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Abstract
This article reviews the Birkho¤-Gustavson normal form theorem (BGNF)

near an equilibrium point of a quantum Hamiltonian. The BGNF process is

thereafter used to investigate the spectrum of Schrödinger operators in the

1:1, 1:2 and 1:3 resonances. A computer program is proposed to compute the

coe¢cients of the BGNF up to any order.
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1 Introduction

The topic under consideration in this paper is the computation of the
Birkho¤-Gustavson normal form and its application to the calculation
of the quantum mechanical spectra of Schrödinger operators.
An old and important problem in quantum mechanics is the investi-

gation of the discrete spectrum of selfajoint operators. There are several
classical methods for the numerical computation of eigenvalues. Many of
them amount to writing a �nite dimensional approximation of the oper-
ator in a suitable basis, and performing numerical diagonalization. It is
well known that the choice of basis is delicate and crucial : a bad choice
can easily lead to very poor numerical accuracy. With this respect, when
quantum Birkho¤-Gustavson normal form can be used, they generally
give excellent results.
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The theory of normal forms is one of the theories that allow us to
analyse the spectrum of a Hamiltonian near an equilibrium position of a
smooth potential. This mathematical theory has a rather long history,
dating back to Poincaré, and has received much attention. The �rst rig-
orous set-up, in the framework of Hamiltonian classical mechanics, was
given in [4] by Birkho¤ in the case where the quadratic approximation
of the hamiltonian is a sum of harmonic oscillators with non-resonant
frequencies; it has been extended then to the resonant case by Gustavson
[8].
Several physicists in the 1980�s have started to think about a quan-

tum version of the Birkho¤-Gustavson normal form (BGNF). The main
idea is based on two steps. The �rst one is the classical step: �nd the
normal form by canonical transformations of the coordinates and mo-
menta; the second one is to quantize this normal form. The �rst step is
well studied and now considered rather straightforward, but the quan-
tization of the normal form addresses the fundamental question of how
to quantize a classical problem in which the coordinates and momenta
does not appear in a simple manner. Even in the Birkho¤-Gustavson
procedure, it is not clear a priori which quantization scheme would be
the most natural. One can consult for this the works of M. K. Ali [1]
where he makes the comparison between various notions of quantization.
The BGNF played an important role in classical mechanics in per-

mitting, for example, to investigate the stability of elliptic trajectories
[6]. It has been applied with remarkable success in molecular physics
and became a very powerful tool, attested by the excellent numerical
results obtained in [12] and more recently in [9] and [10].
On the mathematics side, the development of sophisticated tools for

performing functional analysis in phase space, starting with pseudodif-
ferential operators, microlocal and semiclassical analysis, has been very
important for a better understanding and more accurate applications
of quantum normal forms. The BGNF for pseudodi¤erential operators
near a non-degenerate minimum of the symbol has been used by several
authors, see for example the works of Bambusi [2] about semiclassical
normal forms; also the article by Sjöstrand [11] that treats the non-
resonant case and the one by Charles and Vu Ngoc [5] for the resonant
case.
The goal of this article is to exhibit explicit calculations of the BGNF

in some simple resonant situations which can be encountered in physical
models, like small molecules. This article is organized as follows :
In section 2, we �rst start with recalling the procedure that leads

Schrödinger operators P = �h2

2
� + V (x), when V is a smooth poten-

tial, to their Birkho¤-Gustavson normal form ~P = Ĥ2 + K̂; where K̂
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commutes with the harmonic oscillator Ĥ2. In this procedure, the quan-
tization and normalization steps are combined at each order, contrary
to, for instance, [11], where quantization was applied only after the full
classical normal form was obtained.
In section 3, we calculate the BGNF in the 1:1, 1:2 and 1:3 resonances.

We introduce the creation and annihilation operators and Bargmann
transform and �nally we inject everything in Bargmann space. This
allows an easy computation of the principal coe¢cients of the normal
form in the three cases.
In section 4, one of the main goals of this work, we calculate the

spectrum �(P ) of the operator P thanks to the analysis of the spectrum
�(K̂) of the restriction of K̂ to the eigenspaces of Ĥ2. Since Ĥ2 and K̂
commute, one �nally gets the spectrum of P , up to a small error term,
simply by adding to �(K̂) the corresponding explicit eigenvalue of Ĥ2.
All the results in sections 3 and 4 were carefully done by hand. How-

ever, it is clear that the computation of higher order approximations,
involving higher order terms of the Birkho¤-Gustavson normal form,
becomes very soon intractable for human abilities. On the other hand,
the normal form algorithm is clear enough to be implemented on a com-
puter. We propose in section 5 a program, whose code is available on-
line1, which is based on the non-commutative calculus of Weyl algebra
and that can easily give the quantum Birkho¤-Gustavson normal form
of a given Hamiltonian up to any order.

2 BGNF theorem

We recall the Birkho¤-Gustavson normal form theorem, BGNF, which
is fundamental for this work.
Consider on L2 (Rn) the Schrödinger operator

P = �~
2

2
� + V (y) (1)

where ~ > 0, � is the n�dimensional Laplacian and V is a smooth real
potential on Rn, having a non-degenerate global minimum at 0 which
we shall call here the origin. By a linear unitary change of variables in
local coordinates near 0, one can assume that the hessian matrix V 00 (0)
is diagonal, let (�21; :::; �

2
n) be its eigenvalues, with �j > 0: The rescaling

xj =
p
�jyj transforms P into a perturbation of the harmonic oscillator

Ĥ2 :
P = Ĥ2 +W (x) (2)

1http://blogperso.univ-rennes1.fr/san.vu-ngoc/public/divers/

birkhoff_0.4.tgz
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with Ĥ2 =
nP
j=1

�j
2

�
�~2 @2

@x2j
+ x2j

�
, where W (x) is a smooth potential of

order O( jxj3) at the origin.
We work with the space

E =C[x; �; ~] = C[x1; :::; xn; �1; :::; �n; ~]
x=(x1; :::; xn) , � = (�1; :::; �n)

of formal power series of (2n + 1) variables with complex coe¢cients,
where the degree of the monomial xB�C~` is de�ned to be jBj+ jCj+ 2`;
B; C 2 Nn; ` 2 N:
Let DN be the �nite dimensional vector space spanned by monomials

of degree N and ON the subspace of E consisting of formal series whose
co¢cients of degree < N vanish. Let A 2 E ; we shall need in this article
the Weyl bracket [:; :]W de�ned on polynomials by :

[f; g]W = �W ( bfbg � bg bf) , for all f; g 2 E (3)

where bf and bg are the (formal) Weyl quantizations of symbols f and g,
and �W is the complete Weyl symbol map. The Weyl quantization of a
polynomial in (x; �) consists in replacing xj by the multiplication by xj
operator, and �j by

~

i
@
@xj
, and averaging all the possible orderings of the

variables x an �. Thus, for instance, the Weyl quantization of x1�1 is the
di¤erential operator ~

i
(x1

@
@x1

+ 1
2
). Then the bracket de�ned in (3) can

be computed recursively according to the rules [xj; xk]W =
�
�j; �k

�
W
=

[~; xj]W =
�
~; �j

�
W
= 0 and

�
�j; xk

�
W
= Ej;k, where Ej;k is the Kronecker

index.
The formal quantum Birkho¤ normal form can be expressed as fol-

lows :

Theorem 1 (BGNF Theorem) Let H2 2 D2 and L 2 O3; then there

exists A 2 O3 and K 2 O3 such that :

ei~
�1adA (H2 + L) = H2 +K (BGNF)

where K = K3 +K4 + :::; with Kj 2 Dj commutes with H2 :

[H2; K]W = 0

Moreover if H2 and L have real coe¢cients then A and K can be chosen
to have real coe¢cients as well.
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Notice that the sum

ei~
�1adA (H2 + L) =

1X

l=0

1

`!

�
i

~
adA

�`
(H2 + L) (4)

is usually not convergent in the analytic sense, even if L comes from
an analytic function, but it is always convergent in the topology of E
because the map B 7! i

~
adA(B) =

i
~
[A;B]W sends ON into ON+1

The equation (BGNF) is called the Birkho¤-Gustavson normal form
of the operator P at the origin.

3 Birkho¤-Gustavson normal form in the 1:1, 1:2

and 1:3 resonances

3.1 Creation and annihilation operators

Let Xj denote the operator of multiplication by xj and Yj the operator
@
@xj

in L2 (Rn) :

aj (~)=
1p
2~
(Xj + ~Yj) =

1p
2~
(xj + ~

@

@xj
) (5)

bj (~)=
1p
2~
(Xj � ~Yj) =

1p
2~
(xj � ~

@

@xj
)

are respectively called the operators of creation and annihilation in
L2 (Rn) :
The operators aj (~) and bj (~) formally satisfy :

a�j (~)= bj (~) ; b�j (~) = aj (~)

[aj (~) ; bk (~)] = Ejk ; [aj (~) ; ak (~)] = 0 ; [bj (~) ; bk (~)] = 0

While rewriting Ĥ2 according to aj (~) and bj (~) ; one gets,

Ĥ2 = ~

nX

j=1

�j(aj (~) bj (~)�
1

2
) (6)

3.2 Bargmann representation

In this paragraph, we recall some standard results concerning the space
BF of Bargmann-Fock (simply called the Bargmann space) and the
Bargmann transform. For more details one can consult [3].

Let us consider the space
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BF =

8
<
:' (z) holomorphic function on C

n ;

Z

Cn

j' (z)j2 d�n (z) < +1

9
=
;

where d�n (z) is the Gaussian measure de�ned by d�n (z) = ��ne�
jzj2

~ dnz =

��ne�
jzj2

~ dnxdny: BF is a Hilbert space when it is equipped with the nat-
ural inner product :

< f; g >=

Z

Cn

f (z) g (z)d�n (z)

Theorem 2 ([3]) There exists a unitary mapping TB from L2 (Rn) to
BF de�ned by

(TBf) (z) =
2n=4

(2�~)3n=4

Z

Rn

f (x) e�
1
2(z2+x2)+

p
2xz��ndnx (7)

TB is called the Bargmann transform.

We recall that Ĥ2 is essentially self-adjoint with a discrete spectrum
�(Ĥ2) which consists of the eigenvalues:

�N = ~

�
< �; B > +

j�j
2

�
= ~

�
N +

j�j
2

�
, N =< �; B >=

nX

j=1

�jBj

� =(�1; :::; �n); B = (B1; :::; Bn) 2 Nn and j�j =
nX

j=1

�j:

The associated eigenspaces areHN = vect f B (x) ; < �; B >= Ng where
 B (x) = e�

1
2
x2PB (x) are the standard Hermite functions (here PB(x) is

a polynomial of degree jBj) which constitute an orthonormal hilbertian
basis f B (x)gB of L2 (Rn).
Then we have the following theorem :

Theorem 3 The isometry TB sends the functions f B (x)gB2Nn to the
functions

n
zBp
B!

o
B2Nn

which constitute an orthonormal hilbertian basis of

BF :

In the Bargmann representation of quantum mechanics, physical
states are mapped into entire functions of a complex variable z; whereas
the creation and annihilation operators play the role of di¤erentiation
and multiplication with respect to z; respectively.
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Proposition 4 If we denote by Zj the operator of multiplication by zj

and Dj the operator
@
@zj

on BF , then :

TB (aj (~))T
�1
B = Dj and TB (bj (~))T

�1
B = Zj (8)

The Bargmann transform of the harmonic oscillator is given by

ĤB
2 = TB

�
Ĥ2

�
T�1B = ~

nX

j=1

�j(zj
@

@zj
+
1

2
) (9)

and the eigenspace associated to the eigenvalue �N is the linear subspace
spanned by the functions zB1p

B1!
zB2p
B2!
such that �1B1 + �2B2 = N :

HBN = vect
�
'B = '(B1;B2) =

zB1p
B1!

zB2p
B2!

; �1B1 + �2B2 = N

�

3.3 BGNF in the 1:1 resonance

Consider the following harmonic oscillator

Ĥ2 =
1

2

�
�~2 @

2

@x21
+ x21

�
+
1

2

�
�~2 @

2

@x22
+ x22

�

with symbol
H2 = jz1j2 + jz2j2

where zj =
1p
2

�
xj + i�j

�
; j = 1; 2:

The Bargmann transform of bH2 is given by

ĤB
2 = TB

�
bH2

�
T�1B = ~

�
z1

@

@z1
+ z2

@

@z2
+ 1

�

Suppose now we are in the situation of the BGNF theorem (cf. equa-
tion (2)) : we want to understand the spectrum of an operator of the

form bH2+bL, where L is a perturbation term of order at least 3. From the
theorem, it is enough to study the spectrum of the normalized pertur-
bation bK (see [5]). The crucial question is therefore to compute the �rst
non-trivial term of the symbol K. Throughout the paper, when K is a
formal series in E , we use the notation Kj to denote the homogeneous
part of degree j, and K(N) := K0 +K1 + � � �+KN .
Since [H2; K3]W = 0 and thus fH2; K3g = 0; we have

K3 =
X

2`+jCj+jDj=3
c
(3)
BC~

`zBzC such that < �; C � B >= 0:
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In other words, K3 is a linear combination of order 3 monomials ~
`zBzC

such that < �; C � B >= 0.

The condition of 1:1 resonance, �1 = �2 = 1; is expressed by

< �; C � B >= 0, B1 + B2 = C1 + C2 (res 1:1)

where B = (B1; B2), C = (C1; C2) 2 N2.

We notice that no monomial exists in D3 verifying at the same time
jBj+ jCj = 3 and the resonance relation (res 1 : 1). This means K3 = 0.
Thus we need to calculate K4, as a linear combination of monomials
zB11 z

B2
2 z

C1
1 z

C2
2 of order 4: We check that the couples B = (B1; B2) and

C = (C1; C2) which verify at the same time jBj+jCj = 4 and the resonance
relation (res 1 : 1) are :

B= C = (1; 1) ; B = C = (2; 0) ; B = C = (0; 2) ;

B=(2; 0) and C = (0; 2) ; B = (0; 2) and C = (2; 0)

Thus K4 is generated by the monomials :

jz1j2 jz2j2 ; jz1j4 ; jz2j4 ; z21z22 ; z21z22 ; ~2

Since K is real, one can write

K4 = �1 jz1j4 + �2 jz2j4 + �3 jz1j2 jz2j2 + �4Re
�
z21z

2
2

�
+ �5~

2 (10)

Evaluation of coe¢cients �j :
By the BGNF, the order 4 perturbation W4 turns into a new term

K4 which we will obtain as the projection onto the kernel of adH2 of the
term

W4 +
i

2~
[A3;W3]W ; (11)

where A3 is de�ned by the relation

W3 =
i

~
adH2 (A3) : (12)

Indeed, applying the theorem 1 of Birkho¤-Gustavson to H2 + W =
H2 +W3 +W4 + :::; we obtain polynomials A3 2 D3 and K3 2 D3 such
as

ei~
�1adA3 (H2 +W3 +O4) = H2 +K3 +O4 (13)

where K3 and H2 commute. We have

(13), H2 +W3 +
i

~
[A3; H2]W +O4 = H2 +K3 +O4:
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Since
D3 = ker

�
i~�1adH2

�
� Im

�
i~�1adH2

�
; (14)

we may splitW3 = W3;1+
i
~
[H2;W3;2]W whereW3;1 2 D3 commutes with

H2, and W3;2 2 D3: Therefore K3 = W3;1 and we can set A3 = W3;2;
however, in the 1 : 1 resonance, ker (i~�1adH2) \ D3 = f0g, hence K3 =
W1;3 = 0, and therefore A3 is de�ned by the relation (12).
Now, let A3 =

P
jBj+jCj=3

aB;Cz
B�zC andW3 =

P
jBj+jCj=3

cB;Cz
B�zC; then (12)

gives:

P
jBj+jCj=3

cB;Cz
B�zC =

i

~
adH2

 
P

jBj+jCj=3
aB;Cz

B�zC

!

=
i

~

P
jBj+jCj=3

h < �; C � B > aB;Cz
B�zC

from where
aB;C = �i

cB;C

< �; C � B > (15)

and from the 1 : 1 resonance relation we obtain

aB;C = �i
cB;C

C1 + C2 � B1 � B2
; 8B; C 2 N2 ; jBj+ jCj = 3

It remains to �nd K4; since K3 = 0, the normal form writes

ei~
�1ad(A3+A4) (H2 +W3 +W4 +O5) = H2 +K4 +O5 (16)

with [K4; H2] = 0. We have

ei~
�1ad(A3+A4) (H2 +W3 +W4 +O5) = H2 +W3 +W4 +

i

~
[A3; H2]W +

i

~
[A4; H2]W

+
i

~
[A3;W3]W +

1

2!

�
i

~

�2
[A3; [A3; H2]W ]W +O5

= H2 +W4 +
i

~
[A3;W3] +

i

2~

�
A3;

i

~
[A3; H2]

�
+O5

because from (12), we have, i
~
[A3; H2]W = � i

~
[H2; A3]W = �W3. So

(16), W4 +
i

~
[A4; H2]W +

i

~
[A3;W3]W +

i

2~

�
A3;

i

~
[A3; H2]W

�

W

+O5 = R4 +O5

, W4 +
i

~
[A4; H2]W +

i

~
[A3;W3]W �

i

2~
[A3;W3]W +O5 = R4 +O5

, W4 +
i

~
[A4; H2]W +

i

2~
[A3;W3]W +O5 = K4 +O5

9



and therefore K4 must be the projection onto D4\ker (i~�1adH2), in the
splitting (14), of the term

W4 +
i

2~
[A3;W3]W : (17)

In order to compute this projection, we express W3 in terms of the more
convenient complex variables : zj =

1p
2

�
xj + i�j

�
, so xj =

1p
2
(zj + �zj),

and we get, by Taylor expansion:

W3=
1

2
p
2:3!

�
@3W (0)

@x31
(z1 + �z1)

3 +
@3W (0)

@x32
(z2 + �z2)

3

+ 3
@3W (0)

@x21@x2
(z1 + �z1)

2 (z2 + �z2) + 3
@3W (0)

@x1@x
2
2

(z1 + �z1) (z2 + �z2)
2

�

=
1

2
p
2:3!

�
@3W (0)

@x31

�
z31 + 3z

2
1�z1 + 3z1�z

2
1 + �z

3
1

�

+
@3W (0)

@x32

�
z32 + 3z

2
2�z2 + 3z2�z

2
2 + �z

3
2

�

+3
@3V (0)

@x21@x2

�
z21z2 + z

2
1�z2 + �z

2
1z2 + �z

2
1�z2 + 2z1z2�z1 + 2z1�z1�z2

�

+ 3
@3V (0)

@x1@x
2
2

�
z22z1 + z

2
2�z1 + �z

2
2z1 + �z

2
2�z1 + 2z2z1�z2 + 2z2�z2�z1

��
:

By the relation (15) we get

A3=�i
1

2
p
2:3!

�
@3W (0)

@x31

�
�1
3
z31 � 3z21�z1 + 3z1�z21 +

1

3
�z31

��

+
@3W (0)

@x32

�
�1
3
z32 � 3z22�z2 + 3z2�z22 +

1

3
�z32

��

+3
@3W (0)

@x21@x2

�
�1
3
z21z2 � z21�z2 + �z21z2 +

1

3
�z21�z2 � 2z1z2�z1 + 2z1�z1�z2

�

+ 3
@3W (0)

@x1@x
2
2

�
�1
3
z22z1 � z22�z1 + �z22z1 +

1

3
�z22�z1 � 2z2z1�z2 + 2z2�z2�z1

��

Now, we must calculate i
2~
[A3;W3]W . By the Moyal Formula:

i

2~
[A3;W3]W =

1

2
fA3;W3g �

~2

233!
�3 (A3;W3) +O5 (18)

where we use the bidi¤erential operator �(f; g) := f�g given by

ff; gg = f�g =

nX

j=1

@f

@�j

@g

@xj
� @f

@xj

@g

@�j
= �if

  �
@

@�z

�!
@

@z
�
 �
@

@z

�!
@

@�z

!
g (19)
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and

�3= i

"  �
@3

@�z3

�!
@3

@z3
� 3
 �
@2

@�z2

�!
@2

@z2

 �
@

@z

�!
@

@�z
+ 3

 �
@

@�z

�!
@

@z

 �
@2

@z2

�!
@2

@�z2
�
 �
@3

@z3

�!
@3

@�z3

#
(20)

= i
nX

j=1

 �
@3

@�z3j

�!
@3

@z3j
� 3

 �
@3

@�z2j@zj

�!
@3

@z2j@�zj
+ 3

 �
@3

@�zj@z2j

�!
@3

@zj@�z2j
�
 �
@3

@z3j

�!
@3

@�z3j

Since A3 and W3 are in function of z
B�zC, we can compute the Poisson

brackets using the following nice formula :

Lemma 5 8B; C; B0; C0 2 Nn:
n
zB�zC; zB

0

�zC
0
o
= �izB+B0�zC+C0

nP
j=1

CCCC
Bj Cj
B0j C

0
j

CCCC
1

zj�zj
(21)

Particular cases:�
zB; zC

	
= 0 ;

�
�zB; �zC

	
= 0 ;

�
zB; �zC

	
= �izB�zC

nP
j=1

BjCj
1
zj �zj
.

Proof.

n
zB�zC; zB

0

�zC
0
o
=�i

nP
j=1

@zB11 :::z
Bn
n �z

C1
1 :::�z

C1
1

@�zj

@z
B01
1 :::z

B0n
n �z

C01
1 :::�z

C01
1

@zj

�@z
B1
1 :::z

Bn
n �z

C1
1 :::�z

C1
1

@zj

@z
B01
1 :::z

B0n
n �z

C01
1 :::�z

C01
1

@�zj

=�i
nP
j=1

CjB
0
jz
B+B0�ej �zC+C

0�ej � BjC0jzB+B
0�ej �zC+C

0�ej

=�i
nP
j=1

�
CjB

0
j � BjC0j

�
zB+B

0�ej �zC+C
0�ej

which gives the result.
After a long but straightforward calculation by hand and via this last

lemma, we arrive to gather all monomials of 1
2
fA3;W3g, that are in K4,

11



and we obtain:

�1
2

�
1

3!2
p
2

�2 "
60

(�
@3W (0)

@x31

�2
+

�
@3W (0)

@x21@x2

�2)
jz1j4

+60

(�
@3W (0)

@x32

�2
+

�
@3W (0)

@x22@x1

�2)
jz2j4

+

�
72

��
@3W (0)

@x31

��
@3W (0)

@x21@x2

�
+

�
@3W (0)

@x32

��
@3W (0)

@x22@x1

�
+

�
@3W (0)

@x31

��
@3W (0)

@x22@x1

�
+

�
@3W (0)

@x32

��
@3W (0)

@x21@x2

��

+96

"�
@3W (0)

@x21@x2

�2
+

�
@3W (0)

@x22@x1

�2#)
jz1j2 jz2j2

�3
��

@3W (0)

@x31

��
@3W (0)

@x21@x2

�
+

�
@3W (0)

@x32

��
@3W (0)

@x22@x1

�

+

�
@3W (0)

@x31

��
@3W (0)

@x22@x1

�
+

�
@3W (0)

@x32

��
@3W (0)

@x21@x2

��
Re
�
z21z

2
2

��

and the second term of (18) is simply

� ~2

233!
�3 (A3;W3)=

1

233!
:192

�
1

2
p
2:3!

�2 "�
@3W (0)

@x31

�2
+

�
@3W (0)

@x32

�2#
~2

=
1

72

"�
@3W (0)

@x31

�2
+

�
@3W (0)

@x32

�2#
~2

Let�s now, look for all monomials of W4 that should belong to K4:

We have

W4 (x1; x2) =
1

4!

�
@4W (0)

@x41
x41 +

@4W (0)

@x42
x42 + 4

@4W (0)

@x31@x2
x31x2

+ 4
@4W (0)

@x32@x1
x32x1 + 6

@4W (0)

@x21@x
2
2

x21x
2
2

�

We know from (10) that only the monomials x41; x
4
2 and x

2
1x
2
2 inW4 (x1; x2)

may contribute to K4:

12



Now, if we let xj =
1p
2
(zj + �zj) ; then:

x41=
1

4
(z1 + z1)

4 =
1

4
(z41 + 4z

2
1 jz1j2 + 6 jz1j4| {z }

in K4

+ 4z21 jz1j2 + z41)

x42=
1

4
(z2 + z2)

4 =
1

4
(z42 + 4z

2
2 jz2j2 + 6 jz2j4| {z }

in K4

+ 4z22 jz2j2 + z42)

x21x
2
2=

1

4
(z1 + z1)

2 (z2 + z2)
2

=
1

4

2
4z21z22 + z21z

2
2|{z}

in K4

+ 2z21 jz2j2 + z21z
2
2|{z}

in K4

+ z21z
2
2

+ 2z21 jz2j2 + 2z22 jz1j2 + 2 jz1j2 z22 + 4jz1j2 jz2j2| {z }
in K4

3
5

from where, we get the other part of the terms of K4; that is:

1

16

@4W (0)

@x41
jz1j4+

1

16

@4W (0)

@x42
jz2j4+

1

4

@4W (0)

@x21@x
2
2

jz1j2 jz2j2+
1

8

@4W (0)

@x21@x
2
2

Re
�
z21z

2
2

�

�nally we gather all terms that are in K4, and we obtain the coe¢cients
we were looking for:

Theorem 6 The quantum Birkho¤-Gustavson normal form of the Schrödinger
hamiltonian in 1 : 1 resonance H2 +W is equal to H2 +K4 +O5 with

K4 = �1 jz1j4 + �2 jz2j4 + �3 jz1j2 jz2j2 + �4Re
�
z21z

2
2

�
+ �5~

2;

13



where

�1=
1

16

@4W (0)

@x41
� 1
2

�
1

3!2
p
2

�2
60

(�
@3W (0)

@x31

�2
+

�
@3W (0)

@x21@x2

�2)

�2=
1

16

@4W (0)

@x42
� 1
2

�
1

3!2
p
2

�2
60

(�
@3W (0)

@x32

�2
+

�
@3W (0)

@x22@x1

�2)

�3=
1

4

@4W (0)

@x21@x
2
2

+ 72

��
@3W (0)

@x31

��
@3W (0)

@x21@x2

�
+

�
@3W (0)

@x32

��
@3W (0)

@x22@x1

�

+

�
@3W (0)

@x31

��
@3W (0)

@x22@x1

�
+

�
@3W (0)

@x32

��
@3W (0)

@x21@x2

�

+96

�
@3W (0)

@x21@x2

�2
+

�
@3W (0)

@x22@x1

�2#

�4=
1

8

@4W (0)

@x21@x
2
2

� 3
��

@3W (0)

@x31

��
@3W (0)

@x21@x2

�
+

�
@3W (0)

@x32

��
@3W (0)

@x22@x1

�

+

�
@3W (0)

@x31

��
@3W (0)

@x22@x1

�
+

�
@3W (0)

@x32

��
@3W (0)

@x21@x2

��

�5=
1

72

"�
@3W (0)

@x31

�2
+

�
@3W (0)

@x32

�2#

The Weyl quantization of K4 gives a concrete representation of this
normal form as a polynomial di¤erential operator :

K̂4=�1

�
x41 + ~

4 @
4

@x41
� 2~2x21

@2

@x21
� 4~2x1

@

@x1
� ~2

�

+�2

�
x42 + ~

4 @
4

@x42
� 2~2x22

@2

@x22
� 4~2x2

@

@x2
� ~2

�

+�3

�
x21x

2
2 � ~2x21

@2

@x21
� ~2x22

@2

@x22
+ ~4

@2

@x21

@2

@x22

�
(22)

+�4

�
x21x

2
2 + ~

2x21
@2

@x22
+ ~2x22

@2

@x21
+ ~4

@2

@x21

@2

@x22

� 4~2x1x2
@

@x1

@

@x2
+ 2~2x1

@

@x1
+ 2~2x2

@

@x2
+ ~2

�

+�5~
2

14



Using the creation and annihilation operators we get:

K̂4=2~
2�1
�
a21 (~) b

2
1 (~) + b

2
1 (~) a

2
1 (~)� 1

�

+2~2�2
�
a22 (~) b

2
2 (~) b

2
2 (~) a

2
2 (~)� 1

�

+2~2� (3a1 (~) b1 (~) a2 (~) b2 (~) (23)

+ b1 (~) a1 (~) b2 (~) a2 (~)�
1

2

�

+2~2�4[a
2
1 (~) b

2
2 (~) + a

2
2 (~) b

2
1 (~)])

+�5~
2

and by using Bargmann representation, we get

K̂B
4 =TB

�
bK4

�
T�1B = 2~2

�
�1

�
1 + 4z1

@

@z1
+ 2z21

@2

@z21

�

+�2

�
1 + 4z2

@

@z2
+ 2z22

@2

@z22

�

+�3

�
1 + z1

@

@z1
+ z2

@

@z2
+ 2z1z2

@2

@z1@z2

�

+�4

�
z21
@2

@z22
+ z22

@2

@z21

��

+�5~
2

=2~2
�
2�1z

2
1

@2

@z21
+ 2�2z

2
2

@2

@z22
+ 2�3z1z2

@2

@z1@z2
+ �4

�
z21
@2

@z22
+ z22

@2

@z21

�

+ (4�1 + �3) z1
@

@z1
+ (4�2 + �3) z2

@

@z2
+

�
�1 + �2 + �3 +

�5

2

��
(24)

3.4 BGNF in the 1:2 resonance (Fermi resonance)

Let

bH2 =
1

2

�
�~2 @

2

@x21
+ x21

�
+

�
�~2 @

2

@x22
+ x22

�

with symbol
H2 = jz1j2 + 2 jz2j2

where zj =
1p
2

�
xj + i�j

�
; j = 1; 2:

The Bargmann transform of bH2 is given by

bHB
2 = TB

�
bH2

�
T�1B = ~

�
z1

@

@z1
+ 2z2

@

@z2
+
3

2

�

Since [H2; K3]W = 0; and thus fH2; K3g = 0; it is su¢cient to calculate

K3 =
X

2`+jCj+jDj=3
c
(3)
BC~

`zBzC

15



such that < �; C � B >= 0:
The condition of 1:2 resonance, �1 = 1; �2 = 2; is expressed by

< �; C � B >= 0, B1 + 2B2 = C1 + 2C2 (res 1:2)

where B = (B1; B2),C = (C1; C2) 2 N2:
To obtain K3, it is necessary to look for all monomials of order 3 that
satisfy the Fermi resonance relation (res 1 : 2).
The couples B = (B1; B2) and C = (C1; C2) which verify at the same time
jBj+ jCj = 3 and the resonance relation (res 1 : 2) are :

B=(0; 1) and C = (2; 0)

B=(2; 0) and C = (0; 1)

Thus, K3 is generated by the monomials

z2z
2
1 ; z

2
1z2

Since K is real, we can write

K3 = �Re(z21z2) =
�

2
(z2z

2
1 + z

2
1z2); � 2 R (25)

Evaluation of coe¢cient � :
The term of third degree in Taylor series of W near the origine is

W3 (x1; x2) =
1

3!

�
@3W (0)

@x31
x31 +

@3W (0)

@x32
x32 + 3

@3W (0)

@x21@x2
x21x2 + 3

@3W (0)

@x22@x1
x22x1

�

where W (x1; x2) =
P
j�3

Wj(x1; x2) given in formula (2).

If we put xj =
1p
2
(zj + zj) ;We remark that, only the coe¢cient of x

2
1x2

in W3 (x1; x2) corresponds to the coe¢cient of K3; because:

x21x2 =
1

2
p
2

0
@z21z2 + z21z2 + z21z2| {z }

in K3

+ z21z2 + 2 jz1j2 z2 + 2 jz1j2 z2

1
A

we obtain, the term in K3 :

1

2
:
1

2
p
2

@3W (0)

@x21@x2
(z21z2 + z

2
1z2) =

1

2
p
2

@3W (0)

@x21@x2
Re(z21z2)

Theorem 7 The quantum Birkho¤-Gustavson normal form of the Schrödinger
hamiltonian in 1 : 2 resonance H2 +W is equal to H2 +K3 +O4 with

K3 = �Re(z21z2)

where

� =
1

2
p
2

@3W (0)

@x21@x2

16



The calculation of K̂3 Weyl quantization of K3 give us:

K̂3 = � \Re (z21z2) = x21x2 � 2~2x1
@

@x1

@

@x2
+ ~2x2

@2

@x21
� ~2 @

@x2

Using the creation and annihilation operators we get,

K̂3 =
p
2�~3=2

�
a2 (~) b

2
1 (~) + a

2
1 (~) b2 (~)

�
(26)

and by using Bargmann representation, we get

bKB
3 = TB

�
bK3

�
T�1B =

p
2�~3=2

�
z2
@2

@z21
+ z21

@

@z2

�
(27)

3.5 BGNF in the 1:3 resonance

Now, we consider

bH2 =
1

2

�
�~2 @

2

@x21
+ x21

�
+
3

2

�
�~2 @

2

@x22
+ x22

�

with symbol
H2 = jz1j2 + 3 jz2j2

where zj =
1p
2

�
xj + i�j

�
; j = 1; 2:

The Bargmann transform of bH2 is given by

bHB
2 =TB

�
bH2

�
T�1B

= ~

�
z1

@

@z1
+ 3z2

@

@z2
+ 2

�

The condition of 1:3 resonance, �1 = 1; �2 = 3 is expressed by the
resonance relation :

< �; C � B >= 0, B1 + 3B2 = C1 + 3C2 (res 1:3)

where B = (B1; B2), C = (C1; C2) 2 N2
We see that no monomial exists in D3 verifying at the same time
jBj+ jCj = 3 and the resonance relation (res 1 : 3) :This means K3 = 0.
Thus, we need to calculate K4 2 D4 satisfying the relation (res 1 : 3) :
We check that the couples B = (B1; B2) and C = (C1; C2) which verify at
the same time jBj+ jCj = 4 and the resonance relation (res 1 : 3) are :

B= C = (1; 1) ; B = C = (2; 0) ; B = C = (0; 2) ;

B=(3; 0) and C = (0; 1) ; B = (0; 1) and C = (3; 0)

17



Thus, K4 is generated by the monomials :

jz1j4 , jz2j4 , jz1j2 jz2j2 , z31z2 , z31z2 , ~2

since K is real, on can write

K4 = D1 jz1j4 + D2 jz2j4 + D3 jz1j2 jz2j2 + D4Re
�
z31z2

�
+ D5~

2 (28)

Evaluation of the coe¢cients Dj : We have to calculate

A3 =
P

jBj+jCj=3
aB;Cz

B�zC

where the coe¢cients aB;C are given by the formula (15) ; we get:

A3=�i
1

2
p
2:3!

�
@3W (0)

@x31

�
�1
3
z31 � 3z21�z1 + 3z1�z21 +

1

3
�z31

��

+
@3W (0)

@x32

�
�1
9
z32 � z22�z2 + z2�z22 +

1

9
�z32

��

+3
@3W (0)

@x21@x2

�
�1
5
z21z2 + z

2
1�z2 � �z21z2 +

1

5
�z21�z2 �

2

3
z1z2�z1 +

2

3
z1�z1�z2

�

+ 3
@3W (0)

@x1@x
2
2

�
�1
7
z22z1 �

1

5
z22�z1 +

1

5
�z22z1 +

1

7
�z22�z1 � 2z2z1�z2 + 2z2�z2�z1

��

By the same way as in the 1 : 1 resonance; a long straightforward cal-
culation by hand and via Lemma 5, we arrive to gather all terms of
i
2~
[A3;W3]W , that are in K4, and we obtain:

�1
2

�
1

3!2
p
2

�2 "(
60

�
@3W (0)

@x31

�2
+
684

15

�
@3W (0)

@x21@x2

�2)
jz1j4

+

(
20

�
@3W (0)

@x32

�2
+
2484

35

�
@3W (0)

@x22@x1

�2)
jz2j4

+

�
72

�
@3W (0)

@x31

���
@3W (0)

@x21@x2

�
+

�
@3W (0)

@x22@x1

��

+24

�
@3W (0)

@x32

���
@3W (0)

@x21@x2

�
+

�
@3W (0)

@x22@x1

��

+
864

35

�
@3W (0)

@x22@x1

�2
� 288

5

�
@3W (0)

@x21@x2

�2)
jz1j2 jz2j2

+

�
432

5

�
@3W (0)

@x21@x2

��
@3W (0)

@x1@x
2
2

�
� 24

�
@3W (0)

@x31

��
@3W (0)

@x21@x2

��
Re
�
z21z

2
2

��

+

"
1

72

�
@3W (0)

@x31

�2
+

1

216

�
@3W (0)

@x32

�2#
~2

18



Now, for the calculation of all monomials of W4 that should belong in
K4; we remark from (28) that only the monomials x

4
1; x

4
2; x

2
1x
2
2 and x

3
1x2

in W4 (x1; x2) may contribute to K4:

The calculation of coe¢cients of jz1j4 ; jz2j4 and jz1j2 jz2j2 is already do
in the 1 : 1 resonance.
What remains us to calculate, that is the one of Re (z31z2) :
If we let xj =

1p
2
(zj + �zj) ; then:

x31x2 =
1

4
(z31z2+z

3
1z2|{z}
in K4

+3z21z1z2+3z
2
1z1z2+3z1z

2
1z2+3z1z

2
1z2+z

3
1z2|{z}

in K4

+z31z2)

therefore, the coe¢cient of Re (z31z2) is exactly:

1

24

@4W (0)

@x31@x2

�nally we gather all terms that are in K4, and we obtain the coe¢cients
we were looking for:

Theorem 8 The quantum Birkho¤-Gustavson normal form of the Schrödinger
hamiltonian in 1 : 3 resonance H2 +W is equal to H2 +K4 +O5 with

K4 = D1 jz1j4 + D2 jz2j4 + D3 jz1j2 jz2j2 + D4Re
�
z31z2

�
+ D5~

2

where

D1=
1

16

@4W (0)

@x41
� 1
2

�
1

3!2
p
2

�2(
60

�
@3W (0)

@x31

�2
+
684

15

�
@3W (0)

@x21@x2

�2)

D2=
1

16

@4W (0)

@x42
� 1
2

�
1

3!2
p
2

�2(
20

�
@3W (0)

@x32

�2
+
2484

35

�
@3W (0)

@x22@x1

�2)

D3=
1

12

@4W (0)

@x21@x
2
2

� 1
2

�
1

3!2
p
2

�2�
72

�
@3W (0)

@x31

��
@3W (0)

@x21@x2
+
@3W (0)

@x22@x1

�

+24

�
@3W (0)

@x32

��
@3W (0)

@x21@x2
+
@3W (0)

@x22@x1

�

+
864

35

�
@3W (0)

@x22@x1

�2
� 288

5

�
@3W (0)

@x21@x2

�2)

D4=
1

24

@4W (0)

@x31@x2
� 1
2

�
1

3!2
p
2

�2�
@3W (0)

@x21@x2

��
432

5

�
@3W (0)

@x1@x
2
2

�
� 24

�
@3W (0)

@x31

��

D5=
1

72

�
@3W (0)

@x31

�2
+

1

216

�
@3W (0)

@x32

�2
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The Weyl quantization of Re (z31z2) is

\Re (z31z2)= x
3
1x2 � ~4

@3

@x31

@

@x2
� 3~2x1

@

@x1

@

@x2
� 3~2x1

@

@x2

�3~2x1x2
@2

@x21
� 3~2x2

@

@x1

The Weyl quantization of the rest of K4 is already calculated in 1:1
resonance.
Using the creation and annihilation operators we get,

\Re (z31z2) = 2~
2
�
a31 (~) b2 (~) + b

3
1 (~) a2 (~)

�

So,

K̂4=2~
2D1
�
a21 (~) b

2
1 (~) + b

2
1 (~) a

2
1 (~)� 1

�

+2~2D2
�
a22 (~) b

2
2 (~) b

2
2 (~) a

2
2 (~)� 1

�

+2~2D3 (a1 (~) b1 (~) a2 (~) b2 (~)

+ b1 (~) a1 (~) b2 (~) a2 (~)�
1

2

�
(29)

+2~2D4
�
a31 (~) b2 (~) + b

3
1 (~) a2 (~)

�

+D5~
2

The Bargmann representation give us:

bKB
4 =TB

�
bK4

�
T�1B

=2~2D1

��
1 + 4z1

@

@z1
+ 2z21

@2

@z21

�
+ D2

�
1 + 4z2

@

@z2
+ 2z22

@2

@z22

�

+ D3

�
1 + z1

@

@z1
+ z2

@

@z2
+ 2z1z2

@2

@z1@z2

�
+ D4

�
z2
@3

@z31
+ z31

@

@z2

�
+
D5
2

�

=2~2
�
2D1z

2
1

@2

@z21
+ 2D2z

2
2

@2

@z22
+ 2D3z1z2

@2

@z1@z2
+ D4

�
z2
@3

@z31
+ z31

@

@z2

�
(30)

+ (4D1 + D3) z1
@

@z1
+ (4D2 + D3) z2

@

@z2
+
�
D1 + D2 + D3 +

D5
2

��

4 Spectrum in the 1:1, 1:2 and 1:3 resonances

4.1 Spectrum in the 1:1 resonance

In this section we analyse the spectrum of the restriction of K̂4 to the
eigenspace of bH2 by computing the matrix elements K̂

B
4 ('B) :
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First we have,

@'(B1;B2)

@z1
=

@

@z1

�
zB11p
B1!

zB22p
B2!

�
= B1

zB1�11p
B1!

zB22p
B2!

=
p
B1

zB1�11p
(B1 � 1)!

zB22p
B2!

=
p
B1'(B1�1;B2)

@2'(B1;B2)

@z21
=
p
B1
p
B1 � 1'(B1�2;B2)

@'(B1;B2)

@z2
=
p
B2'(B1;B2�1)

@2'(B1;B2)

@z22
=
p
B2
p
B2 � 1'(B1;B2�2)

@2'(B1;B2)

@z1@z2
=
p
B1
p
B2'(B1�1;B2�1)

and

z1'(B1;B2)= z1

�
zB11p
B1!

zB22p
B2!

�
=
zB1+11p
B1!

zB22p
B2!

=
p
B1 + 1

zB1+11p
(B1 + 1)!

zB22p
B2!

=
p
B1 + 1'(B1+1;B2)

z21'(B1;B2)=
p
B1 + 2

p
B1 + 1'(B1+2;B2)

z2'(B1;B2)=
p
B2 + 1'(B1;B2+1)

z22'(B1;B2)=
p
B2 + 2

p
B2 + 1'(B1;B2+2)

z1z2'(B1;B2)=
p
B1 + 1

p
B2 + 1'(B1+1;B2+1)

Thus,

K̂B
4 '(B1;B2)=2~

2(2�1z
2
1

@2'(B1;B2)

@z21
+ 2�2z

2
2

@2'(B1;B2)

@z22
+ 2�3z1z2

@2'(B1;B2)

@z1@z2

+�4[z
2
2

@2'(B1;B2)

@z21
+ z21

@2'(B1;B2)

@z22
] + (4�1 + �3) z1

@'(B1;B2)

@z1

+(4�2 + �3) z2
@'(B1;B2)

@z2
+

�
�1 + �2 + �3 +

�5

2

�
'(B1;B2))

= 2~2(2�1z
2
1

p
B1(B1 � 1)'(B1�2;B2) + 2�2z22

p
B2(B2 � 1)'(B1;B2�2)

+2�3z1z2
p
B1B2'(B1�1;B2�1) + �4(z

2
2

p
B1(B1 � 1)'(B1�2;B2)

+z21
p
B2(B2 � 1)'(B1;B2�2)) + (4�1 + �3) z1

p
B1'(B1�1;B2)

+(4�2 + �3) z2
p
B2'(B1;B2�1) +

�
�1 + �2 + �3 +

�5

2

�
'(B1;B2))
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=2~2
�
2�1B1 (B1 � 1)'(B1;B2) + 2�2B2 (B2 � 1)'(B1;B2) + 2�3B1B2'(B1;B2)

+�4

�p
B1(B1 � 1)(B2 + 1)(B2 + 2)'(B1�2;B2+2)

+
p
(B1 + 1)(B1 + 2)B2(B2 � 1)'(B1+2;B2�2))

�i

+(4�1 + �3)B1'(B1;B2) + (4�2 + �3)B2'(B1;B2) +

�
�1 + �2 + �3 +

�5

2

�
'(B1;B2)

=2~2
n
�4
p
B1(B1 � 1)(B2 + 1)(B2 + 2)'(B1�2;B2+2)

+ [2�1B1 (B1 � 1) + 2�2B2 (B2 � 1) + 2�3B1B2 + (4�1 + �3)B1

+ (4�2 + �3)B2 +

�
�1 + �2 + �3 +

�5

2

��
'(B1;B2)

+ �4
p
(B1 + 1)(B1 + 2)B2(B2 � 1)'(B1+2;B2�2)

o

We see that the basis HBN is stable by K̂B
4 because,

B1� 2+ (B2 + 2) = B1+B2 = N and B1+2+ (B2 � 2) = B1+B2 = N

where HBN =
�
'(N�`;`) ; ` = 0; 1; :::; E

�
N
2

�	
:

One can verify easily that the matrix bKB
4 in HBN is symetric. Indeed,

bKB
4 '(B1+2;B2�2)=4~

2[�4
p
(B1 + 2) (B1 + 1) (B2 � 1)B2'(B1;B2) +

(2�1 (B1 + 2) (B1 + 1) + 2�2 (B2 � 2) (B2 � 3)
+2�3 (B1 + 2) (B2 � 2) + (4�1 + �3) (B1 + 2)

+ (4�2 + �3) (B2 � 2) +
�
�1 + �2 + �3 +

�5

2

�
)'(B1+2;B2�2)

+�4
p
(B1 + 4) (B1 + 3) (B2 � 2) (B2 � 3)'(B1+4;B2�4)]

One gets,

bKB
4 '(N�`;`)=4~

2
�
�4
p
(`+ 1) (`+ 2) (N � `) (N � `� 1)'(N�`�2;`+2)

+(2�1 (N � `) (N � `� 1) + 2�2` (`� 1) + �3 (N � `) ` (31)

+(4�1 + �3) (N � `) + (4�2 + �3) `+
�
�1 + �2 + �3 +

�5

2

�
)'(N�`;`)

+ �4
p
` (`� 1) (N � `+ 1) (N � `+ 2)'(N�`+2;`�2)

�

Thus,
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Proposition 9 The matrix of bKB
4 ; in the basis HBN is :

2~2

0
BBBBBBBBBB@

dN;0 AN;0
...

AN;0 dN;1
. . .

... 0

� � � . . . . . . . . .
... � � � � � �

AN;`�1 dN;` AN;`
. . .

0 AN;` dN;`+1
. . . . . .

...
. . .
. . .

1
CCCCCCCCCCA

(32)

where, for ` = 0; 1; :::; E
�
N
2

�
:

8
<
:
AN;` = �4

p
(`+ 1) (`+ 2) (N � `) (N � `� 1)

dN;` = 2�1 (N � `) (N � `� 1) + 2�2` (`� 1) + 2�3 (N � `) `
+(4�1 + �3) (N � `) + (4�2 + �3) `+

�
�1 + �2 + �3 +

�5
2

�

4.2 Spectrum in the 1:2 resonance

By computing K̂B
3 ('B) ; we get

bKB
3 '(B1;B2)=

p
2�~

3
2

 
z2
@2'(B1;B2)

@z21
+ z21

@'(B1;B2)

@z2

!

=
p
2�~

3
2

�
z2
p
B1
p
B1 � 1'(B1�2;B2) + z21

p
B2'(B1;B2�1)

�

=
p
2�~

3
2

�p
(B2 + 1)B1 (B1 � 1)'(B1�2;B2+1)

+
p
(B1 + 2) (B1 + 1)B2'(B1+2;B2�1)

�

we see that the basis HBN is stable by bKB
3 because,

B1�2+2 (B2 + 1) = B1+2B2 = N and B1+2+2 (B2 � 1) = B1+2B2 = N

where HBN =
�
'(N�2`;`) ; ` = 0; 1; :::; E

�
N
2

�	
:

The matrix of bKB
3 in HBN is symetric, since

bKB
3 '(B1+2;B2�1)=

p
2�~

3
2

�p
(B1 + 2) (B1 + 1)B2'(B1;B2)

+
p
(B1 + 4) (B1 + 3) (B2 � 1)'(B1+4;B2�2)

�

Thus,

bKB
3 '(N�2`;`)=

p
2�~

3
2

�p
(`+ 1) (N � 2`) (N � 2`� 1)'(N�2`�2;`+1)

+
p
(N � 2`+ 2) (N � 2`+ 1) `'(N�2`+2;`�1)

�
(33)
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Proposition 10 The matrix of bKB
3 in the basis HBN is:

p
2�~

3
2

0
BBBBBBBBBB@

0 m0
...

m0 0
. . .

... 0

� � � . . . 0 m` � � � � � �
m` 0

. . .

0
. . . 0

. . .
...
. . . 0

1
CCCCCCCCCCA

(34)

where for ` = 0; 1; :::; E
�
N
2

�
:

m` =
p
(`+ 1) (N � 2`) (N � 2`� 1)

In the case of Fermi resonance, the half integer powers of ~ are
present, the coe¢cient of ~3=2 is then the average along the �ow of bH2

of the term of order 3 in the Taylor expansion of the symbol.

4.3 Spectrum in the 1:3 resonance

We have,

@3'(B1;B2)

@z31
=
p
B1
p
B1 � 1

p
B1 � 2'(B1�3;B2)

z31'(B1;B2)=
p
B1 + 3

p
B1 + 2

p
B1 + 1'(B1+3;B2)

then,

z31
@'(B1;B2)

@z2
+ z2

@3'(B1;B2)

@z31
=
p
(B1 + 3)(B1 + 2)(B1 + 1)B2'(B1+3;B2�1)

+
p
B1(B1 � 1)(B1 � 2)(B2 + 1)'(B1�3;B2+1)

Therefore,

bKB
4 '(B1;B2)=2~

2
�
D4
p
B1 (B1 � 1) (B1 � 2) (B2 + 1)'(B1�3;B2+1)

+(2D1B1(B1 � 1) + 2D2B2(B2 � 1) + 2D3B1B2 + (4D1 + D3)B1
+(4D2 + D3)B2 +

�
D1 + D2 + D3 +

D5
2

�
)'(B1;B2)

+D4
p
(B1 + 3) (B1 + 2) (B1 + 1)B2'(B1+3;B2�1)

�

The basisHBN =
�
'(N�3`;`) ; ` = 0; 1; :::; E

�
N
2

�	
is stable by bKB

4 because,

B1+3+3 (B2 � 1) = B1+3B2 = N and B1�3+3 (B2 + 1) = B1+3B2 = N
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and the matrix of bKB
4 in HBN is symetric since

bKB
4 '(B1+3;B2�1)=2~

2
h
D4
p
(B1 + 3) (B1 + 2) (B1 + 1)B2'(B1;B2)

+(2D1 (B1 + 3) (B1 + 2) + 2D2 (B2 � 1) (B2 � 2) + 2D3 (B1 + 3) (B2 � 1)
+ (4D1 + D3) (B1 + 3) + (4D2 + D3) (B2 � 1)
+
�
D1 + D2 + D3 +

D5
2

�i
'(B1+3;B2�1)

+D4
p
(B1 + 6) (B1 + 5) (B1 + 4) (B2 � 1)'(B1+6;B2�2)

i

So one gets,

bKB
4 '(N�3`;`)=2~

2
�
D4
p
(`+ 1) (N � 3`) (N � 3`� 1) (N � 3`� 2)'(N�3`�3;`+1)

+[2D1 (N � 3`) (N � 3`� 1) + 2D2` (`� 1) + 2D3` (N � 3`) (35)

+(4D1 + D3) (N � 3`) + (4D2 + D3) `+
�
D1 + D2 + D3 +

D5
2

�
]'(N�3`;`)

+ D4
p
` (N � 3`+ 1) (N � 3`+ 2) (N � 3`+ 3)'(N�3`+3;`�1)

�

and therefore,

Proposition 11 The matrix of bKB
4 in the basis HBN is :

2~2

0
BBBBBBBBBB@

d0N;0 BN;0
...

BN;0 d
0
N;1

. . .
. . .

... 0

� � � . . .
. . .BN;`�1 � � � � � �
. . . d0N;` BN;`

. . .

0 BN;` d0N;`+1
. . .
. . .

...
. . .
. . .

1
CCCCCCCCCCA

(36)

where for ` = 0; 1; :::; E
�
N
2

�
:

8
<
:

BN;` = D4
p
(`+ 1) (N � 3`) (N � 3`� 1) (N � 3`� 2)

d0N;` = (2D1 (N � 3`)2 + 2D2`2 + 2D3` (N � 3`)
+ (3D1 + D3) (N � 3`) + (3D2 + D3) `+

�
D1 + D2 + D3 +

D5
2

�
)

5 An e¤ective Quantum BGNF program

We have implemented the Quantum Birkho¤-Gustavson normal form
in the computer language ocaml2, which is a fast and very expressive
functional language, particularly well adapted to mathematical construc-
tions.

2http://caml.inria.fr/index.en.html
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5.1 Overview of the code

The code consists of three modules : Math, Weyl and Birkhoff. The
Math module is a functorial interface that de�nes the axioms of general
(non-commutative) associative algebras over an abelian �eld. This per-
mits the use of the same code for di¤erent coe¢cient rings: real numbers,
complex numbers, rationals, or even formal series. For instance, we may
declare that we use complex coe¢cients using the simple line :

open Math.ComplexNumbers;;

The Weyl module implements the Weyl algebra for formal series E �
de�ned in Section 2, endowed with the non-commutative Moyal product.
Internally, series are stored in hash tables, and the module provides a way
to convert them to/from a text representation. The number of variables
is arbitrary, it need not be speci�ed. For instance the 1 : 2-oscillator

h2 =
1

2
(x21 + �

2
1) + (x

2
2 + �

2
2)

will be printed as follows:

Weyl.print_poly h2;;

1 h^0 x^() �^(0,2)

1 h^0 x^(0,2) �^()

0.5 h^0 x^() �^(2)

0.5 h^0 x^(2) �^()

For convenience, we also wrote a Maple module that can use copy-
pasted text directly to/from Maple notation :

Maple.of_poly h2;;

- : string = "0.5*x[1]^2+0.5*xi[1]^2+1*x[2]^2+1*xi[2]^2"

As a simple example, the code below computes the Moyal bracket
of x3 and �3 � which is the Weyl symbol of the operator bracket
i
~
[x3; (~

i
x)3].

let x3 = Maple.to_poly "x[1]^3" in

let xi3 = Maple.to_poly "xi[1]^3" in

let c = Weyl.crochet x3 xi3 in

Maple.of_poly c;;

- : string = "1.5*h^2+-9*x[1]^2*xi[1]^2"

Thus we �nd i
h
[x3; �3]W = 3

2
~2 � 9x2�2.
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The Birkhoff module is the core of the normal form algorithm. It
implements the proof of Theorem 1 that appears in [5]. It involves an
induction where each step consists in solving a cohomological equation.
Only Moyal brackets, additions, and multiplication by scalar are used.
Here is the code for the induction step :

let birkhoff_step order freq k r =

let n = ordre r in
let (rn, _) = get_homog r n in

let (kn, an) = split freq rn in

let newh = exp_ad an (add k r) order

and k� = add k kn

in let r� = add newh (coeff_mult C.mone k�) in
proj_order ~check:true r� (n+1);

(k�, r�)

If h=k+r, where h is the initial quantum Hamiltonian (or Weyl sym-
bol), k is the normalisation at order n-1 and r is the remainder (of order
n, then the function birkhoff_step computes the next-order normal-
ization : h=k�+r�, where r� is of order n+1.
For simplicity, we have assumed in this code that the quadratic hamil-

tonian is of the formH2 = �1x
0
1�
0
1+� � �+�nx0n�0n : this amounts to writing

H2 in terms of creation and annihilation operators as in (6). In order
to deal with harmonic oscillators in real variables (xj; �j) as in (2), we
need to use the change of variables x0j =

1p
2
(xj + i�j), �

0
j =

1p
2
(xj � i�j).

We have implemented this change of variables in the code.

5.2 Numerical results for the 1 : 3 resonance

We may de�ne H2 using Maple notation as follows :

let h2 = Maple.to_poly "0.5*x[1]^2+0.5*xi[1]^2+1.5*x[2]^2+1.5*xi[2]^2";;

Then we convert it to complex coordinates :

let h2z = coordz h2;;

Maple.of_poly h2z;;

- : string = "1*x[1]^1*xi[1]^1+3*x[2]^1*xi[2]^1"

It has now the required formH2 = x01�
0
1+3x

0
2�
0
2. We add now a simple

perturbation W = (x2)
3, which we convert to complex coordinates :

let w = Maple.to_poly "x[2]^3";;

let wz = coordz w;;

Maple.of_poly vz;;
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- : string =

"1.06066*x[2]^1*xi[2]^2+0.353553*x[2]^3+

1.06066*x[2]^2*xi[2]^1+0.353553*xi[2]^3"

Thus we have, in complex coordinates (x0j; �
0
j) :

W =
17

16
x02�

0
2
2
+
6

17
x02
3
+
17

16
x02
2
�02 +

6

17
�02
3
:

and �nally we may consider the hamiltonian H = H2 +W :

let hz = Weyl.add h2z vz;;

Now we de�ne the frequency vector [1; 3], and we may apply the
Birkho¤ procedure at order 4 :

let freq = [| one; of_int 3 |];;

let kz = birkhoff freq hz 4;;

We have obtained the normalized Hamiltonian kz. We convert it
back to real coordinates (xj; �j) and print it :

let k = coordx kz;;

Maple.of_poly k;;

- : string =

"0.5*x[1]^2+0.5*xi[1]^2+0.166667*h^2+-0.625*x[2]^2*xi[2]^2+-0.3125*x[2]^4+

-0.3125*xi[2]^4+1.5*x[2]^2+1.5*xi[2]^2"

Reordering terms, we get

K =
1

2
x21+

1

2
�21+

3

2
x22+

3

2
�22+

1

6
~2�5

8
x22�

2
2�

5

16
x42�

5

16
�42+O6 = H2+K4+O6

where K4 =
1
6
~2 � 5

8
x22�

2
2 � 5

16
x42 � 5

16
�42 =

1
6
~2 � 5

16
(x22 + �

2
2)
2.

It remains to compare to the theoretical results of section 3.5 (The-
orem 8), which predicts:

K4 = D1 jz1j4 + D2 jz2j4 + D3 jz1j2 jz2j2 + D4Re
�
z31z2

�
+ D5~

2

Using that W (x1; x2) = x32, we see from the formulas in Theorem 8
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that only the coe¢cients D2 and D5 don�t vanish; we obtain:

K4= D2 jz2j4 + D5~2

=�1
2

�
1

3!2
p
2

�2
20

�
@3W (0)

@x32

�2
1

4

�
x42 + �

4
2 + 2x

2
2�
2
2

�

+
1

216

�
@3W (0)

@x32

�2
~2

=�1
2

�
1

3!2
p
2

�2
20:36:

1

4

�
x42 + �

4
2 + 2x

2
2�
2
2

�
+

1

216
:36:~2

=� 5
16

�
x42 + �

4
2 + 2x

2
2�
2
2

�
+
1

6
~2

hence,

H2 +K4 =
1

2
x21 +

1

2
�21 +

3

2
x22 +

3

2
�22 �

5

16
x42 �

5

16
�42 �

5

8
x22�

2
2 +

1

6
~2;

which con�rms the computer output.
Of course, we can ask the program to give the normalization at any

given order. For instance here is what we get at order 8 :

K =
1

2
�21 +

3

2
�22 +

1

2
x21 +

3

2
x22

� 5
16
�42 +

1

6
~2 � 5

8
x22�

2
2 �

5

16
x42

� 235
1152

�62 +
395

576
~2�22 �

235

384
x22�

4
2 �

235

384
x42�

2
2 �

235

1152
x62 +

395

576
~2x22

� 38585
165888

�82 +
100205

41472
~2�42 �

128

243
~4 � 38585

41472
x22�

6
2 �

38585

27648
x42�

4
2 �

38585

41472
x62�

2
2

� 38585
165888

x82 +
100205

20736
~2x22�

2
2 +

100205

41472
~2x42 +O10
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