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This paper presents an efficient mathematical model for studying the buckling behavior of geometrically perfect elastic two-layer composite columns with interlayer slip between the layers. The present analytical model is based on the linearized stability theory and is capable of predicting exact critical buckling loads. Based on the parametric analysis, the critical buckling loads are compared to those in the literature. It is shown that the discrepancy between the different methods can be up to approximately 22 %. In addition, a combined and an individual effect of prebuckling shortening and transverse shear deformation on the critical buckling loads is studied in detail. A comprehensive parametric analysis reveals that generally the effect of pre-buckling shortening can be neglected, while, on the other hand, the effect of transverse shear deformation can be significant. This effect can be up to 20 % for timber composite columns, 40 % for composite columns very flexible in shear (pyrolytic graphite), while for metal composite columns it is insignificant.

Introduction

Engineering structural components made of composite materials are becoming increasingly important in many engineering applications, especially in aerospace, automobile, marine, and civil engineering industry. The driving force behind these applications is a wide range of potential advantages over the conventional structures, such as high strength-to-weight ratio, high stiffnessto-weight ratio, resistance to corrosion, low coefficient of thermal expansion, ability to operate over a wide range of temperatures and their capability for being formed according to a given requirement. In spite of their many attractive qualities, composite structures do, however, often suffer from incomplete interaction between the constituent components. As a result, interlayer slip between the components develops, which can, if it has a sufficient magnitude, significantly affect the mechanical behaviour of the composite system.

Consequently, interlayer slip has to be taken into consideration in what is called partial interaction analysis of composite structures. A considerable amount of research has been conducted on this very interesting topic. Therefore, a large number of references exist in the literature which consider interlayer slip either analytically or numerically, e.g. .

Design of structures is often based on strength and stiffness considerations.

However, the abovementioned composite structures are frequently rather slender and may become unstable long before strength and stiffness criteria are violated. Therefore, stability criterion is very important in structural design, especially when the structure is slender and lightweight. On the other hand, much less literature is available on buckling analysis of composite columns with interlayer slip between the layers, e.g. [START_REF] Čas | Buckling of layered wood columns[END_REF][START_REF] Heuer | Piezoelectric vibrations of composite beams with interlayer slip[END_REF][START_REF] Schnabl | The influence of boundary conditions and axial deformability on buckling behavior of two-layer composite columns with interlayer slip[END_REF][START_REF] Girhammar | Composite beam-columns with interlayer slip-exact analysis[END_REF][START_REF] Girhammar | Exact static analysis of partially composite beams and beam-columns[END_REF][START_REF] Xu | Free vibrations of the partial-interaction composite members with axial force[END_REF][START_REF] Xu | Free vibration and buckling of composite beams with interlayer slip by two-dimensional theory[END_REF][START_REF] Rassam | Buckling behaviour of layered wood columns[END_REF][START_REF] Kryžanowski | Exact slipbuckling analysis of two-layer composite columns[END_REF]. In all these studies shear deformation effect on critical buckling loads is ignored. In fact, increasingly important composite columns are generally quite shear sensitive because of their low shear modulus to Young's modulus ratio. In this case, the effect of transverse shear deformation can be significant and should be taken into account. While the buckling analysis of solid columns with finite shear stiffness has a long history in engineering science [START_REF] Ziegler | Arguments For and Against Engesser's Buckling Formulas[END_REF][START_REF] Reissner | Some Remarks on the Problem of Column Buckling[END_REF][START_REF] Wang | Buckling of columns: allowance for axial shortening[END_REF][START_REF] Banerjee | The effect of shear deformation on the critical buckling of columns[END_REF][START_REF] Timoshenko | Theory of Elastic Stability[END_REF][START_REF] Bažant | Stability of Structures: Elastic, Inelastic, Fracture, and Damage Theories[END_REF][START_REF] Bažant | Sandwich buckling formulas and applicability of standard computational algorithm for finite strain[END_REF][START_REF] Bažant | Stability and strain of homogenized structures soft in shear: Sandwich or fiber composites, and layered bodies[END_REF][START_REF] Attard | Sandwich column buckling -A hyperelastic formulation[END_REF][START_REF] Kardomateas | Buckling of moderately thick orthotropic columns: comparison of an elasticity solution with the Euler and Engesser/Haringx/Timoshenko formulae[END_REF][START_REF] Blaauwendraad | Shear in Structural Stability: On the Engesser-Haringx Discord[END_REF][START_REF] Engesser | Die Knickfestigkeit gerader Stabe[END_REF][START_REF] Haringx | On the buckling and the lateral rigidity of helical compression springs[END_REF], only a few papers have dealt with this subject in case of composite columns with interlayer slip between the layers [START_REF] Xu | Static, dynamic, and buckling analysis of partial interaction composite members using Timoshenko's beam theory[END_REF][START_REF] Krawczyk | Large deflections of laminated beams with interlayer slips: Part 1: model development[END_REF][START_REF] Krawczyk | Large deflections of laminated beams with interlayer slips: Part 2: finite element development[END_REF]. Recent paper by Xu and Wu [START_REF] Xu | Static, dynamic, and buckling analysis of partial interaction composite members using Timoshenko's beam theory[END_REF] has presented a unique approach of slip-buckling and vibration problem of composite beamcolumns when shear deformation is taken into account. Their formulation is based on what is called second order theory and Engesser's type of buckling approach [START_REF] Engesser | Die Knickfestigkeit gerader Stabe[END_REF]. Additionally, their formulation is based also on the assumptions of negligible effect of pre-buckling shortening on critical buckling loads and considers the average shear and bending deformation of the cross-section. On the other hand, Krawczyk with co-workers [START_REF] Krawczyk | Large deflections of laminated beams with interlayer slips: Part 1: model development[END_REF][START_REF] Krawczyk | Large deflections of laminated beams with interlayer slips: Part 2: finite element development[END_REF] has analyzed this problem numerically with finite element method based on a slightly different buckling theory compared to Xu and Wu [START_REF] Xu | Static, dynamic, and buckling analysis of partial interaction composite members using Timoshenko's beam theory[END_REF].

To complement the aforementioned studies, the main objective of the present paper is to derive an analytical model for slip-buckling problem of composite columns with interlayer slip between the layers where different pre-buckling shortening and transverse shear deformation of each layer are taken into account. For this purpose, in the present formulation each layer is modeled by Reissner's large-displacement finite-strain shear-deformable beam theory [START_REF] Reissner | On one-dimensional finite-strain beam theory: The plane problem[END_REF].

In addition, a linearized stability theory is employed [START_REF] Keller | Nonlinear bifurcation[END_REF] by which critical buckling forces of the composite columns with interlayer slip are determined from the solution of a linear eigenvalue problem [START_REF] Planinc | A quadratically convergent algorithm for the computation of stability points: The application of the determinant of the tangent stiffness matrix[END_REF].

In the numerical examples, a comparison between the different approaches is made, followed by a detailed parametric study by which combined and individual effects of pre-buckling shortening and transverse shear deformation on critical buckling load are examined for a wide range of possible material and geometric parameters, such as flexural-to-shear ratios (E/G), interlayer slip modulus (K), column slenderness ratios (λ) and different boundary conditions.

Finally, an analytical benchmark solution to the problem of column buckling with interlayer slip considering pre-buckling shortening and transverse shear effects is given. This solution will serve as a tool for the verification of numerical results obtained by different numerical methods.

Governing equations for two-layer composite column

Considered here is a geometrically perfect initially straight, planar, two-layer composite column of undeformed length L. Layers, as shown in Fig. 1, are marked by letters a and b. The column is placed in the (X, Z) plane of spatial Cartesian coordinate system with coordinates (X, Y, Z) and unit base vectors

E X , E Y and E Z = E X × E Y .
The initial undeformed reference axis of the layered column is common to both layers. It is parametrized by the undeformed arc-length x. Material particles of each layer are identified by material coordinates (x, y, z) in local coordinate system which are assumed to coincide initially with spatial coordinates, and then they follow the deformation of the column. Thus, x a ≡ x b ≡ x ≡ X, y a ≡ y b ≡ y ≡ Y , and z a ≡ z b ≡ z ≡ Z in the initial undeformed configuration. The two-layer composite column is loaded longitudinally at the free end by an axial conservative compressive force, P , in such a way that homogeneous stress-strain state of the column in its primary configuration is achieved. For further details an interested reader is referred to, e.g. [START_REF] Schnabl | The influence of boundary conditions and axial deformability on buckling behavior of two-layer composite columns with interlayer slip[END_REF][START_REF] Kryžanowski | Exact slipbuckling analysis of two-layer composite columns[END_REF]. 

Kinematic equations

The deformed configurations of the reference axes of layers a and b are defined by vector-valued functions (see Fig. 1)

R a 0 = X a E X + Y a E Y + Z a E Z = (x + u a )E X + yE Y + w a E Z , R b 0 = X b E X + Y b E Y + Z b E Z = (x + u b )E X + yE Y + w b E Z , (1) 
in which superscripts a and b indicate that quantities are related to layers a and b, respectively. Functions u a and w a denote the components of the displacement vector of layer a at the reference axis with respect to the base vectors E X and E Z . Similarly, functions u b and w b are related to layer b. The geometrical components u a , w a , u b , and w b of the the vector-valued functions R a 0 and R b 0 are related to the deformation variables by the following kinematic equations of Reissner's large-displacement finite-strain shear-deformable beam theory, see [START_REF] Reissner | On one-dimensional finite-strain beam theory: The plane problem[END_REF]: layer a:

1 + u a -(1 + ε a ) cos ϕ a -γ a sin ϕ a = 0 w a + (1 + ε a ) sin ϕ a -γ a cos ϕ a = 0 ϕ a -κ a = 0 (2) 
layer b:

1 + u b -(1 + ε b ) cos ϕ b -γ b sin ϕ b = 0 w b + (1 + ε b ) sin ϕ b -γ b cos ϕ b = 0 ϕ b -κ b = 0. (3) 
Here, the prime ( ) is used to indicate differentiation with respect to the axial coordinate x. In Eqs. ( 2)-( 3), the deformation variables ε a and ε b are the axial strains; κ a and κ b are the pseudocurvatures; ϕ a and ϕ b are the rotations of layers' cross-sections; while γ a and γ b are the shear strains [START_REF] Vratanar | A consistent equilibrium in a cross-section of an elastic-plastic beam[END_REF].

In addition to Eqs. ( 2)-(3), Reissner [START_REF] Reissner | On one-dimensional finite-strain beam theory: The plane problem[END_REF] proved that the extensional strains ε a and ε b and shear strains γ a and γ b , are related respectively to the corresponding layer's specific axial elongations e a and e b of the reference axis and shearing angles χ a = ϕ aθ a and χ b = ϕ bθ b by means of the following kinematic relations:

ε a = (1 + e a ) cos χ a -1, γ a = (1 + e a ) sin χ a , ( 4 
)
ε b = (1 + e b ) cos χ b -1, γ b = (1 + e b ) sin χ b , ( 5 
)
where θ a and θ b are the rotations of the reference axis of layer a and b, respectively, defined by

θ a = -arctan w a 1 + u a , θ b = -arctan w b 1 + u b . ( 6 
)
It is assumed that the plane of the cross-sections remain plane but not perpendicular to the column reference axis during deformation, i.e. the Timoshenko beam approximation. The material base vectors e a t , e a n , e b t , and e b n are assumed to remain orthogonal, see Fig. 1. The units normals, e a x and e b x to the layers' cross-sectional planes in the deformed state are given by

e a x = cos ϕ a E X -sin ϕ a E Z , e a z = sin ϕ a E X + cos ϕ a E Z , ( 7 
)
e b x = cos ϕ b E X -sin ϕ b E Z , e b z = sin ϕ b E X + cos ϕ b E Z , ( 8 
)
where e a z and e b z lie in the layers' cross-sectional planes in the deformed state and define the direction of resultant shear forces. The base vectors e a x , e a z , e b x , and e b z also separately form the orthonormal sets of base vectors of each individual layer.

Equilibrium equations

The two-layer composite column is subjected only to a conservative compressive force P = P a + P b at the free end, where P a and P b represent axial forces that correspond to the layers a and b, respectively. In addition, each layer of the two-layer composite column is subjected to interlayer contact tractions, measured per unit of layer's undeformed length, which are defined by

p a = p a X E X + p a Z E Z = (p a t cos θ a + p a n sin θ a )E X + (p a n cos θ a -p a t cos θ a )E Z , p b = p b X E X + p b Z E Z = (p b t cos θ b + p b n sin θ b )E X + (p b n cos θ b -p b t cos θ b )E Z , (9) 
where p a t , p b t , p a n , and p b n are the tangential and normal components of the interlayer contact tractions, see Fig. 1. Therefore, the equilibrium equations of an individual layer are, see e.g. [START_REF] Reissner | On one-dimensional finite-strain beam theory: The plane problem[END_REF]: layer a: R a X + p a X = R a X + p a t cos θ a + p a n sin θ a = 0,

R a Z + p a Z = R a Z -p a t sin θ a + p a n cos θ a = 0, M a Y -(1 + ε a )Q a + γ a N a + m a Y = 0, ( 10 
) layer b: R b X + p b X = R b X + p b t cos θ b + p b n sin θ b = 0, R b Z + p b Z = R b Z -p b t sin θ b + p b n cos θ b = 0, M b Y -(1 + ε b )Q b + γ b N b + m b Y = 0, (11) 
where

N a = R a X cos ϕ a -R a Z sin ϕ a , Q a = R a X sin ϕ a + R a Z cos ϕ a , M a = M a Y , N b = R b X cos ϕ b -R b Z sin ϕ b , Q b = R b X sin ϕ b + R b Z cos ϕ b , M b = M b Y . (12) 
The functions 

R a X , R a Z , R b X , R b Z , M a Y ,

Boundary conditions

Kinematic equations, Eqs. ( 2)-(3), and equilibrium equations, Eqs. ( 10)-( 11), constitute a system of 12 linear differential equations of the first order with constant coefficients for 24 unknown functions: 

u a , u b , w a , w b , ϕ a , ϕ b , θ a , θ b , R a X , R b X , R a Z , R b Z , M a Y , M b Y , ε a , ε b , κ a , κ b , γ a , γ b , p a t , p b t , p a n ,
x = 0 : r 0 1 R a X (0)+r 0 2 u a (0) = -r 0 1 P a , r 0 3 R b X (0)+r 0 4 u b (0) = -r 0 3 P b , r 0 5 R a Z (0)+r 0 6 w a (0) = 0, r 0 7 R b Z (0)+r 0 8 w b (0) = 0, r 0 9 M a Y (0)+r 0 10 ϕ a (0) = +r 0 9 ( h a 2 -z c )P a , r 0 11 M b Y (0)+r 0 12 ϕ b (0) = -r 0 11 ( h b 2 + z c )P b , ( 13 
) x = L : r L 1 R a X (L)+r L 2 u a (L) = -r L 1 P a , r L 3 R b X (L)+r L 4 u b (L) = -r L 3 P b , r L 5 R a Z (L)+r L 6 w a (L) = 0, r L 7 R b Z (L)+r L 8 w b (L) = 0, r L 9 M a Y (L)+r L 10 ϕ a (L) = +r L 9 ( h a 2 -z c )P a , r L 11 M b Y (L)+r L 12 ϕ b (L) = -r L 11 ( h b 2 + z c )P b , (14) 
where r i ∈ {0, 1} are parameters that determine different combinations of boundary conditions of the two-layer composite column, where the superscripts "0" and "L" of s identify its value at x = 0 and x = L, respectively.

P a and P b are interrelated in such a way that homogeneous stress-strain state of the column is assured. z c is the local coordinate of the contact plane between the layers a and b, see Fig. 1.

Additional equations

Because the number of equations is lower than the number of unknown functions, the additional equations, to the above-quoted system of 12 linear differential equations, are needed to find the solution for all unknown functions.

Constitutive equations

To relate the equilibrium internal forces N a , Q b , N a , and Q b and equilibrium internal moments M a and M b to a material model, the following set of equations which assure the balance of equilibrium and constitutive cross-sectional forces and bending moments of the composite column are introduced. The well known constitutive equations of linear elastic two-layer composite columns are

N a -N a C (x, ε a , κ a ) = N a -C a 11 ε a -C a 12 κ a = 0, Q a -Q a C (x, γ a ) = Q a -C a 33 γ a = 0, M a -M a C (x, ε a , κ a ) = M a -C a 21 ε a -C a 22 κ a = 0, N b -N b C (x, ε b , κ b ) = N b -C b 11 ε b -C b 12 κ b = 0, Q b -Q b C (x, γ b ) = Q b -C b 33 γ b = 0, M b -M b C (x, ε b , κ b ) = M b -C b 21 ε b -C b 22 κ b = 0, (15) 
where 

N a C , Q a C , M b C , N b C , Q b C ,
C a 33 = k a y A a G a ,
where k a y is the shear coefficient of the cross section of the layer. In the case of a rectangular cross section and isotropic material, the shear coefficient is 5/6 [START_REF] Cowper | The shear coefficient in Timoshenko's beam theory[END_REF]; and so forth, see e.g. [START_REF] Schnabl | Analytical solution of two-layer beam taking into account interlayer slip and shear deformation[END_REF].

In addition to Eqs. ( 15), a constitutive law of the interface between the layers still has to be introduced. Herein, a linear constitutive law of bond slip between the layers is employed:

p a t = KΔ, ( 16 
)
in which K denotes the slip modulus at the interlayer surface and Δ denotes the interlayer slip between the layers; Δ will be presented in the next section.

Constraining equations

The layer a of the two-layer composite column under deformation is constrained to follow the deformation of the layer b, and vice versa. Since the layers can slip along each other but their transverse separation or penetration is not allowed, the aforementioned fact can be expressed by a kinematic-constraint requirement as follows

R b 0 (T b ) = R a 0 (Q a ), (17) 
or, written differently

R b 0 (x) = R a 0 (x * ), ( 18 
)
where x and x * are coordinates of two distinct particles T b and Q a of layers b and a in the undeformed configuration, which are in the deformed configuration in contact, see Fig. 1. Written in a componential form, Eqs. ( 17) or ( 18)

are x + u b (x) + z c sin ϕ b (x) = x * + u a (x * ) + z c sin ϕ a (x * ), w b (x) + z c cos ϕ b (x) = w a (x * ) + z c cos ϕ a (x * ). (19) 
The slip, Δ, that occurs between the layers a and b can be defined as

Δ(x) = x * x 1 + ε b (ξ) + z c κ b (ξ) cos χ b (ξ) + γ b (ξ) sin χ dξ. ( 20 
)
Besides the above presented kinematic-constraint requirement ( 17), a stressconstraint requirement is determined from the third Newton's law, which ensures an equilibrium of the interlayer contact tractions of the particles in contact. This requirement is expressed in the vector-valued function form as

p a (x) + p b (x) = 0, (21) 
and, by substituting ( 9) into [START_REF] Planinc | Numerical and experimental analysis of timber composite beams with interlayer slip[END_REF], in componential form as

p a t cos θ a + p a n sin θ a + p b t cos θ b + p b n sin θ b = 0, -p a t sin θ a + p a n cos θ a -p b t sin θ b + p b n cos θ b = 0. (22) 
Therefore, Eqs. ( 2)-( 3), ( 6), ( 10)-( 12), ( 15)-( 16), ( 19)- [START_REF] Schnabl | Analytical solution of two-layer beam taking into account interlayer slip and shear deformation[END_REF], and ( 22) form a complete basis for a non-linear boundary-value problem of a two-layer composite column. Thus, a complete set of non-linear governing equations consists of 32 equations for 32 unknown functions:

u a , u b , w a , w b , ϕ a , ϕ b , θ a , θ b , ε a , ε b , γ a , γ b , κ a , κ b , R a X , R b X , R a Z , R b Z , M a Y , M b Y , N a , N b , Q a , Q b , M a , M b , p a t , p b t , p a n , p b n , Δ,
and x * .

3 Exact buckling response analysis

Linearized stability equations

The linearized stability equations for the determination of the critical load of the two-layer composite columns, at the bifurcation point, can be derived by the application of the linearized theory of stability. This theory is based on the ascertainment that the critical bifurcation points of the non-linear system coincide with the critical points of the corresponding linearized system [START_REF] Keller | Nonlinear bifurcation[END_REF].

The application of the linearized stability theory, regarding the existence and uniqueness of the solution of Reissner's elastica, is given by Flajs et al [START_REF] Flajs | On the existence and uniqueness of the generalized solution of the Reissner's elastica[END_REF].

The aforementioned linearized theory of stability is founded upon the variation of a functional F , here made in the sense of the continuous linear Gateaux operator or directional derivative, defined as follows [START_REF] Hartmann | The Mathematical Foundation of Structural Mechanics[END_REF] δF

(x, δx) = lim α→0 F (x + αδx) -F (x) α = d dα ⏐ ⏐ ⏐ ⏐ ⏐ α=0 F (x + αδx), ( 23 
)
where x and δx represent the generalized displacement field and its increment, respectively, and α is an arbitrary small scalar parameter. Accordingly, it is convenient for Eqs. ( 2)-( 3), ( 6), ( 10)-( 12), ( 15)-( 16), ( 19)- [START_REF] Schnabl | Analytical solution of two-layer beam taking into account interlayer slip and shear deformation[END_REF], and ( 22) to be re-written in compact form as F = {F 1 , F 1 , . . . , F 32 } T , and their arguments

as x = {u a , u b , w a , w b , . . . , p a n , p b n , Δ, x * } T .
In order to apply linearized equations to the two-layer composite column buckling problem, these equations have to be evaluated at the primary configuration of the column, which is an arbitrary deformed configuration in which the composite column remains straight.

The primary configuration is then defined as follows

ε a = ε b = - 1 C a 11 + C b 11 P, γ a = γ b = 0, κ a = κ b = 0, u a = u b = u a (0) - x C a 11 + C b 11 P w a = w b = 0, ϕ a = ϕ b = 0, θ a = θ b = 0, x * = x, Δ = 0, R a X = N a = - C a 11 C a 11 + C b 11 P, R b X = N b = - C b 11 C a 11 + C b 11 P R a Z = Q a = 0, R b Z = Q b = 0, M a Y = M a = - C a 21 C a 11 + C b 11 P, M b Y = M b = - C b 21 C a 11 + C b 11 P, p a X = p a t = 0, p b X = p b t = 0, p a Z = p a n = 0, p b Z = p b n = 0. ( 24 
)
The system of Eqs. ( 2)-( 3), ( 6), ( 10)-( 12), ( 15)-( 16), ( 19)- [START_REF] Schnabl | Analytical solution of two-layer beam taking into account interlayer slip and shear deformation[END_REF], and ( 22) is illconditioned for some special cases. In order to avoid this problem, the following additional relations between the deflections and transverse shear forces of the composite column, namely, w = w a = w b and R Z = R a Z + R b Z have to be introduced from ( 19). Based on these relations and linearization of Eqs. ( 2)-( 3), ( 10)-( 16), ( 19), [START_REF] Schnabl | Analytical solution of two-layer beam taking into account interlayer slip and shear deformation[END_REF], and ( 21)-( 22), the linearized uncoupled equations of the two-layer composite column, when written at the primary configuration [START_REF] Girhammar | Composite beam-columns with interlayer slip-exact analysis[END_REF], can be derived as:

δF 1 = δu a -δε a = 0, δF 2 = δu b -δε b = 0, δF 3 = δw + (1 + ε)δϕ a -δγ a = 0, δF 4 = δϕ a -δκ a = 0, δF 5 = δϕ b -δκ b = 0, δF 6 = δR a X -δp t = 0, δF 7 = δR b X + δp t = 0, δF 8 = δR Z = 0, δF 9 = δM a Y + R a X δw -(1 + ε)δR a Z + δm a Y = 0, δF 10 = δM b Y + R b X δw -(1 + ε)δR b Z + δm b Y = 0, δF 11 = δR a X -C a 11 δε a -C a 12 δκ a = 0, δF 12 = δR b X -C b 11 δε b -C b 12 δκ b = 0, δF 13 = δR a Z + R a X δϕ a -C a 33 δγ a = 0, δF 14 = δR b Z + R b X δϕ b -C b 33 δγ b = 0, δF 15 = δM a Y -C a 21 δε a -C a 22 δκ a = 0, δF 16 = δM b Y -C b 21 δε b -C b 22 δκ b = 0, δF 17 = δΔ -δu a + δu b + z c (δϕ b -δϕ a ), δF 18 = δp t -KδΔ = 0, δF 19 = δx * + δu a -δu b + z c (δϕ a -δϕ b ) = 0, δF 20 = δγ b -δγ a -(1 + ε)(δϕ b -δϕ a ), (25) 
where

δp t = δp a t = -δp b t , δR Z = δR a Z + R b Z , (26) 
and

ε = - P C a 11 + C b 11 , R a X = - C a 11 C a 11 + C b 11 P, R b X = - C b 11 C a 11 + C b 11 P. ( 27 
)
Eqs. (25) constitute a system of 20 linear algebraic-differential equations of the first order with constant coefficients for 20 unknown functions: δu a , δu b ,

δw, δϕ a , δϕ b , δε a , δε b , δγ a , δγ b , δκ a , δκ b , δR a X , δR b X , δR a Z , δR b Z , δM a Y , δM b Y ,
δp t , δΔ, and δx * along with the corresponding natural and essential boundary conditions written in the following general form as:

x = 0 : s 0 1 δR a X (0)+s 0 2 δu a (0) = 0, s 0 3 δR b X (0)+s 0 4 δu b (0) = 0, s 0 5 δR Z (0)+s 0 6 δw(0) = 0, s 0 7 δM a Y (0)+s 0 8 δϕ a (0) = 0, s 0 9 δM b Y (0)+s 0 10 δϕ b (0) = 0, (28) 
x = L :

s L 1 δR a X (L)+s L 2 δu a (L) = 0, s L 3 δR b X (L)+s L 4 δu b (L) = 0, s L 5 δR Z (L)+s L 6 δw(L) = 0, s L 7 δM a Y (L)+s L 8 δϕ a (L) = 0, s L 9 δM b Y (L)+s L 10 δϕ b (L) = 0, ( 29 
)
where s i ∈ {0, 1} are again parameters that determine different combinations of boundary conditions of the two-layer composite column. The superscripts "0" and "L" of s identify its value at x = 0 and x = L, respectively.

Exact solution for two-layer column critical buckling load

The system of linear algebraic-differential equations of the first order with constant coefficients [START_REF] Girhammar | Exact static analysis of partially composite beams and beam-columns[END_REF] and the corresponding natural and essential boundary conditions ( 28)-( 29) can be written as a homogeneous system of 10 first order linear differential equations in compact form as

Y (x) = AY (x), (30) 
and

Y (0) = Y 0 , (31) 
where Y (x) = {δu a (x), δu b (x), δw(x), δϕ a , . . . , δR Z (x), δM a Y (x), δM b Y (x)} T , Y (0) = {δu a (0), δu b (0), δw(0), δϕ a (0), . . . , δR Z (0), δM a Y (0), δM b Y (0)} T , and A is a constant real 10 × 10 matrix. The exact solution of the linear system [START_REF] Ziegler | Arguments For and Against Engesser's Buckling Formulas[END_REF] together with the initial conditions (31) is given by, see e.g. [START_REF] Hirsch | Differential equations, dynamical systems, and linear algebra[END_REF][START_REF] Perko | Differential equations and dynamical systems[END_REF]:

Y (x) = exp Ax Y 0 . ( 32 
)
The unknown integration constants, i.e. the initial values of the generalized equilibrium internal forces and components of the displacement vectors, are determined from the boundary conditions ( 28)-( 29). As a result, a system of ten homogeneous linear algebraic equations for ten unknown constants is obtained, which, expressed in a matrix form, reads

KY 0 = 0, (33) 
where K denotes a tangent matrix. For a non-trivial solution of (33), the determinant of the matrix K should vanish, see e.g. [START_REF] Planinc | A quadratically convergent algorithm for the computation of stability points: The application of the determinant of the tangent stiffness matrix[END_REF] detK = 0.

The condition (34) represents a linear eigenvalue problem and its solution, i.e.

the lowest eigenvalue corresponds to the smallest critical buckling load, P cr , of the column. The explicit form of the matrix K and the analytical solution for the lowest buckling load, P cr , can easily be determined, but they are unfortunately too cumbersome to be presented as closed-form expressions. For further details on the determination of critical points and their classification an interested reader is referred to [START_REF] Planinc | A quadratically convergent algorithm for the computation of stability points: The application of the determinant of the tangent stiffness matrix[END_REF].

Parametric study and discussion

The analytical procedure for critical buckling loads of geometrically perfect shear-deformable two-layer composite columns with interlayer slip presented in this paper will be numerically evaluated through the analysis of two examples. The first example will be introduced to make a comparison of critical buckling loads with existing buckling loads obtained by other investigators, e.g. [START_REF] Xu | Static, dynamic, and buckling analysis of partial interaction composite members using Timoshenko's beam theory[END_REF] and [START_REF] Krawczyk | Large deflections of laminated beams with interlayer slips: Part 1: model development[END_REF][START_REF] Krawczyk | Large deflections of laminated beams with interlayer slips: Part 2: finite element development[END_REF]. The second is devoted to the effect of the shear deformation and pre-buckling shortening on the critical buckling loads of two-layer composite columns. In both numerical examples, the critical buckling loads will be computed for a wide range of material and geometric parameters, such as flexural-to-shear ratios (E/G), interlayer slip modulus (K), column slenderness ratios (λ), and different boundary conditions given in Table 1. 
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Buckled shape C = clamped (fixed); F = free; P = pinned

Comparison of critical buckling loads with existing buckling loads in the literature

With the intention of comparing the critical buckling loads of the present analytical model to the above-mentioned buckling models, a timber-concrete composite column is employed. This column has also been studied by other researchers, see, e.g. [START_REF] Adam | Flexural vibrations of elastic composite beams with interlayer slip[END_REF][START_REF] Battini | Non-linear finite element analysis of composite beams with interlayer slips[END_REF][START_REF] Schnabl | The influence of boundary conditions and axial deformability on buckling behavior of two-layer composite columns with interlayer slip[END_REF][START_REF] Girhammar | Exact static analysis of partially composite beams and beam-columns[END_REF], and [START_REF] Xu | Static, dynamic, and buckling analysis of partial interaction composite members using Timoshenko's beam theory[END_REF].

Consecutively, the geometrical and mechanical properties of the timber-concrete composite column used in the analysis are presented in Fig. 2. The critical buckling loads of the two-layer shear-deformable timber-concrete composite column were computed by the proposed analytical model, as a function of interlayer stiffness, K, and compared with the results obtained with what is called "second-order theory" proposed by Xu and Wu [START_REF] Xu | Static, dynamic, and buckling analysis of partial interaction composite members using Timoshenko's beam theory[END_REF]. A comparison is made for boundary conditions used by Girhammar and co-workers [START_REF] Girhammar | Composite beam-columns with interlayer slip-exact analysis[END_REF][START_REF] Girhammar | Exact static analysis of partially composite beams and beam-columns[END_REF] and Xu and Wu [START_REF] Xu | Static, dynamic, and buckling analysis of partial interaction composite members using Timoshenko's beam theory[END_REF] for four different sets of boundary conditions: clamped-free column (C-F), clamped-clamped column (C-C), clamped-pinned column (C-P) and pinned-pinned column (P-P). In accordance to the boundary conditions ( 28)-( 29), the classical boundary conditions of the two-layer Euler columns and the corresponding non-zero values of parameters s i and effective length coefficient, β E , are summarized in Table 1.

The results are presented and compared in Table 2 for P-P composite column and various interlayer slip moduli K. The results indicate that an increase of the interlayer stiffness, K, leads to a significant increase of the critical buckling load, P cr . Besides, the present critical buckling loads are identical to those obtained by Xu and Wu [START_REF] Xu | Static, dynamic, and buckling analysis of partial interaction composite members using Timoshenko's beam theory[END_REF] only when the effects of axial and transverse shear deformations on critical buckling loads are neglected. In all other cases the difference between the results is interlayer slip modulus, K, dependent.

Thus, it can be seen that the difference between the methods increases in magnitude as K increases. It is, however, clear that the difference can be neglected if only axial deformation is taken into account, while it is significant when the influence of transverse shear deformation is taken into consideration.

For example, it is interesting to note that in this case the critical buckling load calculated by the present method is in the limiting case when there is an absolutely stiff connection (Δ = 0; K → ∞), by up to approximately 3.6 % smaller than that calculated by Xu and Wu [START_REF] Xu | Static, dynamic, and buckling analysis of partial interaction composite members using Timoshenko's beam theory[END_REF].

Table 2 Comparison of the proposed critical buckling loads of P-P two-layer composite column with those of [START_REF] Xu | Static, dynamic, and buckling analysis of partial interaction composite members using Timoshenko's beam theory[END_REF] for various Ks.

P cr [kN]

K

Xu [START_REF] Xu | Static, dynamic, and buckling analysis of partial interaction composite members using Timoshenko's beam theory[END_REF] Xu [START_REF] Xu | Static, dynamic, and buckling analysis of partial interaction composite members using Timoshenko's beam theory[END_REF] present present present present It should be noted, however, that the formulation used in this paper is based on the energetically consistent formulation of Reissner [START_REF] Reissner | Some Remarks on the Problem of Column Buckling[END_REF][START_REF] Reissner | On one-dimensional finite-strain beam theory: The plane problem[END_REF] and Haringx [START_REF] Haringx | On the buckling and the lateral rigidity of helical compression springs[END_REF]. On the other hand, the only available analytical solution [START_REF] Xu | Static, dynamic, and buckling analysis of partial interaction composite members using Timoshenko's beam theory[END_REF] which is used here for comparison is based on Engesser's type of buckling approach [START_REF] Engesser | Die Knickfestigkeit gerader Stabe[END_REF]. A matter of argument of using Engesser's and Haringx's approach has been the subject of several polemics in the past, see e.g. [START_REF] Ziegler | Arguments For and Against Engesser's Buckling Formulas[END_REF][START_REF] Reissner | Some Remarks on the Problem of Column Buckling[END_REF][START_REF] Timoshenko | Theory of Elastic Stability[END_REF][START_REF] Bažant | Sandwich buckling formulas and applicability of standard computational algorithm for finite strain[END_REF][START_REF] Bažant | Stability and strain of homogenized structures soft in shear: Sandwich or fiber composites, and layered bodies[END_REF][START_REF] Attard | Sandwich column buckling -A hyperelastic formulation[END_REF][START_REF] Kardomateas | Buckling of moderately thick orthotropic columns: comparison of an elasticity solution with the Euler and Engesser/Haringx/Timoshenko formulae[END_REF][START_REF] Blaauwendraad | Shear in Structural Stability: On the Engesser-Haringx Discord[END_REF]. Moreover, in [START_REF] Xu | Static, dynamic, and buckling analysis of partial interaction composite members using Timoshenko's beam theory[END_REF] an average rotation and transverse shear deformation of the composite cross-section is used, while in the present study each layer can have different rotation and shear deformation. Consequently, the abovementioned differences in the two approaches are definitely the main reasons for the discrepancy between the results.
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In the sequel, the influence of boundary conditions on the discrepancy of the critical buckling loads of composite columns obtained by the two methods will be studied for other types of boundary conditions presented in Table 1.

This effect may be analyzed by defining a relative error which was here defined as ε r [%] = P cr (ε cr = 0, γ = 0) -P [43] cr

P cr (ε cr = 0, γ = 0) × 100, (35) 
where P cr (ε cr = 0, γ = 0) and P [43] cr represent the critical forces obtained by the proposed analytical procedure, where axial deformability is not taken into account, and by Xu and Wu [START_REF] Xu | Static, dynamic, and buckling analysis of partial interaction composite members using Timoshenko's beam theory[END_REF], respectively. The results for various interlayer slip moduli K are given in Fig. 3. Again, it can be observed in Fig. 3 that increasing interlayer slip modulus K increases the discrepancy between the results for all types of boundary conditions. It is perhaps of interest to note that for the four cases of boundary conditions the discrepancy is the largest for C-C column. In this case the difference is considerable and can be up to approximately 12 % for very stiff connections between the layers. As expected, the difference between the methods increases with the increasing interlayer stiffness modulus K and ratio E/G. For example, the difference for values of interlayer slip modulus, K, which usually exists in actual practice (e.g. K = 10 kN/cm 2 ), is for E/G = 2.68, 8.67, 16, and 50 up to approximately 1.7 %, 4.5 %, 7.5 %, and 17.5 %, respectively. It is apparent that the difference is even more pronounced for higher interlayer slip moduli K. For instance, in the case of wood composite column (E/G = 16) and stiff connection the dif- ference between the results of the two methods compared can be up to 12.5 %, while, on the other hand, the difference in case of steel or copper composite columns (E/G = 2.68) is less significant. In addition, the difference between the two approaches is investigated for different column slenderness ratios, λ. In Fig. 5, a relative error defined by Eq. ( 35) is shown for C-C column as a function of λ for two almost limiting cases of interlayer connection, i.e. almost absolutely stiff connection (K = 1000 kN/cm 2 ) and no connection between the layers (K = 0.001 kN/cm 2 ). Fig. 5 shows that the difference between the methods increases steadily as the slenderness ratio decreases. It can be seen that for very stocky timber composite columns (i.e. λ ≈ 35) the difference varies from around 4 % for a very flexible connection to about 14 % for a very stiff connection between the layers.

On the other hand, the results of both methods converge to each other for slender composite columns. The difference, however, may become much less pronounced for slender columns with λ > 140.

In what follows, the present analytical results will be compared to, as far as the authors' knowledge is concerned, the only in the open literature available numerical solution for critical buckling loads of composite columns with interlayer slip. This solution is obtained numerically in [START_REF] Krawczyk | Large deflections of laminated beams with interlayer slips: Part 2: finite element development[END_REF] by using a finite element method. The numerical example under consideration is the same as in our example, except the different elastic shear moduli are used: for wood (the bottom layer ≡ layer a) a flexural-to-shear ratio, E a /G a = 20, while for concrete (top layer ≡ layer b) elastic shear modulus G b = 500 kN/cm 2 . A uniform finite element mesh of 20 elements is used. The results are the following: P cr (ε cr = 0, γ = 0) = 255.83 kN; P cr (ε cr = 0, γ = 0) = 256.08 kN P FEM [45] cr = 257.9 kN; and P [43] cr = 269.89 kN. From these results it can be concluded that the buckling loads obtained by the numerical procedure presented in [START_REF] Krawczyk | Large deflections of laminated beams with interlayer slips: Part 1: model development[END_REF][START_REF] Krawczyk | Large deflections of laminated beams with interlayer slips: Part 2: finite element development[END_REF] almost agree with the present analytical buckling loads, while, on the other hand, for the results proposed by [START_REF] Xu | Static, dynamic, and buckling analysis of partial interaction composite members using Timoshenko's beam theory[END_REF] this is not the case.

Investigation of the effect of shear deformation on the critical buckling loads

In this example, parametric studies are undertaken to investigate the effect of transverse shear deformation on critical buckling loads of two-layer composite columns with interlayer slip between the layers. To this end, a shear deformable two-layer composite column with the same geometric and material parameters as in the first example is used. The critical buckling loads are calculated first for various interlayer moduli K and different boundary conditions. The effect of pre-buckling shortening is neglected. The results are plotted in Fig. 6, where ε * r is a relative error defined here as

ε * r [%] = P cr (ε cr = 0, γ = 0) -P cr (ε cr = 0, γ = 0) P cr (ε cr = 0, γ = 0) × 100. (36) 
In Eq. ( 36), the critical forces are obtained by the consistent composite-column boundary conditions given in [START_REF] Schnabl | The influence of boundary conditions and axial deformability on buckling behavior of two-layer composite columns with interlayer slip[END_REF]. 

Δ = 0; K → ∞), ε * r [C-F]= -1.69 %, ε * r [P-P]= -6.28 %, ε * r [C-P]= -12.74 %, ε * r [C-C]= -19.84 %.
Evidently, the effect of transverse shear deformation on the critical buckling loads is negligible in C-F and P-P column cases and in all other cases when there exists a partial interaction between the layers with K < 0.1 kN/cm 2 (log K = -1).

Besides, some parametric studies are performed next to investigate the effect of shear deformation for various material properties, i.e. flexural-to-shear ratios (E/G), interlayer slip modulus (K), and column slenderness ratios (λ). In Fig. 7, a relative error, ε * r , is shown for C-C column as a function of interlayer slip modulus, K, for different flexural-to-shear ratios. It can be observed in Fig. 7 that increasing the interlayer stiffness increases the effect of shear deformation on critical buckling loads for all the flexural-to-shear ratios. This effect is considerable for composite columns with E/G ≥ 16. Moreover, the effect is also pronounced for materials with E/G = 8.67 if interlayer modulus K > 10 kN/cm 2 . In this case ε * r ranges from -7.27 % for K = 10 kN/cm 2 to -12.27 % for a stiff connection between the layers. This suggests that for purposes of, e.g.

C-C composite column design, the effect of shear deformation on the buckling loading is found to be considerable and should be taken into account when Additionally, the effect of transverse shear deformability on the critical buckling load, P cr , of the geometrically perfect two-layer composite columns with interlayer slip between the layers is analyzed for various interlayer slip moduli K and for different column slenderness ratios λ which are defined here as

λ = β E L √ A a + A b √ I a + I b , ( 37 
)
where β E represents the effective length coefficient of Euler columns with stiff connection between the layers. Effective length coefficients, β E , are given in Table 1 for different types of end conditions along with schematic illustrations of the buckling modes. Variation in column slenderness is achieved by considering a range of column lengths.

transverse shear deformation has a significant influence on the critical buckling loads, while, one the other hand, the effect of pre-buckling shortening can be neglected. 
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Conclusions

The paper presents an efficient mathematical model for studying the buckling behavior of geometrically perfect two-layer composite columns with inter-layer slip between the layers. The model is capable of predicting exact critical buckling loads. The result have been compared with the solutions from the literature. Likewise, the effects of pre-buckling shortening and transverse shear deformation on the critical buckling loads have been studied. From the present study, the following conclusions can be drawn:

(1) It is shown that the critical buckling loads obtained by the present analytical model are identical to those obtained by what is called the "secondorder theory" proposed by Xu and Wu [START_REF] Xu | Static, dynamic, and buckling analysis of partial interaction composite members using Timoshenko's beam theory[END_REF] only if the effects of transverse shear deformation and pre-buckling shortening on critical buckling loads are neglected. On the other hand, if these effects are taken into consideration, a significant discrepancy between the critical buckling loads is obtained. This discrepancy has been proved to be interlayer-slip modulus, flexural-to-shear ratios, column slenderness ratios, and boundary conditions dependent.

(2) In is observed that the difference between the methods increases with the increasing of interlayer slip modulus, K, and flexural-to-shear ratios, E/G, for all types of boundary conditions. The difference is always the largest for C-C composite column. In this case it is considerable and it is in case of a very stiff connection between the layers up to approximately 2.6 %, 7.2 %, 12 %, 22 % for E/G = 2.68, 8.67, 16, and 50, respectively.

(3) As anticipated, the effect of pre-buckling shortening on the critical buckling loads of composite columns with interlayer slip can be neglected. On the other hand, the effect of transverse shear deformation is proved to be significant and interlayer-slip modulus, flexural-to-shear ratios, column slenderness ratios, and boundary conditions dependent.

(4) As expected, the critical buckling loads decrease if transverse shear defor-mation is taken into account. The inclusion of pre-buckling shortening has the opposite effect. The latter effect is proved to be insignificant in most cases. It is also seen that the effect of shear deformation on the critical buckling loads increases in magnitude as the column end conditions vary from C-F to C-C case and as the interlayer modulus, K, and flexuralto-shear ratios, E/G, increase. In case of timber composite columns with E/G = 16, this effect could be for C-F, P-P, C-P, and C-C column from up to approximately 0.43 %, 1.68 %, 3.65 %, and 6.20 % for very flexible connections to about 1.69 %, 6.28 %, 12.74 %, and 19.84 % for very stiff connections between the layers, respectively. It is also observed that the effect of transverse shear is considerable for C-C composite columns with E/G ≥ 16. Moreover, the effect is also pronounced for materials with E/G = 8.67 if interlayer modulus K > 10 kN/cm 2 . In this case, the difference ranges from 7.27 % for K = 10 kN/cm 2 to 12.27 % for a stiff connection between the layers. This suggests, that for purposes of C-C composite column design, the effect of shear deformation on the buckling loading should be taken into account when E/G ≥ 16 or E/G ≥ 8.67 and K > 10 kN/cm 2 . Additionally, it is shown that the transverse shear effect becomes important for short (stocky) columns with low values of λ (for λ up to 60) and high values of K. For example, the critical load predicted by the present theory is for the values of λ = 40 and K = 1000 kN/cm 2 about 16.5 % lower than that predicted without transverse shear effects.

On the other hand, this effect may become much less pronounced for slender columns (λ > 60). In this case it may be neglected.
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 1 Figure 1. Two-layer composite column. Initial undeformed and current deformed configurations. Generalized equilibrium internal forces and contact tractions. Coordinate systems and their base vectors.

  and M b Y in (10)-(12) represent the generalized equilibrium internal forces of the cross-section of layers a and b with respect to the fixed coordinate basis. On the other hand, N a , Q a , M a , N b , Q b and, M a represent the equilibrium axial and shear internal forces and bending moments of the layers' cross-sections with respect to the rotated local coordinate system e a x , e a z , e b x , and e b z .

  and p b n . The associated natural and essential boundary conditions are:

  and M b C are constitutive cross-sectional generalized forces dependent only on deformation variables ε a , γ a , κ a , ε b , γ b , and κ b . Material and geometric constants of the cross section are marked by C a 11 , C a 12 , . . ., C b 22 , . . . , C b 33 ; e.g., C a 11 = E a A a , where A a and E a denote the cross-and C a 22 = E a I a , where S a and I a denote the static moment and moment of inertia of layer a with respect to the reference axis of the composite column, respectively;
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 2 Figure 2. Geometrical and mechanical properties of timber-concrete column.
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 3 Figure 3. Comparison of the present critical buckling loads with those proposed by Xu and Wu [43] for E/G = 16, different types of boundary conditions and various values of K; where K[kN/cm 2 ].
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 4 Figure 4. Comparison of the present critical buckling loads with those proposed by Xu and Wu [43] for C-C column case, different flexural-to-shear ratios, E/G, and various values of K; where K[kN/cm 2 ].

Figure 5 .

 5 Figure 5. Comparison of the present critical buckling loads with those proposed by Xu and Wu [43] for C-C column case, different column slenderness ratios, λ, and various values of K; where K[kN/cm 2 ].
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 6 Figure 6. The effect of transverse shear deformation on critical buckling loads of geometrically perfect two-layer composite column with E/G = 16 for various values of K and different types of boundary conditions; where K [kN/cm 2 ].
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 7 Figure 7. The effect of transverse shear deformation on critical buckling loads of geometrically perfect two-layer C-C composite column for various flexural-to-shear ratios E/G and different values of K; where K [kN/cm 2 ].

Table 1

 1 Two-layer composite column boundary conditions, effective length coefficients β E , and buckled shapes of Euler columns.

	Classical cases	C-F	C-C	C-P	P-P
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The results for timber C-C composite column and 0.001 kN/cm 2 ≤ K ≤ 1000 kN/cm 2 are given in Fig. 8. As would be expected, Fig. 8 indicates that the transverse shear effect becomes important for short (stocky) columns with low values of λ (for λ up to 60) and high values of K. For example, the critical load predicted by the present theory is for the values of λ = 40 and K = 1000 kN/cm 2 about 16.5 % lower than that predicted without transverse shear effects. On the other hand, this effect may become much less pronounced for slender columns (λ > 60). In the latter case it may be neglected. As would be expected, the shear deformation effect is very important in the buckling analysis of composite columns only in the range of low slenderness ratios.

Finally, with the intention of comparing the results, the critical buckling loads of C-C timber composite column are given in Table 3 as an analytic benchmark solution to the problem of column buckling considering pre-buckling shortening and transverse shear effects. Once again, it is interesting to note, that The research highlights are summarized below:

x Based on linearized stability analysis the analytical critical buckling loads of geometrically perfect shear-deformable two-layer composite columns with interlayer slip between the layers are derived for the first time. x A comparison with existing methods in the literature is made.

x A combined effect of pre-buckling shortening and transverse shear deformation on critical buckling loads is analysed for different materials and geometric parameters. x The difference between the methods can be up to 22% while the effect of shear deformation can be up to 40% for columns very flexible in shear. The effect of prebuckling shortening is negligible. x An analytical benchmark solution to the column buckling is given.