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Extended Abstract

Introduction. Linearity and contiguity are graph parameters introduced to obtain ecient codings of neighborhoods in graphs, by decomposing each neighborhood as a union of p intervals chosen in one or several orders on the vertices [START_REF] Crespelle | Ecient Neighbourhood Encoding for Interval Graphs and Permutation Graphs and O(n) Breadth-First Search[END_REF]. Indeed, storing an order of the vertices as well as a pair of pointers for each of the p intervals of this order (one pointer for the beginning of the interval and one for the end), with xed p, allows to store the graph in O(n) space (instead of O(n + m) with adjacency lists) and access the neighborhood of any vertex v in O(d) time (instead of O(n) with adjacency matrices), where d is the degree of v.

More formally, a closed p-interval-model of a graph G = (V, E) is a linear order σ on V such that ∀v ∈ V, ∃(I 1 , . . . , I p ) ∈ (2 V ) p such that ∀i ∈ 1, p, I i is an interval of σ and N [x] = 1≤i≤p I i . The closed contiguity of G, denoted by cont(G), is the minimum integer p such that there exists a closed p-interval-model of G. A closed p-line-model of a graph G = (V, E) is a tuple (σ 1 , . . . , σ p ) of linear orders on V such that ∀v ∈ V, ∃(I 1 , . . . , I p ) ∈ (2 V ) p such that ∀i ∈ 1, p, I i is an interval of σ i and N [x] = 1≤i≤p I i . The closed linearity of G, denoted by lin(G), is the minimum p such that there exists a closed p-line-model of G.

Not much is known about these parameters, which cannot be bounded by a constant even in very restricted graph classes, like interval or permutation graphs [START_REF] Crespelle | Ecient Neighbourhood Encoding for Interval Graphs and Permutation Graphs and O(n) Breadth-First Search[END_REF]. We focus here on the contiguity and linearity of cographs (graphs without induced P 4 subgraphs), whose very constrained structure can be represented by their cotree, a rooted tree with two kinds of nodes labeled by P and S, giving a tight upper bound for the asymptotic contiguity of cographs and an upper bound for their linearity. To this aim, we rst establish a min-max theorem on the link between the rank of rooted trees and their decompositions into paths.

A min-max theorem on the rank of a tree. The rank [START_REF] Ehrenfeucht | Learning Decision Trees from Random Examples[END_REF][START_REF] Gavaldà | Thérien Algebraic Characterizations of Small Classes of Boolean Functions[END_REF] of a tree T is the maximal height of a complete binary tree obtained from T by edge contractions, that is rank(T ) = max{h(T ) | T complete binary tree, minor of T }.

A path partition of a tree T is a partition {P 1 , . . . , P k } of V (T ) such that for any i, the subgraph T [P i ] of T induced by P i is a path, as shown in Figure 1(a). The partition tree of a path partition P, denoted by T p (P) and illustrated in Figure 1(b), is the tree whose nodes are P i 's and where the node of T p (P) corresponding to P i is the parent of the node corresponding to P j i some node of P i is the parent in T of the root of P j . The height of a path partition P of a tree T , denoted by h(P), is the height h(T p (P)) of its partition tree. The path-height of T is the minimal height of a path partition of T , that is ph(T ) = min{h(P) | P path partition of T }.
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Figure 1: A tree T and a path partition P = {P 1 , P 2 , P 3 , P 4 , P 5 , P 6 } of T (a), as well as the partition tree of P (b).

Lemma 1 For a rooted complete binary tree T , rank(T ) = ph(T ) = h(T ).

Theorem 2 For any rooted tree T , we have rank(T ) = ph(T ).

Upper bounds for contiguity and linearity of cographs. We now combine the results of the previous section with a decomposition of the cotree of the input cograph into paths, in order to obtain a constructive proof that the contiguity of any cograph is at most O(log n). This decomposition is obtained recursively, using a root-path decomposition of the cotree, thanks to the Caterpillar Composition Lemma below.

A root-path decomposition (see Fig. 2) of a rooted tree T is a set {T 1 , . . . , T p } of disjoint subtrees of T , with p ≥ 2, such that every leaf of T belongs to some T i , with i ∈ [1..p], and the sets of parents in T of the roots of T i 's is a path containing the root of T . 

cont(G[X i ]).

Lemma 4 Given a rooted tree T such that rank(T ) = k ≥ 1, there exists a root-path decomposition {T 1 , . . . , T p } of T such that for each i ∈ [1..p], rank(T i ) ≤ k -1.

Lemma 5 Let G be a cograph and T its cotree. We have cont(G) ≤ 2 rank(T ) + 1.

Theorem 6 The closed contiguity of a cograph is at most logarithmic in its number of vertices, or more formally, if G = (V, E) is a cograph, then cont(G) ≤ 2 log 2 |V | + 1.

Lower bounds for contiguity and linearity of cographs. Finally, we focus on cographs whose cotrees are complete binary trees, and obtain a tight lower bound for their asymptotic contiguity as well as a lower bound for their asymptotic linearity.

Theorem 7 Let G be a cograph whose cotree is a complete binary tree. Then, cont(G) = Ω(log n) and lin(G) = Ω(log n/ log log n).
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 2 Figure 2: The root-path decomposition {T 1 , . . . , T p } of a rooted tree T .