2 1 z1 + 3z 1 z2 1 + 1 3 z3 1 + ∂ 3 W (0) ∂x 3 2 - 1 9 z 3 2 -z 2 2 z2 + z 2 z2 2 + 1 9 z3 2 +3 ∂ 3 W (0) ∂x 2 1 ∂x 2 - 1 5 z 2 1 z 2 + z 2 1 z2 -z2 1 z 2 + 1 5 z2 1 z2 - 2 3 z 1 z 2 z1 + 2 3 z 1 z1 z2 + 3 ∂ 3 W (0) ∂x 1 ∂x 2 2 - 1 7 z 2 2 z 1 - 1 5 z 2 2 z1 + 1 5 z2 2 z 1 + 1 7 z2 2 z1 -2z 2 z 1 z2 + 2z 2 z2 z1
By the same way as in the 1 : 1 resonance, a long straightforward calculation by hand and via Lemma 5, we arrive to gather all terms of i 2 [A 3 , W 3 ] W , that are in K 4 , and we obtain:

- 1 2 1 3!2 √ 2 2 60 ∂ 3 W (0) ∂x 3 1 2 + 684 15 
∂ 3 W (0) ∂x 2 1 ∂x 2 2 |z 1 | 4 + 20 ∂ 3 W (0) ∂x 3 2 2 + 2484 35 
∂ 3 W (0) ∂x 2 2 ∂x 1 2 |z 2 | 4 + 72 ∂ 3 W (0) ∂x 3 1 ∂ 3 W (0) ∂x 2 1 ∂x 2 + ∂ 3 W (0) ∂x 2 2 ∂x 1 +24 ∂ 3 W (0) ∂x 3 2 ∂ 3 W (0) ∂x 2 1 ∂x 2 + ∂ 3 W (0) ∂x 2 2 ∂x 1 + 864 35 ∂ 3 W (0) ∂x 2 2 ∂x 1 2 - 288 5 
∂ 3 W (0) ∂x 2 1 ∂x 2 2 |z 1 | 2 |z 2 | 2 + 432 5 
∂ 3 W (0) ∂x 2 1 ∂x 2 ∂ 3 W (0) ∂x 1 ∂x 2 2 -24 ∂ 3 W (0) ∂x 3 1 ∂ 3 W (0) ∂x 2 1 ∂x 2 Re z 2 1 z 2 2 + 1 72 
∂ 3 W (0) ∂x 3 1 2 + 1 216 ∂ 3 W (0) ∂x 3 2 2 2
Now, for the calculation of all monomials of W 4 that should belong in K 4 , we remark from (28) that only the monomials x 4

1 , x If we let x j = 1 √ 2 (z j + zj ) , then:

x 3 1 x 2 = 1 4 (z 3 1 z 2 +z 3 1 z 2 in K 4 +3z 2 1 z 1 z 2 +3z 2 1 z 1 z 2 +3z 1 z 2 1 z 2 +3z 1 z 2 1 z 2 +z 3 1 z 2 in K 4 +z 3 1 z 2 )
therefore, the coecient of Re (z 3 1 z 2 ) is exactly:

1 24 ∂ 4 W (0) ∂x 3 1 ∂x 2
nally we gather all terms that are in K 4 , and we obtain the coecients we were looking for:

Theorem 8 The quantum Birkho-Gustavson normal form of the Schrödinger hamiltonian in 1 :

3 resonance H 2 + W is equal to H 2 + K 4 + O 5 with K 4 = γ 1 |z 1 | 4 + γ 2 |z 2 | 4 + γ 3 |z 1 | 2 |z 2 | 2 + γ 4 Re z 3 1 z 2 + γ 5 2
where

γ 1 = 1 16 ∂ 4 W (0) ∂x 4 1 - 1 2 1 3!2 √ 2 2 60 ∂ 3 W (0) ∂x 3 1 2 + 684 15 
∂ 3 W (0) ∂x 2 1 ∂x 2 2 γ 2 = 1 16 
∂ 4 W (0) ∂x 4 2 - 1 2 1 3!2 √ 2 2 20 ∂ 3 W (0) ∂x 3 2 2 + 2484 35 
∂ 3 W (0) ∂x 2 2 ∂x 1 2 γ 3 = 1 12 
∂ 4 W (0) ∂x 2 1 ∂x 2 2 - 1 2 1 3!2 √ 2 2 72 ∂ 3 W (0) ∂x 3 1 ∂ 3 W (0) ∂x 2 1 ∂x 2 + ∂ 3 W (0) ∂x 2 2 ∂x 1 +24 ∂ 3 W (0) ∂x 3 2 ∂ 3 W (0) ∂x 2 1 ∂x 2 + ∂ 3 W (0) ∂x 2 2 ∂x 1 + 864 35 ∂ 3 W (0) ∂x 2 2 ∂x 1 2 - 288 5 
∂ 3 W (0) ∂x 2 1 ∂x 2 2 γ 4 = 1 24 ∂ 4 W (0) ∂x 3 1 ∂x 2 - 1 2 1 3!2 √ 2 2 ∂ 3 W (0) ∂x 2 1 ∂x 2 432 5 ∂ 3 W (0) ∂x 1 ∂x 2 2 -24 ∂ 3 W (0) ∂x 3 1 γ 5 = 1 72 ∂ 3 W (0) ∂x 3 1 2 + 1 216 ∂ 3 W (0) ∂x 3
The Weyl quantization of Re (

z 3 1 z 2 ) is Re (z 3 1 z 2 ) = x 3 1 x 2 -4 ∂ 3 ∂x 3 1 ∂ ∂x 2 -3 2 x 1 ∂ ∂x 1 ∂ ∂x 2 -3 2 x 1 ∂ ∂x 2 -3 2 x 1 x 2 ∂ 2 ∂x 2 1 -3 2 x 2 ∂ ∂x 1
The Weyl quantization of the rest of K 4 is already calculated in 1:1 resonance.

Using the creation and annihilation operators we get,

Re (z 3 1 z 2 ) = 2 2 a 3 1 ( ) b 2 ( ) + b 3 1 ( ) a 2 ( ) So, K4 = 2 2 γ 1 a 2 1 ( ) b 2 1 ( ) + b 2 1 ( ) a 2 1 ( ) -1 +2 2 γ 2 a 2 2 ( ) b 2 2 ( ) b 2 2 ( ) a 2 2 ( ) -1 +2 2 γ 3 (a 1 ( ) b 1 ( ) a 2 ( ) b 2 ( ) + b 1 ( ) a 1 ( ) b 2 ( ) a 2 ( ) - 1 2 
(29)

+2 2 γ 4 a 3 1 ( ) b 2 ( ) + b 3 1 ( ) a 2 ( ) +γ 5 2
The Bargmann representation give us: In this section we analyse the spectrum of the restriction of K4 to the eigenspace of H 2 by computing the matrix elements KB 4 (ϕ α ) .

K B 4 = T B K 4 T -1 B = 2 2 γ 1 1 + 4z 1 ∂ ∂z 1 + 2z 2 1 ∂ 2 ∂z 2 1 + γ 2 1 + 4z 2 ∂ ∂z 2 + 2z 2 2 ∂ 2 ∂z 2 2 + γ 3 1 + z 1 ∂ ∂z 1 + z 2 ∂ ∂z 2 + 2z 1 z 2 ∂ 2 ∂z 1 ∂z 2 + γ 4 z 2 ∂ 3 ∂z 3 1 + z ∂ ∂z 2 + γ 5 2 = 2 2 2γ 1 z 2 1 ∂ 2 ∂z 2 1 + 2γ 2 z 2 2 ∂ 2 ∂z 2 2 + 2γ 3 z 1 z 2 ∂ 2 ∂z 1 ∂z 2 + γ 4 z 2 ∂ 3 ∂z 3 1 + z 3 1 ∂ ∂z 2 (30) 
+ (4γ 1 + γ 3 ) z 1 ∂ ∂z 1 + (4γ 2 + γ 3 ) z 2 ∂ ∂z 2 + γ 1 + γ 2 + γ 3 + γ 2 4 
First we have,

∂ϕ (α 1 ,α 2 ) ∂z 1 = ∂ ∂z 1 z α 1 1 √ α 1 ! z α 2 2 √ α 2 ! = α 1 z α 1 -1 1 √ α 1 ! z α 2 2 √ α 2 ! = √ α 1 z α 1 -1 1 (α 1 -1)! z α 2 2 √ α 2 ! = √ α 1 ϕ (α 1 -1,α ) ∂ 2 ϕ (α 1 ,α 2 ) ∂z 2 1 = √ α 1 √ α 1 -1ϕ (α 1 -2,α 2 ) ∂ϕ (α 1 ,α 2 ) ∂z 2 = √ α 2 ϕ (α 1 ,α 2 -1) ∂ 2 ϕ (α 1 ,α 2 ) ∂z 2 2 = √ α 2 √ α 2 -1ϕ (α 1 ,α 2 -2) ∂ 2 ϕ (α 1 ,α 2 ) ∂z 1 ∂z 2 = √ α 1 √ α 2 ϕ (α 1 -1,α 2 -1)
and

z 1 ϕ (α 1 ,α 2 ) = z 1 z α 1 1 √ α 1 ! z α 2 2 √ α 2 ! = z α 1 +1 1 √ α 1 ! z α 2 2 √ α 2 ! = √ α 1 + 1 z α 1 +1 1 (α 1 + 1)! z α 2 2 √ α 2 ! = √ α 1 + 1ϕ (α +1,α 2 ) z 2 1 ϕ (α 1 ,α 2 ) = √ α 1 + 2 √ α 1 + 1ϕ (α 1 +2,α 2 ) z 2 ϕ (α 1 ,α 2 ) = √ α 2 + 1ϕ (α 1 ,α 2 +1) z 2 2 ϕ (α 1 ,α 2 ) = √ α 2 + 2 √ α 2 + 1ϕ (α 1 ,α 2 +2) z 1 z 2 ϕ (α 1 ,α 2 ) = √ α 1 + 1 √ α 2 + 1ϕ (α 1 +1,α 2 +1) Thus, KB 4 ϕ (α 1 ,α 2 ) = 2 2 (2λ 1 z 2 1 ∂ 2 ϕ (α 1 ,α 2 ) ∂z 2 1 + 2λ 2 z 2 2 ∂ 2 ϕ (α 1 ,α 2 ) ∂z 2 2 + 2λ 3 z 1 z ∂ 2 ϕ (α 1 ,α 2 ) ∂z 1 ∂z 2 +λ 4 [z 2 2 ∂ 2 ϕ (α 1 ,α 2 ) ∂z 2 1 + z 2 1 ∂ 2 ϕ (α 1 ,α 2 ) ∂z 2 2 ] + (4λ 1 + λ 3 ) z ∂ϕ (α 1 ,α 2 ) ∂z 1 + (4λ 2 + λ 3 ) z 2 ∂ϕ (α 1 ,α 2 ) ∂z 2 + λ 1 + λ 2 + λ 3 + λ 5 2 ϕ (α 1 ,α 2 ) ) = 2 2 (2λ 1 z 2 1 α 1 (α 1 -1)ϕ (α 1 -2,α 2 ) + 2λ 2 z 2 2 α 2 (α -1)ϕ (α 1 ,α 2 -2) +2λ 3 z 1 z 2 √ α 1 α 2 ϕ (α 1 -1,α 2 -1) + λ 4 (z 2 2 α 1 (α 1 -1)ϕ (α 1 -2,α 2 ) +z 2 1 α 2 (α 2 -1)ϕ (α 1 ,α 2 -2) ) + (4λ 1 + λ 3 ) z 1 √ α 1 ϕ (α 1 -1,α 2 ) + (4λ 2 + λ 3 ) z 2 √ α 2 ϕ (α 1 ,α 2 -1) + λ 1 + λ 2 + λ 3 + λ 5 2 ϕ (α 1 ,α 2 ) ) = 2 2 2λ 1 α 1 (α 1 -1) ϕ (α 1 ,α 2 ) + 2λ 2 α 2 (α 2 -1) ϕ (α 1 ,α 2 ) + 2λ 3 α 1 α 2 ϕ (α 1 ,α 2 ) +λ 4 α 1 (α 1 -1)(α 2 + 1)(α 2 + 2)ϕ (α 1 -2,α 2 +2) + (α 1 + 1)(α 1 + 2)α 2 (α 2 -1)ϕ (α 1 +2,α 2 -2) ) + (4λ 1 + λ 3 ) α 1 ϕ (α 1 ,α 2 ) + (4λ 2 + λ 3 ) α 2 ϕ (α 1 ,α 2 ) + λ 1 + λ 2 + λ 3 + λ 5 2 ϕ (α 1 ,α 2 ) = 2 2 λ 4 α 1 (α 1 -1)(α 2 + 1)(α 2 + 2)ϕ (α 1 -2,α 2 +2) + [2λ 1 α 1 (α 1 -1) + 2λ 2 α 2 (α 2 -1) + 2λ 3 α 1 α 2 + (4λ 1 + λ 3 ) α 1 + (4λ 2 + λ 3 ) α 2 + λ 1 + λ 2 + λ 3 + λ 5 2 ϕ (α 1 ,α 2 ) + λ 4 (α 1 + 1)(α 1 + 2)α 2 (α 2 -1)ϕ (α 1 +2,α 2 -2)
We see that the basis H B N is stable by KB 4 because,

α 1 -2 + (α 2 + 2) = α 1 + α 2 = N and α 1 + 2 + (α 2 -2) = α 1 + α 2 = N where H B N = ϕ (N -ℓ,ℓ) ; ℓ = 0, 1, ..., E N 2 .
One can verify easily that the matrix K B 4 in H B N is symetric. Indeed,

K B 4 ϕ (α 1 +2,α 2 -2) = 4 2 [λ 4 (α 1 + 2) (α 1 + 1) (α 2 -1) α 2 ϕ (α 1 ,α 2 ) + (2λ 1 (α 1 + 2) (α 1 + 1) + 2λ 2 (α 2 -2) (α 2 -3) +2λ 3 (α 1 + 2) (α 2 -2) + (4λ 1 + λ 3 ) (α 1 + 2) + (4λ 2 + λ 3 ) (α 2 -2) + λ 1 + λ 2 + λ 3 + λ 5 2 )ϕ (α 1 +2,α 2 -2) +λ 4 (α 1 + 4) (α 1 + 3) (α 2 -2) (α 2 -3)ϕ (α 1 +4,α 2 -4) ]
One gets,

K B 4 ϕ (N -ℓ,ℓ) = 4 2 λ 4 (ℓ + 1) (ℓ + 2) (N -ℓ) (N -ℓ -1)ϕ (N -ℓ-2,ℓ+2) +(2λ 1 (N -ℓ) (N -ℓ -1) + 2λ 2 ℓ (ℓ -1) + λ 3 (N -ℓ) ℓ (31) + (4λ 1 + λ 3 ) (N -ℓ) + (4λ 2 + λ 3 ) ℓ + λ 1 + λ 2 + λ 3 + λ 5 2 )ϕ (N -ℓ,ℓ) + λ 4 ℓ (ℓ -1) (N -ℓ + 1) (N -ℓ + 2)ϕ (N -ℓ+2,ℓ-2)
Thus, Proposition 9 The matrix of K B 4 , in the basis H B N is :

2 2             d N,0 A N,0 . . . Proposition 10 The matrix of K B 3 in the basis H B N is: √ 2µ 3 2             0 m 0 . . . m 0 0 . . . . . . 0 • • • . . . 0 m ℓ • • • • • • m ℓ 0 . . . 0 . . . 0 . . . . . . . . . 0             (34) 
where for ℓ = 0, 1, ..., E N

2

:

m ℓ = (ℓ + 1) (N -2ℓ) (N -2ℓ -1)
In the case of Fermi resonance, the half integer powers of are present, the coecient of 3/2 is then the average along the ow of H 2 of the term of order 3 in the Taylor expansion of the symbol.

4.3

Spectrum in the 1:3 resonance

We have,

∂ 3 ϕ (α 1 ,α 2 ) ∂z 3 1 = √ α 1 √ α 1 -1 √ α 1 -2ϕ (α 1 -3,α 2 ) z 3 1 ϕ (α 1 ,α 2 ) = √ α 1 + 3 √ α 1 + 2 √ α 1 + 1ϕ (α 1 +3,α 2 )
then,

z 3 1 ∂ϕ (α 1 ,α 2 ) ∂z 2 + z 2 ∂ 3 ϕ (α 1 ,α 2 ) ∂z 3 1 = (α 1 + 3)(α 1 + 2)(α 1 + 1)α 2 ϕ (α 1 +3,α 2 -1) + α 1 (α 1 -1)(α 1 -2)(α 2 + 1)ϕ (α 1 -3,α 2 +1)
Therefore,

K B 4 ϕ (α 1 ,α 2 ) = 2 2 γ 4 α 1 (α 1 -1) (α 1 -2) (α 2 + 1)ϕ (α 1 -3,α 2 +1) +(2γ 1 α 1 (α 1 -1) + 2γ 2 α 2 (α 2 -1) + 2γ 3 α 1 α 2 + (4γ 1 + γ 3 ) α 1 + (4γ 2 + γ 3 ) α 2 + γ 1 + γ 2 + γ 3 + γ 5 2 )ϕ (α 1 ,α 2 ) +γ 4 (α 1 + 3) (α 1 + 2) (α 1 + 1) α 2 ϕ (α 1 +3,α 2 -1)
The basis

H B N = ϕ (N -3ℓ,ℓ) ; ℓ = 0, 1, ..., E N 2 is stable by K B 4 because, α 1 +3+3 (α 2 -1) = α 1 +3α 2 = N and α 1 -3+3 (α 2 + 1) = α 1 +3α 2 = N
and the matrix of K B 4 in H B N is symetric since

K B 4 ϕ (α 1 +3,α 2 -1) = 2 2 γ 4 (α 1 + 3) (α 1 + 2) (α 1 + 1) α 2 ϕ (α 1 ,α 2 ) + (2γ 1 (α 1 + 3) (α 1 + 2) + 2γ 2 (α 2 -1) (α 2 -2) + 2γ 3 (α 1 + 3) (α 2 -1) + (4γ 1 + γ 3 ) (α 1 + 3) + (4γ 2 + γ 3 ) (α 2 -1) + γ 1 + γ 2 + γ 3 + γ 5 2 ϕ (α 1 +3,α 2 -1) +γ 4 (α 1 + 6) (α 1 + 5) (α 1 + 4) (α 2 -1)ϕ (α 1 +6,α 2 -2)
So one gets,

K B 4 ϕ (N -3ℓ,ℓ) = 2 2 γ 4 (ℓ + 1) (N -3ℓ) (N -3ℓ -1) (N -3ℓ -2)ϕ (N -3ℓ-3,ℓ+1) +[2γ 1 (N -3ℓ) (N -3ℓ -1) + 2γ 2 ℓ (ℓ -1) + 2γ 3 ℓ (N -3ℓ) (35) 
+ (4γ 1 + γ 3 ) (N -3ℓ) + (4γ 2 + γ 3 ) ℓ + γ 1 + γ 2 + γ 3 + γ 5 2 ]ϕ (N -3ℓ,ℓ) + γ 4 ℓ (N -3ℓ + 1) (N -3ℓ + 2) (N -3ℓ + 3)ϕ (N -3ℓ+3,ℓ-1)
and therefore, Proposition 11 The matrix of K B 4 in the basis H B N is :

2 2             d ′ N,0 B N,0 . . . B N,0 d ′ N,1 . . . . . . . . . 0 • • • . . . . . . B N,ℓ-1 • • • • • • . . . d ′ N,ℓ B N,ℓ . . . 0 B N,ℓ d ′ N,ℓ+1 . . . . . . . . . . . . . . .             (36) 
where for ℓ = 0, 1, ..., E N

2 :    B N,ℓ = γ 4 (ℓ + 1) (N -3ℓ) (N -3ℓ -1) (N -3ℓ -2) d ′ N,ℓ = (2γ 1 (N -3ℓ) 2 + 2γ 2 ℓ 2 + 2γ 3 ℓ (N -3ℓ) + (3γ 1 + γ 3 ) (N -3ℓ) + (3γ 2 + γ 3 ) ℓ + γ 1 + γ 2 + γ 3 + γ 5 2 )
5 An eective Quantum BGNF program

We have implemented the Quantum Birkho-Gustavson normal form in the computer language ocaml (2) , which is a fast and very expressive functional language, particularly well adapted to mathematical constructions.

Overview of the code

The code consists of three modules : Math, Weyl and Birkhoff. The Math module is a functorial interface that denes the axioms of general (non-commutative) associative algebras over an abelian eld. This permits the use of the same code for dierent coecient rings: real numbers, complex numbers, rationals, or even formal series. For instance, we may declare that we use complex coecients using the simple line :

open Math.ComplexNumbers;;

The Weyl module implements the Weyl algebra for formal series E dened in Section 2, endowed with the non-commutative Moyal product. Internally, series are stored in hash tables, and the module provides a way to convert them to/from a text representation. The number of variables is arbitrary, it need not be specied. For instance the 1 : 2-oscillator

h2 = 1 2 (x 2 1 + ξ 2 1 ) + (x 2 2 + ξ 2 2 )
will be printed as follows:

Weyl.print_poly h2;; 1 h^0 x^() ξ^(0,2) 1 h^0 x^(0,2) ξ^() 0.5 h^0 x^() ξ^(2) 0.5 h^0 x^(2) ξ^()

For convenience, we also wrote a Maple module that can use copypasted text directly to/from Maple notation : Maple.of_poly h2;; -: string = "0.5

*x[1]^2+0.5*xi[1]^2+1*x[2]^2+1*xi[2]^2"
As a simple example, the code below computes the Moyal bracket of x 3 and ξ 3 which is the Weyl symbol of the operator bracket 

Thus we nd

i h [x 3 , ξ 3 ] W = 3
The Birkhoff module is the core of the normal form algorithm. It implements the proof of Theorem 1 that appears in [START_REF] Charles | Spectral asymptotics via the semiclassical Birkho normal form[END_REF]. It involves an induction where each step consists in solving a cohomological equation. Only Moyal brackets, additions, and multiplication by scalar are used. Here is the code for the induction step : If h=k+r, where h is the initial quantum Hamiltonian (or Weyl symbol), k is the normalisation at order n-1 and r is the remainder (of order n, then the function birkhoff_step computes the next-order normalization : h=k'+r', where r' is of order n+1.

For simplicity, we have assumed in this code that the quadratic hamiltonian is of the form

H 2 = ν 1 x ′ 1 ξ ′ 1 +• • •+ν n x ′ n ξ ′
n : this amounts to writing H 2 in terms of creation and annihilation operators as in [START_REF] Eckhardt | Birkho-Gustavson normal form in classical and quantum mechanics[END_REF]. In order to deal with harmonic oscillators in real variables (x j , ξ j ) as in [START_REF] Bambusi | Semiclassical normal forms[END_REF], we need to use the change of variables x ′ j = 1 √ 2 (x j + iξ j ), ξ ′ j = 1 √ 2 (x jiξ j ).

We have implemented this change of variables in the code. It has now the required form

H 2 = x ′ 1 ξ ′ 1 +3x ′ 2 ξ ′ 2 .
We add now a simple perturbation W = (x 2 ) 3 , which we convert to complex coordinates : We have obtained the normalized Hamiltonian kz. We convert it back to real coordinates (x j , ξ j ) and print it : Reordering terms, we get 2 ) 2 . It remains to compare to the theoretical results of section 3.5 (Theorem 8), which predicts:

K = 1 2 x 2 1 + 1 2 ξ 2 1 + 3 
K 4 = γ 1 |z 1 | 4 + γ 2 |z 2 | 4 + γ 3 |z 1 | 2 |z 2 | 2 + γ 4 Re z 3 1 z 2 + γ 5 2
Using that W (x 1 , x 2 ) = x 3 2 , we see from the formulas in Theorem 8 that only the coecients γ 2 and γ 5 don't vanish; we obtain: 

K 4 = γ 2 |z 2 | 4 + γ 5 2 = - 1 

  ) and β = (β 1 , β 2 ) which verify at the same time |α| + |β| = 4 and the resonance relation (res 1 : 3) are : α = β = (1, 1) , α = β = (2, 0) , α = β = (0, 2) , α = (3, 0) and β = (0, 1) , α = (0, 1) and β = (3, 0)

i [x 3

 3 , ( i ∂ ∂x ) 3 ]. let x3 = Maple.to_poly "x[1]^3" in let xi3 = Maple.to_poly "xi[1]^3" in let c = Weyl.crochet x3 xi3 in Maple.of_poly c;; -: string = "1.5*h^2+-9*x[1]^2*xi[1]^2"

  let birkhoff_step order freq k r = let n = ordre r in let (rn, _) = get_homog r n in let (kn, an) = split freq rn in let newh = exp_ad an (add k r) order and k' = add k kn in let r' = add newh (coeff_mult C.mone k') in proj_order ~check:true r' (n+1); (k', r')

5 . 2

 52 Numerical results for the 1 : 3 resonance We may dene H 2 using Maple notation as follows : let h2 = Maple.to_poly "0.5*x[1]^2+0.5*xi[1]^2+1.5*x[2]^2+1.5*xi[2]^2";; Then we convert it to complex coordinates : let h2z = coordz h2;; Maple.of_poly h2z;; -: string = "1*x[1]^1*xi[1]^1+3*x[2]^1*xi[2]^1"

3 .

 3 let w = Maple.to_poly "x[2]^3";; let wz = coordz w;; Maple.of_poly vz;; -: string = "1.06066*x[2]^1*xi[2]^2+0.353553*x[2]^3+ 1.06066*x[2]^2*xi[2]^1+0.353553*xi[2]^3" Thus we have, in complex coordinates (x ′ j , ξ ′ j ) : and nally we may consider the hamiltonian H = H 2 + W : let hz = Weyl.add h2z vz;; Now we dene the frequency vector [1; 3], and we may apply the Birkho procedure at order 4 : let freq = [| one; of_int 3 |];; let kz = birkhoff freq hz 4;;

  let k = coordx kz;; Maple.of_poly k;; -: string = "0.5*x[1]^2+0.5*xi[1]^2+0.166667*h^2+-0.625*x[2]^2*xi[2]^2+-0.3125*x[2]^4+ -0.3125*xi[2]^4+1.5*x[2]^2+1.5*xi[2]^2"

  in W 4 (x 1 , x 2 ) may contribute to K 4 . The calculation of coecients of |z 1 | 4 , |z 2 | 4 and |z 1 | 2 |z 2 | 2 is already do in the 1 : 1 resonance. What remains us to calculate, that is the one of Re (z 3 1 z 2 ) .

	4 2 , x 2 1 x 2 2 and x 3 1 x 2

  +O 6 = H 2 +K 4 +O 6

	2 2 where K 4 = 1 x 2 2 + 3 2 ξ 2 2 + 1 6 2 -5 8 x 2 2 ξ 2 2 -5 16 x 4 2 -5 16 ξ 4 6 2 -5 8 x 2 2 ξ 2 2 -5 16 x 4 2 -5 16 ξ 4 2 = 1 6 2 -5 16 (x 2 2 + ξ 2

  which conrms the computer output.Of course, we can ask the program to give the normalization at any given order. For instance here is what we get at order 8 :

			2		1 3!2 √	2	2	20	∂ 3 W (0) ∂x 3 2	2 1 4	x 4 2 + ξ 4 2 + 2x 2 2 ξ 2 2
		+	216 1	2 ∂x 3 ∂ 3 W (0)	2	2					
		= -	1 2		1 3!2 √	2	2	20.36.	1 4	x 4 2 + ξ 4 2 + 2x 2 2 ξ 2 2 +	1 216	.36. 2
		= -	5 16	x 4 2 + ξ 4 2 + 2x 2 2 ξ 2 2 +	6 1	2
	hence,															
		H 2 + K 4 =	1 2	x 2 1 +	1 2	ξ 2 1 +	3 2	x 2 2 +	3 2	ξ 2 2 -	5 16	x 4 2 -	5 16	ξ 4 2 -	5 8	x 2 2 ξ 2 2 +	1 6	2 ,
	-	K = -5 16 ξ 4 1 2 2 + ξ 2 1 + 1 6 2 ξ 2 2 -235 384 x 2 2 ξ 4 3 2 ξ 2 2 + 2 -5 8 x 2 1 2 2 ξ 2 x 2 1 + 2 -2 -235 384 x 4 2 ξ 2 16 3 x 2 2 2 5 x 4 2 2 -235 1152 100205 2 + ξ 6 395 576 ξ 8 235 1152 38585 -165888 2 + 41472 2 ξ 4 2 -128 243 4 -38585 41472 x 2 2 ξ 6 2 -38585 x 6 2 + 27648 x 4 2 ξ 4 395 576 2 --38585 165888 x 8 2 + 100205 20736 2 x 2 2 ξ 2 2 + 100205 41472 2 x 4 2 + O 10	2 x 2 2 38585 41472	x 6 2 ξ 2 2

[START_REF] Bambusi | Semiclassical normal forms[END_REF] http://caml.inria.fr/index.en.html

-9x 2 ξ 2 .

where, for ℓ = 0, 1, ..., E N 2

By computing KB 3 (ϕ α ) , we get

we see that the basis

Thus, (33)