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Abstract

This article reviews the Birkhoff-Gustavson normal form theorem (BGNF)
near an equilibrium point of a quantum Hamiltonian. The BGNF process is
thereafter used to investigate the spectrum of Schrodinger operators in the
1:1, 1:2 and 1:3 resonances. A computer program is proposed to compute the
coefficients of the BGNF up to any order.

Key words and phrases : Birkhoff Normal Form, Harmonic oscillator,
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1 Introduction

The topic under consideration in this paper is the computation of the
Birkhoff-Gustavson normal form and its application to the calculation
of the quantum mechanical spectra of Schrodinger operators.

An old and important problem in quantum mechanics is the investi-
gation of the discrete spectrum of selfajoint operators. There are several
classical methods for the numerical computation of eigenvalues. Many of
them amount to writing a finite dimensional approximation of the oper-
ator in a suitable basis, and performing numerical diagonalization. It is
well known that the choice of basis is delicate and crucial : a bad choice
can easily lead to very poor numerical accuracy. With this respect, when
quantum Birkhoff-Gustavson normal form can be used, they generally
give excellent results.

(02000 MSC : 58K50, 81510, 81Q10



The theory of normal forms is one of the theories that allow us to
analyse the spectrum of a Hamiltonian near an equilibrium position of a
smooth potential. This mathematical theory has a rather long history,
dating back to Poincaré, and has received much attention. The first rig-
orous set-up, in the framework of Hamiltonian classical mechanics, was
given in [4] by Birkhoff in the case where the quadratic approximation
of the hamiltonian is a sum of harmonic oscillators with non-resonant
frequencies; it has been extended then to the resonant case by Gustavson
18].

Several physicists in the 1980’s have started to think about a quan-
tum version of the Birkhoff-Gustavson normal form (BGNF). The main
idea is based on two steps. The first one is the classical step: find the
normal form by canonical transformations of the coordinates and mo-
menta; the second one is to quantize this normal form. The first step is
well studied and now considered rather straightforward, but the quan-
tization of the normal form addresses the fundamental question of how
to quantize a classical problem in which the coordinates and momenta
does not appear in a simple manner. Even in the Birkhoff-Gustavson
procedure, it is not clear a priori which quantization scheme would be
the most natural. One can consult for this the works of M. K. Ali [1]
where he makes the comparison between various notions of quantization.

The BGNF played an important role in classical mechanics in per-
mitting, for example, to investigate the stability of elliptic trajectories
[6]. Tt has been applied with remarkable success in molecular physics
and became a very powerful tool, attested by the excellent numerical
results obtained in [12] and more recently in [9] and [10].

On the mathematics side, the development of sophisticated tools for
performing functional analysis in phase space, starting with pseudodif-
ferential operators, microlocal and semiclassical analysis, has been very
important for a better understanding and more accurate applications
of quantum normal forms. The BGNF for pseudodifferential operators
near a non-degenerate minimum of the symbol has been used by several
authors, see for example the works of Bambusi [2] about semiclassical
normal forms; also the article by Sjostrand [I1] that treats the non-
resonant case and the one by Charles and Vu Ngoc [5] for the resonant
case.

The goal of this article is to exhibit explicit calculations of the BGNF
in some simple resonant situations which can be encountered in physical
models, like small molecules. This article is organized as follows :

In section 2, we first start with recalling the procedure that leads
Schrodinger operators P = —%QA + V (z), when V is a smooth poten-

tial, to their Birkhoff-Gustavson normal form P = H, + K, where K



commutes with the harmonic oscillator Hs. In this procedure, the quan-
tization and normalization steps are combined at each order, contrary
to, for instance, [I1], where quantization was applied only after the full
classical normal form was obtained.

In section 3, we calculate the BGNF in the 1:1, 1:2 and 1:3 resonances.
We introduce the creation and annihilation operators and Bargmann
transform and finally we inject everything in Bargmann space. This
allows an easy computation of the principal coefficients of the normal
form in the three cases.

In section 4, one of the main goals of this work, we calculate the
spectrum o(P) of the operator P thanks to the analysis of the spectrum

o(K) of the restriction of K to the eigenspaces of Hy. Since Hy and K
commute, one finally gets the spectrum of P, up to a small error term,
simply by adding to a(f( ) the corresponding explicit eigenvalue of H,.

All the results in sections 3 and 4 were carefully done by hand. How-
ever, it is clear that the computation of higher order approximations,
involving higher order terms of the Birkhoff-Gustavson normal form, be-
comes very soon intractable for human abilities. On the other hand, the
normal form algorithm is clear enough to be implemented on a computer.
We propose in section 5 a program, whose code is available on—lin
which is based on the non-commutative calculus of Weyl algebra and
that can easily give the quantum Birkhoff-Gustavson normal form of a
given Hamiltonian up to any order.

2 BGNF theorem

We recall the Birkhoff-Gustavson normal form theorem, BGNF, which
is fundamental for this work.
Consider on L? (R™) the Schrodinger operator

h?

where A > 0, A is the n—dimensional Laplacian and V' is a smooth real
potential on R", having a non-degenerate global minimum at 0 which
we shall call here the origin. By a linear unitary change of variables in
local coordinates near 0, one can assume that the hessian matrix V" (0)
is diagonal, let (v, ...,v2) be its eigenvalues, with v; > 0. The rescaling
r; = ,/V;y; transforms P into a perturbation of the harmonic oscillator
ffg : R

(Whttp://blogperso.univ-rennesi.fr/san.vu-ngoc/public/divers/
birkhoff_0.4.tgz
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i n . P
with Hy = ) % (—hz% + x?), where W (x) is a smooth potential of
j=1 g

order O( |z|*) at the origin.
We work with the space

E=Clz,& h) =Clzy, .., xn, &y oy &y A
r=(21,.. ), &= (&1, &)

of formal power series of (2n + 1) variables with complex coefficients,
where the degree of the monomial z*¢°h¢ is defined to be |a| + | 3| + 2¢,
a,8 €N ¢ eN.

Let Dy be the finite dimensional vector space spanned by monomials
of degree N and Oy the subspace of £ consisting of formal series whose
cofficients of degree < NN vanish. Let A € £, we shall need in this article
the Weyl bracket [, .];;, defined on polynomials by :

[f, 9l = ow(fG—Gf) , for all f,g€ & (3)

where f and § are the (formal) Weyl quantizations of symbols f and g,
and oy is the complete Weyl symbol map. The Weyl quantization of a
polynomial in (z,&) consists in replacing z; by the multiplication by z;
operator, and §; by ’%%, and averaging all the possible orderings of the
variables z an £. Thus, for instance, the Weyl quantization of x,&; is the
differential operator %(xla%l + 3). Then the bracket defined in (3) can
be computed recursively according to the rules [z;, x4y, = [fj,ﬁk}w =
(7, 5]y, = [h, @}W =0 and [éj, xk]w = 0, where 6, is the Kronecker
index.

The formal quantum Birkhoff normal form can be expressed as fol-
lows :

Theorem 1 (BGNF Theorem) Let Hy € Dy and L € Os, then there
erists A € Oz and K € O3 such that :
"l (Hy + L) = Hy + K (BGNF)
where K = K3+ K4+ ..., with K; € Dj commutes with Hy :
[H2, Ky =0

Moreover if Hy and L have real coefficients then A and K can be chosen
to have real coefficients as well.



Notice that the sum

- > 1 /i ¢

ezh’ adp (H2 + L) = Z g— (ﬁ(ldA) (Hg + L) (4)
=0

is usually not convergent in the analytic sense, even if L comes from
an analytic function, but it is always convergent in the topology of £
because the map B — fada(B) = ;[A, Blw sends Oy into Oy

The equation (BGNF) is called the Birkhoff-Gustavson normal form
of the operator P at the origin.

3 Birkhoff-Gustavson normal form in the 1:1, 1:2
and 1:3 resonances
3.1 Creation and annihilation operators

Let X, denote the operator of multiplication by z; and Y; the operator
2 in L?(R").
J

1 1 0

a; (h)= Tor (X; +1Y;) = —75(%‘ + h—axj) (5)
1 1 0

bj (h) = —% (X; —hY)) = —%(%‘ - ha—%)

are respectively called the operators of creation and annihilation in
L? (R™).
The operators a; (k) and b; (k) formally satisfy :
aj (h)=b; (k) , b} (h)=a;(h)

[aj (B) bk ()] =05 [a; (h),ax (M)] =0, [b; (), bk (R)] =0
While rewriting H, according to a; (h) and b, (k) , one gets,

1

H, = hZVj(aj (R) b (R) = 5) (6)

3.2 Bargmann representation

In this paragraph, we recall some standard results concerning the space
Br of Bargmann-Fock (simply called the Bargmann space) and the
Bargmann transform. For more details one can consult [3].

Let us consider the space



Br = ¢ ¢ (z) holomorphic function on C" ; /|g0 (2)|* dpu,, (2) < 400

where dp,, (2) is the Gaussian measure defined by dpu,, (2) = rre A dny =
2

s ”e’%d"xd”y. Bz is a Hilbert space when it is equipped with the nat-
ural inner product :

< fg>= /f 7@ ()

Theorem 2 ([3]) There exists a unitary mapping Ty from L? (R™) to
B defined by

TL/4 l 2 2
(Tsf) () = — G / f (@) et R g, ()

Ty is called the Bargmann transform.

We recall that Hy is essentially self-adjoint with a discrete spectrum
o(H3) which consists of the eigenvalues:

| V| -
)\N:h(<1/,a>+7 =h N—|—7 ,N:<y70z>zzyjaj

j=1

n
v=(v1,...,Vp), @ = (a1,....,0,) € N"and |v| = Zyj.

The associated eigenspaces are Hy = vect {1, (x) ; <v,a >= N} where
¥, (z) = e 27" P, (z) are the standard Hermite functions (here P,(z) is
a polynomial of degree |a|) which constitute an orthonormal hilbertian
basis {¢, (z)}, of L* (R™).

Then we have the following theorem :

Theorem 3 The isometry T sends the functions {¢, (x)} to the

unctions 4 4— which constitute an orthonormal hilbertian basis o
/ol
B @) aeNn
f.

aeN”

In the Bargmann representation of quantum mechanics, physical
states are mapped into entire functions of a complex variable z, whereas
the creation and annihilation operators play the role of differentiation
and multiplication with respect to z, respectively.

6



Proposition 4 If we denote by Z; the operator of multiplication by z;

and D; the operator % on Br, then :
J

Ts(a; (h)Tg' = D; and Tg(b; (h)T5' = Z; (8)

The Bargmann transform of the harmonic oscillator is given by

i N i o 1
HE = Ty (H2> T5' = by vilzis—+3) 9)
j=1 !

and the eigenspace associated to the eigenvalue Ay is the linear subspace
21 z92

spanned by the functions ot vadT such that viay + vocg = N :

HE = vect = —Z—OHZ—OQ'I/ + =N
= Pa = Plar,a) = 10 T Vg =

\/(11! \/(12! ’
3.3 BGNF in the 1:1 resonance

Consider the following harmonic oscillator

with symbol

where z; = \/Lﬁ (:cj + ifj) ;7 =1,2.

The Bargmann transform of H, is given by

AE = Ty (H2> T = h <216% + zza% + 1)

Suppose now we are in the situation of the BGNF theorem (cf. equa-
tion (2)) : we want to understand the spectrum of an operator of the
form Hg—l—f, where L is a perturbation term of order at least 3. From the
theorem, it is enough to study the spectrum of the normalized pertur-
bation K (see [5]). The crucial question is therefore to compute the first
non-trivial term of the symbol K. Throughout the paper, when K is a
formal series in £, we use the notation K to denote the homogeneous
part of degree j, and K™ .= Ko+ K; + -+ Ky.

Since [Hs, K3y, = 0 and thus {Hs, K3} = 0, we have

K; = Z cg’ﬂ)hezazﬁ such that < v, —a >=0.
204|B|+|v]=3



In other words, K3 is a linear combination of order 3 monomials A‘2*Z"
such that < v, —a >=0.

The condition of 1:1 resonance, v; = vy = 1, is expressed by

<v,f—a>=0&a;+ay =0+ 5, (res 1:1)
where o = (ala&Z)a 5 = (61752) € N2'

We notice that no monomial exists in D3 verifying at the same time
la| + 8] = 3 and the resonance relation (res 1 : 1). This means K3 = 0.
Thus we need to calculate K4, as a linear combination of monomials
201292701202 of order 4. We check that the couples @ = (v, ) and
B = (B4, B,) which verify at the same time |«|+|3| = 4 and the resonance

relation (res 1: 1) are :

:5:(171>7 a:5:<270)7 a:ﬁ:<072)>
—(2,0) and 8= (0,2), a = (0,2) and = (2,0)
Thus K, is generated by the monomials :

BN N ET R A - S

Since K is real, one can write
Ky=M|ai|" + X |zo]" + As |21 |22” + M Re (2323) + Ash? - (10)

Evaluation of coefficients \; :

By the BGNF, the order 4 perturbation W, turns into a new term
K4 which we will obtain as the projection onto the kernel of ady, of the
term

Wit oAy, Wl (1)
where Aj is defined by the relation
7
W3 = —adH2 (Ag) . (12)

h

Indeed, applying the theorem 1 of Birkhoff-Gustavson to Hy + W =
Hy + W3+ W, + ..., we obtain polynomials As € D3 and K3 € D3 such
as

eiﬁ—ladA3 (H2 + W3 + 04) — H2 + K3 + (94 (13)

where K3 and Hy commute. We have

.@HQ‘FW;;—{— [Ag,HQ} +O4:H2—|—K3+O4.

h



Since
D5 = ker (ihady,) ® Im (ih~ " ady,) (14)

we may split W5 = W3 —I—% [Hy, W3]y, where Wy, € Dy commutes with
Hy, and W39 € Ds. Therefore K3 = W3 and we can set Az = Wi ;
however, in the 1 : 1 resonance, ker (ih *adp,) N D3 = {0}, hence K3 =
W13 =0, and therefore Aj is defined by the relation ([12)).
Now, let A3 = Y a,p2*2 and Wy = > ¢,52°7°, then
. ol +1Bl=3 ol +151=3
gives:

l
ST Capz®Z’ = —ady, ST e 277
lal-+151=3 h lal+151=3
?
=+ S h<v,B—a>a,32°%
laf+[8]=3

from where c
. .3
Ayg = —— 15
b <v,f—a> (15)

and from the 1 : 1 resonance relation we obtain

Ca,8

Qo p = Vo, eN?: |a|+|p] =3

It remains to find Ky; since K3 = 0, the normal form writes
6ihilad(A3+A4) (H2 + W3+ W, + 05) =Hy+ K4+ Os (16)

with [Ky4, Hy] = 0. We have

1
h [ i_i[A‘l?HQ]W

L1 ?
A3,W3] 2' (ﬁ) [A37[A3aH2}W]W+O5

et adag ) (Hy + W5+ Wi+ O5) = Hy + Ws + Wy + — [As, Holy,

+= a

7
=Ho+ W4+ —

A
h[ 37W3]

A37

P [As, HQ]:| + 05

[

because from (12)), we have, 1 [As, Haly, = —% [Ha, As)yy = —Ws. So

i
(16) < W, +- A4, Holy, + — [As, Ws]y, + A37 [A:s, Hyly | +Os =Ry + Os
h h 2h h W
7
< Wi+ h[A4>H2] ﬁ[A37W3]W_ %[A3,W3]W+O5 =Ry + Os
= W4 + = A [A47 HZ] h [A37 WS]W + 05 - K4 -+ 05



and therefore K must be the projection onto DyNker (ih~'ady,), in the
splitting (14)), of the term

Wy + Az, Wsly,

o | (17

In order to compute this projection, we express W3 in terms of the more
convenient complex variables : z; = \/LE (xj + zfj), SO xj = \/LE (2 + Z5),
and we get, by Taylor expansion:

oL {83W(0)

83W(0)
.3 _\3
2\/_ 3' 81':13 (21 + Zl) + 81‘% (ZQ -+ 2’2)
83W
8 28( (1 +7) (2 +2)+3
T
1 PW W(0) , 4 2 2
= 234+ 3222, + 3522 + 23
2\/5.3!{ D (a1 + 32120 + 3217 + 7))
W (0
+a—§) (23 + 32322 + 32253 + Zg)

BPW(0) _ _ 9
axlawg (Zl -+ 21) (22 + 22)

V(0

61:%6(1:2 (2122 + 2%52 + 2%2‘2 + 2%22 + 22129721 + 2215152)
V(0

3 ( g (22221+2’2221+5§Zl+§§21+2222122+2222221) )

81‘181’2

By the relation ((15]) we get

+3

o1 PW(0 1 1
Ag__z2\/§.3! { 895?15 ) (_§Z1 32121—{-32121 + 321)}

83W(0)< 1
_|_

1
013 3 25 — 325% + 32075 + 322):|

83 ( ) _12]2_2:2 — Z%ZQ + Z%ZQ + 12%22 — 2212221 -+ 22’12122
023014 3 3

83 ( ) _12321 — Z%Zl —+ 5%21 —+ 122251 — 2222122 + 2222251
021073 3 3

Now, we must calculate 2= [As, Ws],,. By the Moyal Formula:

h2
2h [A:s, Wsly = = {A37 Ws} — 23—3,113 (A3, W3) + Os

where we use the bidifferential operator II(f, g) := fIlg given by

o ~0fdg  0f By _ 97 93
{f’g}_fng_;a_fj(?_xj_é_xjﬁ_fj _f(azaz &&)

(19)

(18)

10



and

— — < —
Y R I A IR AL A R
023023 0z%2 022 02 0% 0z 0z 022022 023073
N R

- Z 072 92% 3az§azj 92207, Sazjazg 0,022 02397

J J

Since A3 and W3 are in function of 2%z°, we can compute the Poisson
brackets using the following nice formula :

Lemma 5 Vo, 3, o/, 5 € N*:

1
= (21)
ZjZj

n

_ !l . ’_ !
{zo‘zﬁ,zo‘ i } = —jzote P S 1
X575

j=1

Particular cases: .
{za,zﬂ} =0 ; {2“,25} =0; {za,ZfB} = —j2°7P Zlajﬁjzjlzj‘
‘7:

Proof.
_ _ a/ ! _ ! _ /
of ol B L 021t z0m 22 9z e 21’81...2151
207 2V b =—i ) 5 5
i=1 Zj zj
al an 81 61 oy a, =B B
I R R B s B N 1
8zj 82']'
n
— ot/ —e; SB+B'—e; _ gl ata'—e; B+ —e;
=—1 Z B,z z ;% z
Jj=1
— / 1\ ata’'—e; =B+B —e;
—— — . J J
— zzl( JIey ajﬁj)z z

=

which gives the result. m
After a long but straightforward calculation by hand and via this last
lemma, we arrive to gather all monomials of % {A3, W3}, that are in Ky,

11



and we obtain:
b5 ()
+60{(83§;§ )) axgax }
o2 (222 () )
("54") (a ax) ( ke 2 (Fear )]
90 [(8x13(362)) 8x%8x ” 1Pzl
(710 (). ()
2 - 2 (e
and the second term of is simply
_QZ_;HS (As, Wy) = 2313' 192 (2\/15'3!)2 [(63;2%0))2 N (83;Z§0))2] 2

1 [emoy, (owoy] .
72 o3 o3
Let’s now, look for all monomials of W, that should belong to Kj.
We have

PW(©) W) , W)
Walon, ) = 4'( ot 1t ous 2 Y au0s, 1"

84 W0 ) oW (0) 2 3)

6
9n30e, 2 T 052,217

+

We know from that only the monomials z}, x5 and z?x3 in Wy (z1, z2)
may contribute to Kjy.

12



Now, if we let z; = \/Li (z; + %;), then:

1 1
7= 1= +7)' = Z(Zil +4ZF [z + 6]zl + 427 [ + 7))
in K4
1 1
zh= I (20 + %) = Z(zg,1 + 422 |2o|* + 6 |20|* + 472 |2|* + Z)
in K4
JI%ZE% = (Zl + 21)2 (22 + ZQ)

e N

2 2
2222 4 2272 4 272 |2|* + 2222 + 2272
~~~ ~~

in K4 in Ky4
27} |o|* + 225 |21)* + 2|21 [ 75 + 4|z P |2
—_——
in Ky
from where, we get the other part of the terms of Ky, that is:

LOWO) o LPWO) TPWO) o 19W0)
6 ozt M T o 2 T zan P Pl TR e

Re (zf?%)

finally we gather all terms that are in K4, and we obtain the coefficients

we were looking for:

Theorem 6 The quantum Birkhoff-Gustavson normal form of the Schridinger
hamiltonian in 1 : 1 resonance Hy + W is equal to Hy + K4 + Os with

Ky= M |21+ X |za)' + Xs |21]? |22]” + A Re (2773) + Ashi?,

13



where
vt () @y () + (G |
w2 ) o (o) + ()
i [ () 5 (52
(75 () (%) (552)
+96<ax%aa(:)2) (8x%3x1)]
st | (o) ()~ (o) (G
(o) (i) (B (i)
. 712 [(ag;o) (a;zQ )]

The Weyl quantization of K, gives a concrete representation of this
normal form as a polynomial differential operator :

[\

)y

W~

ox

\_/

Ay =

Ki=X\ (x;* + h‘*aa—i — 2h%z faa—z — 4h2xla% - h2>
+Ag (x;* - h4§—44 — 2h%x 388—22 — 4h2x28%2 — h2>
( — h?x3 8822 + h! aa;% ;;%) (22)
+\ [ nal— 8 5 + has 8822 + it ;; aa;%
— 4h xlma%la%? + 2R 8%1 + 2h2m28%2 + hQ}

+\sh2

14



Using the creation and annihilation operators we get:
Ky=2h*)\; [a? (h) b2 (h) + b2 (h) d} (h) — 1]

212 [a} () V3 () 2 < > B~ 1]

+2h2/\ (3(11 (h) b1 (h) h)

bi ()]

+ b1 (h) ay (R) by (R
and by using Bargmann representation, we get

—~

(23)

—~

l\DI»—t

+2h%N\4[a? (R) b3 (h) + a2 (h) b? (h)])

+ 51
) o2
KB =Ty (K4) T5! = 212 {Al <1 Hag -+ 2o )

KA (92

+A3 1+zi+z 8 + 2212 o
18 21 28 z9 ! 2821822

+ A5
0? 0? 0? 5 02 0?
_2ﬁ2 <2>\1Z18 B} + 2)\2Z28 2 + 2)\32122 8z1822 >\ ( a Pl -+ Z9 821)

0 0 As
+ (4M\ + A3) Zla_zl + (4 + A3) 228—22 + </\1 + Ao+ A3+ 3)> (24)

3.4 BGNF in the 1:2 resonance (Fermi resonance)

~ 1 0? 0?

Hy = |21 + 22|
where z; = \/Lﬁ (xj +z’§j); Jj=12.

Let

with symbol

The Bargmann transform of Hy is given by

~ ~ 0 J 3
HE =T () T' = (215 - +22—+ 5
2 o 2 B A1 821 + o 822 + 2
Since [Hs, K3l = 0, and thus {Hs, K3} = 0, it is sufficient to calculate

K; = Z cg})hezaiﬁ
20+|B]+]v]=3

15



such that < v, —a >=0.
The condition of 1:2 resonance, v1 = 1,v9 = 2, is expressed by

<v,f—a>=0%& a1 + 200 = 5, + 20, (res 1:2)

where a = (ay, a»),8 = (81, 85) € N2.

To obtain Kj, it is necessary to look for all monomials of order 3 that
satisfy the Fermi resonance relation (res 1: 2).

The couples a = (ay, ap) and 5 = (S, B5) which verify at the same time
la| + |8] = 3 and the resonance relation (res 1 :2) are :

a=(0,1) and g = (2,0)
a=(2,0) and 5= (0,1)

Thus, K3 is generated by the monomials
zﬁf , zf?z
Since K is real, we can write
K3 = pRe(27%,) = g(zng +27%,), p€R (25)

Evaluation of coefficient p :
The term of third degree in Taylor series of W near the origine is

1 [*W(0) 5, O3W(0) . O*W(0) P*W(0)
Ws (21, 29) = 3| o 23 oz T+ 3 970, Tiry + 3 92200, T3,
where W (xq,x3) = > W;(21, z2) given in formula (2).
j=3

If we put z; = \/Li (z; +7z;), We remark that, only the coefficient of x3z
in W3 (21, z2) corresponds to the coefficient of K3, because:

2 2 2— =2 —2— 2 2 _
T1Te = 229 + 2120 + 2122 + 2122 + 2 |21 20 + 2|21 22
——

in K3

1
22
we obtain, the term in K3 :

1 1 PW0O), o 1 93w (0)
2°9\/2 0220z, (2172 + 2122) = 24/2 02201,

Theorem 7 The quantum Birkhoff-Gustavson normal form of the Schrédinger
hamiltonian in 1 : 2 resonance Hy + W is equal to Hy + K5+ Oy with

K3 = Re(22%,)

Re(2%%,)

where

1 °w(0)
h= 2/2 023014

16



The calculation of K Weyl quantization of K3 give us:

Ky = /,LRG/(Z%\E2> =227y — 2h2xlaix10ix2 + Wiz aa—; - h2822
Using the creation and annihilation operators we get,
Ky = V2ul*? (a5 (B) b3 () + ai () bs (R)) (26)
and by using Bargmann representation, we get
K¥ =Ty (f??)) Ty' = V2uh’? ( 52 +2 a@ ) (27)

3.5 BGNF in the 1:3 resonance

Now, we consider

T3 1 2 0 2 3 2 o 2
H2_§<_h6_x%+xl +§ ha2+l’2
with symbol
Hy = |z + 32|
where z; = \% (xj +i§j) 7 =1,2.

The Bargmann transform of Hy is given by
A =Ty (1) 75"

0 0
=h (Zla_l + 3228—22 + 2)

The condition of 1:3 resonance, v; = 1,vy = 3 is expressed by the
resonance relation :

<v,f—a>=0< aj; +3ay =5, + 30, (res 1:3)

where a = (ay, as), B = (81, 85) € N?

We see that no monomial exists in Dj verifying at the same time

|a| + | 8| = 3 and the resonance relation (res 1: 3).This means K3 = 0.
Thus, we need to calculate K, € D, satisfying the relation (res 1: 3).
We check that the couples a = (ay, az) and § = (5, 55) which verify at
the same time |a| 4 |3] = 4 and the resonance relation (res 1:3) are :

a=f=(1,1), a=f=(20), a=F=(02),
a=(3,0) and = (0,1), « ( 1) and 5 = (3,0)

17



Thus, K} is generated by the monomials :

|Zl|4 ) |Z2|4 ) |21|2|Z2|2 7Zi)’

since K is real, on can write

-~ =3 2
Zo, Z1%2 , I

Ky = |al' + 72 |z + 735121 |22 + 74 Re (2772) + 751

Evaluation of the coefficients ; : We have to calculate

(28)

Az = Y anp2"%°
|lal+8]=3

15), we get:

1 DPW(0) 1 3
AB__ZZ\/Q?)! { o3 ( 3 2} — 3217 + 3217 + 321)1
n O*W(0) (_1 3

where the coefficients a, s are given by the formula (
1

2= —2 1_3
D3 92 — 2322 + 227 +§,22
WO (Lo e sy len 2m 4 lans
ax1axz 512 12 172 512 3121 3112
0*W (0) 1 1, 1 1., ) N
+3 02,012 —?2321 — gzgm - 52321 - §z§z1 220217y + 220507

By the same way as in the 1 : 1 resonance, a long straightforward cal-
culati

ulation by hand and via Lemma [5] we arrive to gather all terms of
o7 |As, Wsly,, that are in Ky, and we obtain:

1 1 2 83W 0 2 684 (‘93W 0 9
5\ 7073 60 # 4 o 2() e
2 \312v2 0} 15 \ 920,
n 6‘3W b2 (PW(0) il
35 ax%(()x 2
+ a3W PPW(0)
8:1:1 8:}018;;52 0301,
63W O’W 03W(O)
+24 < ox3 ) (((‘h%(%g ) 8x§ax1 >)
450 PW(0)\* _ 288 (°W(0)\ EARENE
35 837281’1 5\ 920, 1 1=z
432 (O°W(0 oW (0) °W(0) PW(0) 2-2
! { 5 <ax§ax2) <8x18:v2) 2 ( o ) (aaﬁaxz ) } Re (2122)}
1 /33W(0))? 1 /83w (0) 2
+ | = ?S ) T § ) ;2
72\ Oy 216 \ 03
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Now, for the calculation of all monomials of W, that should belong in
K, we remark from (28) that only the monomials x{, z3, 2222 and z3x,
in Wy (x1,z2) may contribute to Kj.

The calculation of coefficients of |z|*, |z|* and |21|* |z|* is already do
in the 1: 1 resonance.

What remains us to calculate, that is the one of Re (272,) .

If we let z; = =5 (2; + Z;) , then:

1 _ _ __ _ o _3_
2310 = — (B4 232432221204+ 322712, + 3212220+ 321720 + Bo 2y + 252
4 ~— ~~
in Ky in Ky
therefore, the coefficient of Re (237,) is exactly:

1 9'W(0)

finally we gather all terms that are in K4, and we obtain the coefficients
we were looking for:

Theorem 8 The quantum Birkhoff-Gustavson normal form of the Schriodinger
hamiltonian in 1 : 3 resonance Hy + W 1s equal to Hy + K4 + O with

Ky=mv |Zl|4 + 72 |Z2|4 + 73 |Zl|2 |Z2|2 +74Re (2552) + 757"12

o0 (W) 2 | 684 PW(0)\”
o3 15 01301
20 63W(0 2 | 2484 PW(0)\”
8:13;’ 35 \ 01301,
1 o'W 1 0) PBPW (0 PW (0
3= 2 5 72 :g 2 o 53 9
12 0z 8952 2\ 312 3 0x10xy  0x5011
PW(0
+24< 8562 ) ( 2029 + 8:628951)
| 864 (0°W(0) 288 ?
35 8:1:%(‘31:1 8:6%8:52
1 9'Ww PW(0)\ [432 (PW(0) PW(0)
Ta= 51539, > ) —24 3
24 89018902 312 89018:702 5 \ 0x10z5 ox}
1 (03W(0)\” 1 a3W( N’
Vs = + 5
72 89&1 216 o3
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where

1 0'W(0) 1
1716 5)201 2
1 9'W(0)

B 1 1
2776 8:;02 2 3!2 D)
0

()

1
2




The Weyl quantization of Re (237z5) is

— = o 0 o 0 0
3= h4—— o hZ G h2
Re (29%y) = 23wy — 927 0y 3h7x, 971 05 3h°r;— 97s
0? 0
32z e — — 3R2
3 1T axl 3 To—— axl

The Weyl quantization of the rest of K, is already calculated in 1:1
resonance.
Using the creation and annihilation operators we get,

—

Re (2172) = 2% (ai (R) bz (h) + 07 (h) ax ()

So,

+2h%y, (a3 (h) b5 (h) 5 (h) a3 (h) — 1)

+213 (a1 (h) by () az (R) by (h)

+ b1 () ax (B) by () as (h) — %) (29)
+21%, (aj (h) by (R) + b} (h) az ()

R
The Bargmann representation give us:
RB =Ty ([h) 75!

0 02 0 02
:271271 |:(1+4Zla—1+2238—2%> +’72 |:1+4228 . +222a :|

T A > + a—3+3i + B
3 192 2 2 0z 0% 021079 Ta 228 574 029 2
02 0? o? 83 0
= 2K? {2712'18 5 + 272228 5 + 2732122a e 2 ( 8 a3 T2 322) (30)

0 g
+ (472 +73) 220_22 + (’71 + Y2+ Y3+ 5)}

B
+ (4y; +73) 215 5

821
4 Spectrum in the 1:1, 1:2 and 1:3 resonances

4.1 Spectrum in the 1:1 resonance

In this section we analyse the spectrum of the restriction of K4 to the
eigenspace of H2 by computing the matrix elements KB (pg) -

20



First we have,

o ¥(aran) _ 8 ( 27 25?2 ) zf‘l 122

821 vV Oél vV 042 \/ Oél V 0[2
21011 1 232

:\/a_l\/m\/— \/_90041 1az)

PP (ar.a)
ﬁ voarvar — 1og, o)

(a1 ,02)

822 =y SO (a1,02—1)
82%0 Oz1,0¢2 \/7
— 3 = V@V — 19, 4,9

023
PP (ar.a
T@lz; VOV X2P 0y —1,05—1)
and
( 217 2 ) Z?IH 2y°
Z =z =
1@(011’&2) ! a1! V 012 vV CY1' vV CYQ!
Oz1+1
Zy°
Vo +1 =vVor+ 19, 114
v Y e
Z%@(al @s) - \/Oél + 2\/0&1 + 190(0¢1+2,042)
ZQSO (a1,02) — V az +1 90 (a1,002+1)
ZQSO(O(LOQ) - \/a2 + 2\/0(2 + 1@(041,042—1—2)
21228 (a1,00) = Vg + 1oy + 190(a1+1,a2+1)
Thus,
. 0 0 0
(a az) (a1,02) (a1,a2)
6 (p(al,az) 262(70( 890(a1,a2)

+)\4[Z —|— Zl ] (4)\1 + )\3)

(9 % 621

ar,a
2
2
a17a2) As
+ (4)\2 + )\3) (/\1 + A2 + >\3 9 ) (p(oal,ocg)>

=2h*(2\ 123/ a1 (o — 1) @(a1—2,a2) + 2925/ (g — 1)<p(a17a2_2)
+2X321 22/ 010200y 1.05-1) + A2V 1 (01 = 1) @0, 9.0)
23V 2(0 = 1) Qa1 00-2)) + (4N 4 A3) 21/ 00010, 1.00)

A
+ (4X2 + A3) 220/ 200y 0p—1) T ()\1 + Ao+ A3+ é’) Pla,a2))
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= 2h2 [2/\10&1 (lel - 1) Qp(al,ag) + 2)\2@2 (042 - 1) 90(041,042) + 2)\3&1&290(061’&2)
+s (Var(ar = D + 1)@z + 290, 20002

+ Var+ D(ar + 220z = Ve 20,-2)) |

A
+ (4)\1 + )\3) Oél(p(og,ag) + (4)\2 —+ )\3) 04290(&170[2) + ()\1 + )\2 —+ )\3 -+ 5) 90(011,042)

=2h° {)\4\/041(041 = Dlaz + 1)(a2 + 2)P(a;-2,0,42)
+ [2)\1041 (Oél — 1) + 2/\20&2 (Oég — 1) + 2)\30510[2 + (4)\1 + )\3) (651

A
+ (4)\2 + )\3) Qo + <)\1 + )\2 + )\3 + ?5):| 90(041,042)

+ Aay/lar + D)(ar + 2)az(az = Doy 20,2 |

We see that the basis H% is stable by K because,
OZ1—2+(CE2+2) =a1+ay = N and a1—1—2+(a2 —2) = t+Qy = N

where 15 = {ov_rp: (=0,1,... B[]}

One can verify easily that the matrix K Bin HE is symetric. Indeed,

~

ngp(a1+2,a2—2) :4h2 [)\4\/(041 =+ 2) (al + 1) (&2 - 1) 052()0(041,0[2) +
(2)\1 (011 + 2) (Oq + 1) + 2)\2 (OZQ — 2) ((1/2 — 3)
+2)\3 (041 + 2) (042 - 2) + (4)\1 + )\3) (Oél + 2)

A
+ (4o + A3) (g — 2) + ()\1 + Ao+ A3+ —5) )@(alw,aﬂ)

2
+2ay/ (a1 +4) (o1 + 3) (a2 — 2) (2 = 3)P(ay 4 4,05—4))

One gets,

~

Ry =41 (v TH D (E+2) (N = D (N = €= Dogn—roaery
F@AM (N =0 (N == 1)+ 2Xl (6 — 1) + A3 (N — 0)¢ (31)

A
+ (4)\1 + /\3) (N - g) + (4)\2 + )\3) g + ()\1 + )\2 + )\3 + _5> )()O(N—E,Z)

2

AV (N =+ D (N = 0+ Dpv—enes)

Thus,
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Proposition 9 The matriz of [A(f, in the basis HY is :

dno Anp :
Anody1 - 0
2h2 e .. .. -, C e e (32)
Ange—1dny Anyg
0 Angdyesr -
where, for { = [%] :

AN,g:>\4\/(£+1)(€+2)(N—€)(N—€—1)
dye=2M (N =0) (N =0 —=1) 42Xl ({ —1) +2X5 (N — 0) ¢
+(4)\1+/\3)(N—€)+(4>\2+>\3)€+(>\1+>\2+)\3+%)

4.2 Spectrum in the 1:2 resonance

By computing K% (¢,), we get

K a a1,o 9 ai,o
K?I)g(p (a1,02) \/_/JFLQ ( QO( 1,2) ‘I'ZQ 90( 1, 2))

D23 b0z
3
= \/§,uh2 (22\/041\/ Q1 — 190((1172@2) + Z%V ‘)‘290(011,042*1))
3
=/2uh? <\/(Ozg +1) a1 (1 = 1)(a, 2,041

+ /(o1 +2) (a1 + 1) C¥2<P(a1+2,a2—1))

we see that the basis H is stable by IA(:Z,)S because,
a1—24+2(ag + 1) = a;+2a5 = N and a3+24+2(ag — 1) = a1+2a9 = N
where HE = {gi(N,%’g) 0=0,1,...,E[5]}.
The matrix of K5 in H% is symetric, since
- 3
Kf@(aﬁz,agq) = V2puh? <\/(a1 +2) (1 + 1) @20y 09)

+ Vo 4) (@1 +3) (2 = Doy s

Thus,

~

K30 (v—_200) = V2uh? (\/(5 + 1) (N = 20) (N =20 = 1)p(ny_20-2,041)

+ V(N =20+2) (N —20+ 1)&P<N72€+M4>> (33)
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Proposition 10 The matriz of [A(:? in the basis HY is:

0 mo
ﬁ/[bh% 0 me ...... (34)
my 0
0 0

where for { =0,1,.., F [%] :

me= /(0 +1)(N—20)(N—2(—1)

In the case of Fermi resonance, the half integer powers of % are
present, the coefficient of #%/? is then the average along the flow of H,
of the term of order 3 in the Taylor expansion of the symbol.

4.3 Spectrum in the 1:3 resonance

We have,

(a0 —

ﬁ = Voo — 1o — 290(%—3,@2)

2 P = V1 +3Vor + 2V + 191, 43 00
then,

8g0 6 ¢ 1,0 2 —+ [0} _
3 (a1,002) (o1,02) — + —+ (0 @ +3,a
21—122 + 22—%2 — \/(al 3) (al )( 1 ) 2 (Oél 3,a0 1)

+v a1 (o — 1)(on — 2)(a2 + 1)@(ay 3.0011)

Therefore,

ngp(al,az) = 2h2 (74\/051 (al - 1) (al - 2) (062 + 1)90((;!1—3,&2—&—1)
+( 27,01 (a1 — 1) + 270 (ay — 1) + 2y3a100 + (4, +73)

g}
+ (472 +73) 0z + (% Y2 s+ f))%m)

74 V(o1 +3) (a1 +2) (01 + 1) 0260y 15.051))

The basis HE = {go(N_g,M) ;0=0,1,..,F [%” is stable by IA(f because,

a1+3+3(ag — 1) = a;+3as = N and a1 —34+3 (ag + 1) = a1+3a3 = N
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and the matrix of K% in H5 is symetric since

~

Kf@(aﬁs,agq) =21 [’74\/(041 +3) (a1 +2) (a1 + 1) Q2P (a1,00)

+ (27, (a1 +3) (a1 + 2) + 2795 (e — 1) (g — 2) + 275 (o + 3) (az — 1)
+ (4 +73) (1 +3) + (dyg +73) (@2 — 1)

+ <’Y1 + Y T Vst %)} Pla1+3,a2—1)

74 V(@1 +6) (a1 +5) (a1 +4) (a2 — Do, 6.0,-2)

S0 one gets,

~

REvsen =202 (7143/ (1) (N =30 (N = 30— 1) (N = 30— 2)p(x—ae—s 141
+[27; (N = 36) (N =30 — 1) 4 27, (£ — 1) + 274¢ (N — 3¢) (35)
+ (471 +93) (N = 30) + (4yg +73) £ + (71 T Yo+ Y3+ %)]@(N—Sé,ﬂ)

+ 74N =30+ 1) (N = 30+ 2) (N = 30+ 3)p(x_aesne)

and therefore,

Proposition 11 The matriz of I/(\'f in the basis HY, is

d&ﬁ]l3N£
Byody, - 0
g | T Brer 36)
e dyy Bne T
0 By d/N,E+1 e
where for { = 0,1, ..., [%}
BN,E:74\/(€+1)( 30) (N =3t —1)(N —3l-2)
dy, = (27, (N =30 + 27252 +27;3¢ (N —30)

+ (371 +73) (N 30) + (372 +73) b+ (+ 12+ 75+ 5))
5 An effective Quantum BGNF program

We have implemented the Quantum Birkhoff-Gustavson normal form
in the computer language ocam which is a fast and very expressive
functional language, particularly well adapted to mathematical construc-
tions.

http://caml.inria.fr/index.en.html
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5.1 Overview of the code

The code consists of three modules : Math, Weyl and Birkhoff. The
Math module is a functorial interface that defines the axioms of general
(non-commutative) associative algebras over an abelian field. This per-
mits the use of the same code for different coefficient rings: real numbers,
complex numbers, rationals, or even formal series. For instance, we may
declare that we use complex coefficients using the simple line :

| open Math.ComplexNumbers

The Weyl module implements the Weyl algebra for formal series & —
defined in Section 2, endowed with the non-commutative Moyal product.
Internally, series are stored in hash tables, and the module provides a way
to convert them to/from a text representation. The number of variables
is arbitrary, it need not be specified. For instance the 1 : 2-oscillator

h2 = (o} 4 &)+ (134 8)

will be printed as follows:

Weyl.print_poly h2
1 h0x (O £(0,2)
1 h 0 x(0,2) £°0O
0.5 h"0 x~() £(2)
0.5 h"0 x°(2) £0

For convenience, we also wrote a Maple module that can use copy-
pasted text directly to/from Maple notation :

Maple.of_poly h2
string = "0.5%x[1]°2+0.5*%xi[1]~2+1xx[2] ~2+1*xi[2]~2"

As a simple example, the code below computes the Moyal bracket
of 2° and € — which is the Weyl symbol of the operator bracket

e, (7]

let x3 = Maple.to_poly "x[1]~3" in
let xi3 = Maple.to_poly "xi[1]"3" in
let ¢ = Weyl.crochet x3 xi3 in
Maple.of_poly c

string = "1.5%h~2+-9*x[1]~2*xi[1]~2"

Thus we find [z, &%y = 3% — 922¢°
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The Birkhoff module is the core of the normal form algorithm. It
implements the proof of Theorem 1 that appears in [5]. It involves an
induction where each step consists in solving a cohomological equation.
Only Moyal brackets, additions, and multiplication by scalar are used.
Here is the code for the induction step :

let birkhoff_step order freq k r =
let n = ordre r in
let (rn = get_homog r n in
let (kn, an) = split freq rn in
let newh = exp_ad an (add k r) order
and k’ = add k kn

in let r’ = add newh (coeff_mult C.mone k’) in
proj_order “check:true r’ (nt+1)
k>, r’)

If h=k+r, where h is the initial quantum Hamiltonian (or Weyl sym-
bol), k is the normalisation at order n-1 and r is the remainder (of order
n, then the function birkhoff_step computes the next-order normal-
ization : h=k’+r’, where r’ is of order n+1.

For simplicity, we have assumed in this code that the quadratic hamil-
tonian is of the form Hy = 112/ &}+- - -+v,2,,&), : this amounts to writing
H; in terms of creation and annihilation operators as in @ In order
to deal with harmonic oscillators in real variables (z;,£;) as in (2)), we
need to use the change of variables z; = \%(m] +i€;), §; = \/ii(:v] —i&;).
We have implemented this change of variables in the code.

5.2 Numerical results for the 1 : 3 resonance

We may define H, using Maple notation as follows :

‘let h2 = Maple.to_poly "O0.5%x[1]°2+0.5%xi[1]~2+1.5%x[2]~2+1.6xxi[2]~2"

Then we convert it to complex coordinates :

let h2z = coordz h2
Maple.of_poly h2z
string = "1xx[1]~1*xi[1]~1+3*x[2] ~1*xi[2]~1"

It has now the required form Hy = z}&]+375&,. We add now a simple
perturbation W = ()3, which we convert to complex coordinates :

let w = Maple.to_poly "x[2]~3"
let wz = coordz w
Maple.of_poly vz
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- : string =
"1.06066x*x[2] ~1*xi[2]~2+0.3535563*x[2] ~3+
1.06066%x[2] ~2*xi[2]~1+0.3535563*xi[2]~3"

Thus we have, in complex coordinates (z7, 5;) :

17 2 6 17 6 ,3
W= oty + 72+1 ’%ﬁﬁé’z-

and finally we may consider the hamiltonian H = Hy + W :

| let hz = Weyl.add h2z vz;;

Now we define the frequency vector [1;3], and we may apply the
Birkhoff procedure at order 4 :

[| one; of_int 3 |1;;

let freq =
= birkhoff freq hz 4;;

let kz

We have obtained the normalized Hamiltonian kz. We convert it
back to real coordinates (x;,¢;) and print it :

let k = coordx kz;;

Maple.of_poly k;;

- : string =
"0.5%x[1]172+0.5%xi[1]~2+0.166667*h~2+-0.625%x[2] ~2*x1i[2] ~2+-0.3125*%x[2] ~4+
-0.3125*xi[2]~4+1.5%x[2]~2+1.5*xi[2]~2"

Reordering terms, we get

1 1 3 3 1 5
K =§x%+§§%+§w§+§£%+— 8 1 16£2+<96 Ho+ K140
where Ky = 1h% — 323¢5 — 2ol — 260 = 1n? — 2 (a3 + &)

It remains to Compare to the theoretical results of section (The-
orem [§)), which predicts:

Ky = |z]" + 7, |2e" + 795 |21 |22]” + 74 Re (28%2) + v5h>

Using that W (21, z2) = 23, we see from the formulas in Theorem
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that only the coefficients v, and 5 don’t vanish; we obtain:

Ky=7,|2|" + ;0
1/ 1 PPW(0)
__5(3!2\/5) 20( o3 ) 4( + & +22383)

1 (PW(0)\,
+2_16( oz} ) h

]' 1 ? 1 4 4 2 2
— (3'2\/_> 20.36.~ (a:2 + & +23385) + E .36.h

Ty + & + 27563) +6h2

5
=16 (
hence,

35 345 5 A 5

1, 1
Hyd Ky— —a? 4224 25240 22 2
2 Ka=omi 4 50+ 5w+ 56 — 157~ 15

which confirms the computer output.
Of course, we can ask the program to give the normalization at any
given order. For instance here is what we get at order 8 :

—& - 8 2£2+ L2,

1 3 1 3
K = 55% + 553 + 5113% + 5%%
5 1
——53 + 6h2 T35 — 16 Ty
235 395 2 235 ¥ 235 395 2
115252 576 W, - 384 7363 - 384 7385 - 1152$2+576h

38585 100205 128 38585 38585 38585
_ h2 _ —h 2
165888§2+ 41472 & 243 41472 7365 - 27648 T36s - 41472 365
38585 100205 100205
~To5s88°2 T 20736 " “o6 T amg 1 2+ O
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