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We provide here additional details concerning several points briefly discussed in the letter. In
particular, we give more details concerning the experimental setup, its defects and the stray phase
shifts induced by these defects. We also give an overview of the analysis of these stray phase shifts.

PACS numbers: 03.65.Vf; 03.75.Dg; 39.20.+q

I. AC-HMW CONNECTION

The Aharonov-Casher [1] phase and the He-McKellar
[2] and Wilkens [3] phase are connected by electric-
magnetic duality, as illustrated in figure 1. It is impos-
sible to detect the He-McKellar-Wilkens (HMW) phase
with such a scheme because magnetic monopoles are hy-
pothetical particles [4]. The experiments proposed by
Wilkens [3], by Wei et al. [5] and by Sato and Packard
[6] do not involve magnetic monopoles but the propa-
gation of polarizable atoms (or molecules) in magnetic
fields, the electric dipole being induced by an electric
field perpendicular to the magnetic field. The question
whether such an experiment is a test of the He-McKellar-
Wilkens idea is worth discussing. In our opinion, the im-
portant point is that an electric dipole d propagates in
a magnetic field B perpendicular to d and to the atom
velocity v. Magnetic monopoles would produce a diverg-
ing magnetic field, leading to a non-zero HMW phase
ϕHMW =

∮

(d×B) · vdt/~ but the exact nature of the
magnetic field source is irrelevant and any field config-
uration which yields a non vanishing HMW phase is a
test of the HMW effect. The idea of Wilkens [3] is to
use the same dipole direction on the two interferometer
arms but different magnetic fields thanks to ferromag-
netic material. Wei et al. [5] go one step further and
propose to have states with opposite induced dipoles in a
common homogeneous magnetic field. We may note that
similar aspects were discussed for the Aharonov-Casher
phase [7, 8].

II. THE EXPERIMENTAL SETUP

In this section, we give further details about the inter-
action region used for the observation of the HMW phase:
this interaction region is schematically represented in fig-
ure 1 of our letter.

FIG. 1: Electric-magnetic duality connection between the
Aharonov-Casher and He-McKellar-Wilkens phases (follow-
ing [9]). The interferometer arms encircle a line of charges:
for the He-McKellar-Wilkens phase, the electric dipole d in-
teracts with the magnetic field B created by a line of mag-
netic monopoles qm, while, for the Aharonov-Casher phase,
the magnetic dipole µ (F,mF ) interacts with the electric field
E created by a line of electric charges qe.

A. The electric fields

The electric fields E are produced by two plane capaci-
tors sharing a thin ”septum” electrode [10]; the electrodes
are in vertical planes so that the electric field is hori-
zontal, along the x-axis. The septum is a 20 µm-thick
aluminium foil, with a surface roughness better than 2
µm while the other electrodes are 5 mm-thick polished
glass plates with an aluminium coating. Along the z-
direction, two 5 mm-long guard electrodes surround a 48
mm-long high-voltage electrode, with 1 mm-wide gaps
between high-voltage and guard electrodes. The capaci-
tors are assembled by gluing together the electrodes and
1.1 mm-thick glass spacers. A specific procedure was
used to glue the septum in order to keep it stretched
even when the temperature rises [11]. The electric fields
produced by each capacitor was investigated using po-
larizability phase shift measurements and by calculations
[12]. Except near the guard electrodes, the electric field is
homogeneous, with a modulus E(kV/m)≈ 0.9V , where
V is the applied voltage in Volts. V can be positive
or negative, in order to test the effect of field reversals.
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When measuring the HMW phase shift, we equalize the
polarizability phase shifts induced on the two interferom-
eter arms by tuning the ratio of the voltages applied on
the two capacitors with potentiometers, using a common
power supply. In this way, the residual Stark phase shift
is small, near 0.1 rad.

B. Magnetic field

The magnetic field B is designed to be vertical, along
the y-axis, and homogeneous. It is produced by two rect-
angular coils in the (x,z) plane. These coils, which sur-
round the capacitors, are located ∼ 5 mm above and
below the capacitor mid-plane. Each coil is made of 2
layers of 7 turns of 1.5 mm-diameter enameled copper
wire coiled on a common water cooled brass support. The
support dimensions are 83× 18 mm2. The two coils are
connected in series. Thermal conduction is ensured by
a high thermal conductivity glue (Stycast 2850 FT) and
the coil temperature rises by about 10 K for a 20W Joule
power, corresponding to a current I = 26 A, if applied
50% of the time as in most experiments. We have mea-
sured the magnetic field with a 3D Hall probe and found
it in agreement with its calculated dependence. Over the
region where the electric field is applied, the magnetic
field is quasi-vertical and its value varies by less than
4%. At the coil center of symmetry, the field is given by
B/I ≈ 5.6 × 10−4 T/A, so that Bmax = 14.6 mT. The
current I can also be positive or negative, in order to test
the effect of field reversals.

The field homogeneity is not perfect and the small
magnetic field gradient, which exists in the x-direction,
induces Zeeman phase shifts. From the measured shifts,
we deduce that the magnetic field difference between the
two interferometer arms is about δB/B ∼ 10−4: this
small difference is expected if the distance along the x-
axis between the septum and the coil symmetry plane
is about 200 µm, well within the defects of our con-
struction. In order to cancel the Zeeman phase shifts,
we have introduced a compensation coil which produces
a magnetic field gradient between the two interferom-
eter arms at another place so that the total magnetic
phase shift vanishes. This compensation coil, located at
mid-distance between the first and second laser standing
waves, is made of 9 turns of 1.5 mm-diameter copper wire
on a 30 mm-diameter support. The coil axis is horizontal,
along the x-axis and the coil center is at about 10 mm
from the interferometer arms. It creates a magnetic field
gradient in the x-direction. This coil is cooled by ther-
mal conduction through its support and temperature rise
limits the compensation current Ic to 5 A, corresponding
to a maximum field seen by the atoms near 2× 10−3 T.

III. MEASUREMENT PROCEDURE AND

DATA SET

The detection of the HMW effect requires a measure-
ment procedure which is not sensitive to the phase drift
of the interferometer. This procedure is briefly described
in our letter: it consists in alternating several config-
urations of the electric field E and the magnetic field
B during a fringe sweep. We carefully checked that it
does not induce any unwanted bias. In a first step, we
have characterized our setup by recording fringes with
only one field applied, sweeping a large range of V , I
and Ic values. Then, to measure the HMW phase shift,
we recorded data for a set of (V, I) values represented
in figure 2. Our first measurements were done with a
4-field procedure: during a fringe scan, the following val-
ues of (V, I) alternate ((0, 0), (V, 0), (V, I), (0, I)) as in
figure 2 of our letter. We then modified this procedure to
use a 6-field procedure ((0, 0), (+|V |, 0), (+|V |, I), (0, I),
(−|V |, I), (−|V |, 0)) and most of the data was recorded in
this way. The advantage of the 6-field procedure is to give
more direct measurements of the effects of electric field
reversals. To avoid high transient voltages associated to
reversal of the coil currents, we have studied the effect
of magnetic field reversal by recording successively data
with same V value and opposite I values. We deduce
from these measurements the value of ϕEB (V, I) given
by equation (4) of our letter but also ϕE (V ) and ϕB (I).
We also get very accurate values of the relative visibility
Vr(V, I) = V(V, I)/V(0, 0) as well as Vr(V ) = V(V )/V(0)
and Vr(I) = V(I)/V(0). All this information is used in
the analysis of systematic effects due to small defects of
our setup.

As ϕHMW ∝ V I and as its expected value is small,
we have collected data with moderate to large values of
the V I product and this is why we have no data with
|V I| < 4000 V.A. This choice was not optimum because
systematic effects increase rapidly with the magnetic field
and the data with |I| > 12 A has been discarded from
the final analysis. Nevertheless, the data collected with
large values of |I| has given very useful information on
systematic effects.

IV. THEORY OF THE SIGNAL: PREDICTION

OF SYSTEMATIC EFFECTS ON THE FRINGE

PHASE AND VISIBILITY

Here we discuss the various phase shifts induced by
the electric and magnetic field on the atom interferom-
eter fringes and, for each phase shift, the origin of its
dispersion. We then explain how these dispersions in-
duce stray phase shifts and the way we evaluate these
effects.
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FIG. 2: Data set collected for the measurement of the HMW
phase in the (I, V ) plane: a triangle for a 4-field procedure or
a bullet for a 6-field procedure.

A. Origins of the various phase shifts

Any perturbation term U added to the atom Hamil-
tonian modifies the propagation phase of the atom. The
fringe phase shift in an atom interferometer is given by:

ϕdyn = −
∮

U (r) dt

~
= −

∮

Uds

~v
(1)

where r is the atom position and the integral follows the
unperturbed interferometer arms. In the second form, ds
is the curvilinear element of the interferometer arms and
v the atom velocity. This first order expression is valid if
U is small enough with respect to the atom kinetic energy
[13]. In our experiment, U = UZ (F,mF ) + US , respec-
tively the Zeeman and the Stark term. The associated
dynamic phase shifts are the Stark (or polarizability)
phase shift ϕS and the Zeeman phase shift ϕZ (F,mF ).
Equation (1) is valid as long as the applied fields are small
enough, which is the case in our experiment. We must
also add the topological phase shifts ϕAC and ϕHMW re-
spectively due to the Aharonov-Casher and He-McKellar-
Wilkens effects to get the total fringe phase ϕ:

ϕ = ϕd + ϕS + ϕZ (F,mF ) (2)

+ϕAC(F,mF ) + ϕHMW

where ϕd is the diffraction phase, which is used to scan
the fringes.
The Stark term is US = −2πε0αE

2. With our maxi-
mum field E ≈ 770 kV/m (V ≈ 850 V), the Stark phase
shift induced on each arm exceeds 300 rad. Thanks to
a fine tuning of the ratio of the voltages applied to the
two capacitors, the resulting Stark phase shift is small
ϕS ∼ 0.1 rad.
With the rather large magnetic field applied in the

HMW interaction region, hyperfine uncoupling occurs
so that we must include the hyperfine Hamiltonian
and the Zeeman Hamiltonian in the perturbation term
UZ (F,mF ). As in previous studies [14–16], we assume

an adiabatic behavior: the magnetic field B direction
is slowly varying in space so that the projection mF of
the F angular momentum on an axis parallel to the local
magnetic field B is constant. If we assume that the inter-
ferometer arms are very close to the z-axis and if δx (z)
is the distance between the two arms, the Zeeman phase
shift is given by:

ϕZ (F,mF ) = −
∫

∂UZ (F,mF )

∂B

∂B

∂x

δx (z)dz

~v
(3)

Because of hyperfine uncoupling, the Zeeman energy shift
and the Zeeman phase shift are complicated functions of
F,mF and of the HMW coil current I. Although the
relative field difference between the two interferometer
arms is small, δB/B ∼ 10−4, the resulting phase shift is
large, up to ϕZ (F = 2,mF = ±2) ≈ ±11 rad for B = 14
mT. Because the Zeeman phase shift strongly depends
of F and mF and because the atoms are distributed
over the 8 ground state sub-levels, the fringe visibility
becomes rapidly very small when the magnetic field in-
creases [14–16]: for instance, the visibility vanishes when
I ≈ 6 A. We compensate this Zeeman phase shift with
the additional gradient produced by the compensation
coil and we have found that compensation is obtained
with Ic ≈ |I| /3. However, the compensation coil pro-
duces a low field which can compensate only the linear
part of the Zeeman phase shift. As shown in figure 3, this
compensation is very efficient, with the relative fringe vis-
ibility being larger than 70% up to a current |I| = 12 A.
When the HMW coil current is large, |I| > 15A, the com-
pensator current was fixed Ic = 5 A. The relative fringe
visibility vanishes for |I| ≈ 18 A and presents a revival
with a phase shift close to π for I = 23 A and a relative
visibility near 70% (this revival is explained in [11]).
The HMW phase shift is given by equation (2) of our

letter and its maximum value is ϕHMW ≈ 27 mrad.
The AC phase shift [1] is given by:

φAC (F,mF ) = −
∮

[E (r)× µ (F,mF )] · dr
~c2

(4)

where µ (F,mF ) is the magnetic moment of the F,mF

sub-level. The maximum value of the AC phase shift
is |ϕAC(F = 2,mF = ±2)| ≈ 70 mrad. In the interpre-
tation of the observed data, we will use the theoretical
value of the AC phase shift.
In equation 3, we have not included the Berry’s phase

[17] due to the fact that the direction of the magnetic
field is not constant over the interferometer arms. The
measured Berry’s phase is the difference of the Berry’s
phases over the two interferometer arms and this differ-
ence is expected to be very small because the magnetic
field homogeneity is very good: from the Zeeman phase
shifts, we estimate that the relative difference of mag-
netic field δB/B is δB/B ≈ 10−4 for the HMW coil and
δB/B ≈ 10−3 for the compensating coil. Moreover, the
measured Berry’s phase should not be sensitive to the
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presence of the electric field, because the Stark term is the
same for all the hyperfine sub-levels with an excellent ac-
curacy [12] and, as a consequence, the measured Berry’s
phase should have the same value in ϕE+B(V, I) and in
ϕB(I) so that it should be fully canceled in ϕEB (V, I).
A more complex Berry’s phase involving the electric

and magnetic fields was detected in the measurement of
the electron dipole moment [18]. This Berry’s phase is
proportional to the solid angle of the spatial circuit of
the magnetic field directio, where the magnetic field is
the one seen by the atom in its rest frame (this means
that it includes the motional magnetic field due to the
electric field). This Berry’s phase is an edge effect, which
is sensitive to the difference of transverse components of
the magnetic fields at the two ends of the electric field
region. As it involves the motional magnetic field due to
the electric field, this effect is related to the AC phase
(but the AC phase, which is proportional to the electric
field and to the length of the path in the field, is not
an edge effect). We have put figures in the formula of
reference [18] and the effect is completely negligible in
our experiment: this can be explained by the fact that
we use larger magnetic fields and lower electric fields.

B. Dispersion of the phase shifts

A dispersion of the fringe phase reduces the fringe visi-
bility and, as shown below, it may also induce systematic
errors on the phase measurements.
The Stark and Zeeman phase shifts are the only

phases which depend on the atom velocity: equation
(1) proves that ϕS ∝ 1/v and equation (3) proves that
ϕZ (F,mF ) ∝ 1/v2 because δx (z) is proportional to 1/v.
The atomic beam velocity distribution is given by [12]:

P (v) =
S‖

u
√
π
exp

[

−
(

(v − u)S‖/u
)2
]

(5)

where u is the mean velocity and S‖ is the parallel speed
ratio. During the HMW measurements, the associated
phase dispersion is not very large because the velocity
distribution is narrow (with S‖ ≈ 7 corresponding to a
half-width at half maximum close to 10% of the mean ve-
locity) and because the phase shifts are small: the largest
phase shift is the Zeeman phase shift close to π near the
fringe visibility revival with I ≈ 23 A. When the phase
dispersion is small, it is possible to use analytic results to
calculate the effects of the phase dispersion on the fringe
phase and visibility: this calculation is described for the
Stark phase shift in ref. [12] and for the Zeeman phase
shift in [19] and it can be easily generalized to the case
where the two phase shifts are simultaneously present.
The main source of phase dispersion comes from the

fact that the signal is an average over different atom tra-
jectories. Atom diffraction is based on the transfer of mo-
mentum from the laser standing wave to the atom. The
laser beams being horizontal, the direct and diffracted

beams are in the same horizontal plane, so that the in-
terferometer signal measures the propagation phase dif-
ference on the two arms at the same altitude y. This
phase difference is a function of the y-coordinate because
of the applied fields are not perfectly independent of y.
The electric field of a given capacitor is inversely pro-
portional to the capacitor spacing and if the spacings of
the two capacitors are different functions of y, the Stark
phase shift is function of y. In the interaction region,
the magnetic field gradient ∂B/∂x is a function of the
altitude y; this function goes through a minimum for the
y-value corresponding to the mid-distance between the
two HMW coils but the interferometer arms are not well
centered with respect to the HMW coils and field calcu-
lations show that ∂B/∂x can vary by up to 10% along
the estimated height of the atomic beam. Finally, the
diffraction phase ϕd is also a function of y because the
laser standing wave mirrors Mi are not perfectly verti-
cal (this effect is analyzed in ref. [20]). We have also
considered the possible effects of contact potentials on
the electric fields, i.e. spatial variations of the order of
100 mV of the electrode work function, but this effect
appeared to be fully negligible in our experiment.

Finally, the Zeeman phase shift is a function of the
F,mF sub-level. If we neglect the nuclear contribution
to the Zeeman energy shift (this is a very good approxi-
mation), the 8 sub-levels form 4 pairs of levels with op-
posite Zeeman energy shifts: one pair is formed of the
F = 2 mF = ±2 sub-levels and the three other pairs
are formed of the levels having the same mF value. If
the two levels inside each pairs give equal contributions
to the detected signal, the measured Zeeman phase shift
ϕB vanishes [14, 16]. During the HMW measurements,
these contributions were close to such a perfect balance
(this question is discussed below): ϕB was always small,
and its value is a sensitive test of the relative weights of
the (F,mF ) sub-levels.

C. Effects of a phase shift dispersion

In this part, we study the consequence of a phase
dispersion on the phase shift measurement and we con-
sider only the phases ϕd, ϕS and ϕZ , because the phases
ϕHMW and ϕAC are so small that their dispersion cannot
play a significant role. Two types of dispersions are taken
into account in our analysis: the position distribution
due to the y-distribution of intensity of the atomic beam
and the distribution over the (F,mF ) sub-level. These
dispersions modify the fringe visibility but also lead to
systematic effects on the measured phase shift.

Let us first consider the case of the dispersion of the
phase shift ϕ(y) with the y-coordinate. The atomic beam
has a non-negligible size along the y-direction and we
note P (y) the distribution of the atomic beam intensity
along this coordinate, with

∫

dyP (y) = 1. The fringe
signal for one sub-level is given by the following average:



5

I = I0

∫

dyP (y) [1 + V0 cos (ϕ(y))] (6)

The average over y with the weight P (y) is noted 〈...〉 and
we define δϕ = ϕ(y)−〈ϕ〉. If we expand the equation (6)
up to the third order in δϕ, we get the modified visibility
Vm and the modified phase shift ϕm given by:

Vm

V0

= 1−
〈

δϕ2
〉

2

ϕm = 〈ϕ〉 −
〈

δϕ3
〉

6
(7)

The relative visibility Vm/V0 reveals the dependence of
the Stark and Zeeman phase shifts with the atom tra-
jectory altitude y. In particular, when two perturba-
tions a and b producing the phase shifts ϕa and ϕb are
simultaneously present, the modified visibility Vm and
the modified phase shift ϕm cannot be deduced from the
knowledge of the same quantities when the two pertur-
bations are acting separately: this is due to the cross

terms 〈δϕaδϕb〉, present in Vm, and
〈

(δϕa)
2 δϕb

〉

and
〈

δϕa (δϕb)
2
〉

, present in ϕm.

Besides the y-position distribution, we must sum the
signals of the 8 (F,mF ) sub-levels. As the Zeeman
phase shifts may be important, an expansion in powers
of δϕZ (F,mF ) would not be a good approximation and,
using equation (7), we must evaluate the sum:

I =
∑

F,mF

IF,mF

[

1 + VF,mF
cos

(

〈ϕF,mF
〉 −

〈

δϕ3
F,mF

〉

6

)]

(8)

The intensities IF,mF
are normalized,

∑

F,mF
IF,mF

= 1
and their values are discussed below. The visibility VF,mF

and the phase 〈ϕF,mF
〉−
〈

δϕ3
F,mF

〉

/6 of the contribution

of the (F,mF ) sub-level to the signal are functions of
F,mF . From this calculation, we deduce the modified
fringe visibility Vm and the fringe phase shift ϕm for the
complete signal and we define a complex reduced visibil-
ity:

Vr = Vm exp (iϕm) /V0 (9)

which is used in figure 3. For instance, equation 7 proves
that the value of VF,mF

for a given F,mF sub-level is
different in the presence or absence of the electric field,
and the modifications are opposite inside a pair of levels
with opposite Zeeman energy shifts. This is an important
source of systematic effects. We have developed these cal-
culations to analyze all the systematic phase shifts which
may appear in our measurement of the HMW phase.
Their volume exceeds what can be described in this sup-
plemental material. As a consequence we will present
only some tests of these results.

D. Intensities of the F,mF sub-levels

The 8 (F,mF ) sub-levels are equally populated in the
incoming atomic beam: we have taken care to prevent
any strong magnetic field gradient which could deviate
in a different way these sub-levels so that, for the incom-
ing atomic beam, IF,mF

= 1/8. However, the diffraction
amplitudes depend on the hyperfine quantum number F ,
because the laser frequency detuning δL (F ) is different
for these two levels because of the ground state hyperfine
splitting [21]. The interferometer transmission is thus a
function of F but it is independent of mF : it can be
described by parameter measuring the population imbal-
ance. For a given laser power density in the standing
waves, there is a value of the laser detuning which equal-
izes the interferometer transmissions for the two hyper-
fine levels and we have taken care to work near these
optimum conditions. The measured Zeeman phase shift,
which vanishes if these transmissions are equal, gives a
sensitive test of the transmission ratio. We estimate that,
in our measurements of the HMW phase, the intensities
IF,mF

deviate from their optimum value 1/8 = 12.5% by
not more that ±1.5% and this deviation is quasi-random,
with a negligible average value.
An important consequence of the quasi-equal popula-

tion of the 8 (F,mF ) sub-levels concerns the AC phase
shift. In each pair of F,mF sub-levels with opposite Zee-
man energy shifts, the sub-levels have opposite magnetic
moments and they have accordingly opposite AC phase
shifts. The existence of the AC phase shifts induces only
a very small shift of the measured phase; this shift does
not vanish only because, following equation (7), the con-
tributions of the two levels have not the same visibility.
The presence of the AC phase shift substantially modifies
the measured fringe visibility as shown below in figure 5.

E. Concluding remarks

In this part, we have given an overview of the way
we developed a detailed description of the signal of our
atom interferometer. This detailed description, which is
quite complex, will be published elsewhere. The inter-
est of this analysis is that it gives an understanding of
most of the defects of our interferometer and it predicts
the variations of the fringe visibility and the existence
of systematic phase shifts due to cross effects appearing
when the electric and magnetic fields are simultaneously
applied. We are going to test some predictions of this
model in the next section.

V. SOME TESTS OF SYSTEMATIC EFFECTS

We first present here some results obtained with the
application of either the magnetic field or the electric
field. In a next step, we will discuss results involving the
simultaneous application of both fields.
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FIG. 3: Real part of the complex relative visibility Vr defined
by equation 9 as a function of the current I in the HMW
coil. The current Ic in the compensating coil being equal to
Ic ≈ |I | /3 when |I | < 15 A and to IC = 5 A when |I | > 15
A. The points are measured data and the curve is the result
of our analytic model fitted on a very large data set.

A. Magnetic field only

We have developed analytic expressions to represent
the Zeeman phase shifts ϕZ (F,mF ) as a function of
F,mF and of the currents I in the HMW coil and IC in
the compensator. The compensator field is always weak
enough and the phase shifts are well described by linear
Zeeman effect i.e. ϕZ (F,mF ) ∝ |Ic| (the independence
with the sign of the current is due to adiabatic following)
and only one parameter must be fitted on the experi-
mental data to describe these phase shifts. The HMW
coils produce a considerably larger magnetic field which
induces hyperfine uncoupling. In order to describe the
variations of ϕZ (F,mF ) with the current |I|, we have
expressed ϕZ (F,mF ) by a power expansion in |I| up
to the third order, so that 3 parameters must be fitted
on experimental data to describe all the Zeeman phase
shifts. However, the accuracy of this expansion decreases
at large fields, the relative deviations being equal to 3%
for the mF = ±1 sub-levels and 12% for the mF = 0 sub-
levels with the strongest magnetic field B = 1.4×10−2 T.
This lack of accuracy is the main weakness of our model.
A supplementary refinement was needed to take into ac-
count the weak inhomogeneity of the laboratory field, i.e.
the field when I = Ic = 0 (this refinement requires the
introduction of 3 additional parameters). This field is
weak enough to yield linear Zeeman phase shifts and its
presence slightly breaks the parity of ϕZ (F,mF ) with re-
gards to I or Ic and it induces a quasi-discontinuity near
I = Ic = 0 (see figure 3).
Finally, the analytic expressions describing the varia-

tions of ϕZ (F,mF ) with I and IC have been fitted on a
very large data set involving 150 measurements using the
HMW coils, the compensation coil, or both acting simul-
taneously. This fit involved 9 parameters: 7 parameters
related to the magnetic field, the parallel speed ratio S‖

describing the atomic beam velocity distribution and one

extra parameter describing the population imbalance be-
tween the F = 1 and F = 2 levels: the 8 parameters are
fitted with a single value for all the experimental data
points while the population imbalance parameter must
be separately fitted for different series of experiments as
it varies with the laser frequency detuning. We cannot
describe these results in detail but the fitted values of
most parameters are very well defined with error bars of
the order of a few percent. We present in figure 3 the vis-
ibility as a function of the current I in the HMW coils,
with the compensator in operation. The good agreement
between our model and the measured data proves that
our model describes well the Zeeman phase shifts.

B. Electric field only

FIG. 4: Relative visibility Vr (V, I = 0) as a function of the
applied voltage V , for two series of measurements performed
with different adjustment of the mirrors of the laser standing
waves. In both cases, the full (red) line represents the fit of
the data which is described in the text.

We will not discuss the experiments done with a volt-
age applied to one capacitor only: these experiments
have been used to characterize the capacitors and the
atomic beam velocity distribution. We discuss here only
the measurements performed with almost the same Stark
phase shift on both arms so that the measured Stark
phase shifts is small, ϕS ≈ 0.1 rad. We have not found
very interesting results when studying ϕS itself: if the
temperature is not fully stabilized during the experi-
ment, ϕS presents drifts because the temperatures of the
two capacitors drift with different rates. On the con-
trary, the visibility gives important information on the y-
dependence of the Stark phase shift ϕS and of the diffrac-
tion phase ϕd. We must also take into account the AC
phase in the presence of the laboratory magnetic field.
Figure 4 presents the relative visibility for two series of
measurements performed with two different alignments
of the standing wave mirrors i.e. with two different func-
tions ϕd (y). In all experiments, the relative visibility
Vr (V ) = Vm (V ) /V0 is well described by a fourth order
polynomial of V with a constant term equal to 1 and a
null third order term, as predicted by our calculations.
The fourth order coefficient is fairly independent of the
mirror alignment and it simply measures the spatial dis-
persion of ϕS ; the first order term is directly sensitive to
the AC phase and the second order term is sensitive to
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the correlation of the spatial dependences of δϕd (y) and
of δϕS (y). We are going to discuss the effect of the AC
phase on the visibility in the next section.

C. Concluding remarks

In this section, we have presented some tests of our
model which describes the phase and the visibility of the
interference fringes in the presence of an applied electric
or magnetic field. The description of the Zeeman phase
shifts is complicated by hyperfine uncoupling and by the
inhomogeneity of the laboratory magnetic field when the
currents in the HMW and compensator coils are both
vanishing but the model works well and its accuracy is
very good, except for the largest values of the magnetic
field produced by the HMW coil. The main effect of the
Zeeman interaction is to modify the fringe visibility and
these modifications are very well explained by our model.
The electric field induces the Stark and Aharonov-Casher
phase shifts: the measured phase shifts are weak and
sensitive to thermal distortions of the capacitors but the
dispersion of these phase shifts, which is due to the ca-
pacitor defects on one hand and to the F,mF -dependence
of the Aharonov-Casher phase shift on the other hand,
induces variations of the fringe visibility which are well
described by our calculations.

VI. SIMULTANEOUS APPLICATION OF THE

ELECTRIC AND MAGNETIC FIELDS

¿From the measured data, we get ϕEB (V, I) de-
fined by equation (4) of our letter and its coun-
terpart for the relative visibility, VEB (V, I) =
[V (V, I)V (0, 0)] / [V (V, 0)V (0, I)]. This quantity mea-
sures the non-additive character of the visibility modifi-
cations by the electric and magnetic perturbations. Our
model predicts the variations with V and I of ϕEB and
VEB: the various terms which appear in the model pre-
dictions can be easily sorted out by their parity with re-
spect to V - or I-reversal. In order to compare the model
prediction with experimental results, we isolate in the
measured data the component which has a given parity
with respect to V - or I-reversal: this is done by combin-
ing data for opposite values of V and/or of I and taking
either the half difference or the average.

A. The V -odd part of the relative visibility,

VEB (V, I)

We first illustrate the efficiency of our model by com-
paring the variations with the current I of the V -odd part
of the visibility VEB (V, I): this V -odd part is given by
the difference ∆V VEB = [VEB (V, I)− VEB (−V, I)] /2.
Our model predicts that this quantity is non-zero because
of the AC phase and

∆V VEB = −

2
∑

mF=−1

ϕAC (F = 2,mF ) sinϕZ (F = 2,mF )

2
∑

mF=−1

cosϕZ (F = 2,mF )

(10)
Figure 5 compares some measurements of ∆V VEB to its
calculated values following equation (10): the agreement
is reasonably good, the more so as there is no fitted pa-
rameter. The model results are very sensitive to the
Zeeman phase shifts and these measurements are a good
qualitative test for the consistency of the calculated Zee-
man phase shifts.

FIG. 5: ∆V VEB(V, I) with V = 800 V is plotted as a function
of the applied current I A in the HMW coil. The squares
represent our measured values while the thin (red) line is the
result of our model. The thick vertical (grey) lines indicate
the I-values for which the visibility vanishes as a result of
the dispersion of ϕZ with F,mF . The modification of the
visibility diverges for these values of the current I .

B. The V -even part of the phase shift ϕEB (V, I)

Our model predicts that the main systematic ef-
fects in ϕEB (V, I) are even with respect to V - and I-
reversals. We illustrate this term by considering the aver-
ageMV ϕEB = [ϕEB (V, I) + ϕEB (−V, I)] /2: this quan-
tity would vanish in the absence of defects, as ϕHMW is
odd with respect to V - and I-reversals. Our model pre-
dicts that the dominant term in MV ϕEB is given by:

MV ϕEB = −

2
∑

mF=−1

〈δϕSδϕZ〉 sinϕZ

2
∑

mF=−1

cosϕZ

(11)

The F = 2,mF dependence of ϕZ and δϕZ being omit-
ted for simplification. In figure 6, we compare some mea-
surements of MV ϕEB and the predictions of our model
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in this case which also includes a smaller, higher-order
term: thus two parameters have been fitted on the com-
plete data set. Their values agree with expectations de-
duced from independent measurements or estimates of
δϕS and δϕZ(F,mF ).

FIG. 6: Measured values of MV ϕEB(V, I) as a function of
I , with V = 800 V. The dots are the measured data and the
curve is the result of our model. As in figure 5, thick vertical
(grey) lines correspond to the cancelation of the visibility due
to the dispersion of the magnetic phase shifts.

C. A stray phase shift which is not predicted by

our model

This stray phase shift is odd with respect to V -
reversal and even with respect to I-reversal. To
extract this term, we first take the combination
∆V ϕEB(V, I) = [ϕEB (V, I)− ϕEB (−V, I)] /2 which is
the odd with respect to V -reversal and we take the av-
erage for opposite I-values given by MI (∆V ϕEB) =
[∆V ϕEB(V, I) + ∆V ϕEB(V,−I)] /2. The measured val-
ues of this quantity are plotted in figure 7 as a function
of the voltage V for all the data points with the current
I varying in the range from 5 to 25 A. Surprisingly, this
quantity does not depend on the current I, whereas it
involves the simultaneous application of both fields.

The data points are well fitted by a third-order odd
polynomial in V (i.e. the sum of a term in V and a term
in V 3). The fact that this effect is odd with V suggests
a role of contact potentials but we have verified that the
order of magnitude of MI (∆V ϕEB) is not in agreement
with other pieces of information which proves the very
small influence of contact potentials. We presently have
no explanation for this observation, which is still under
investigation. Fortunately, the fact that this phase shift
is independent of I provides a simple way of eliminating
it from the HMW measurement.

FIG. 7: The phase shift combination MI (∆V ϕEB) (V, I) is
plotted as a function of the applied voltage V . The full line
is a fit with an odd polynomial in V up to third order.

VII. DETECTION OF THE HMW PHASE

SHIFT

To detect the HMW phase, we may use the fact that it
is odd with respect to V -reversal and I-reversal. More-
over, we must reject the largest possible part of the stray
phase shifts. These ideas have led to study the difference
ϕfinal (V, I) = [ϕEB (V, I)− ϕEB (V,−I)] /2 : in this
way, the largest stray phase shifts predicted by our model
and also the I-independent unpredicted stray phase shift
are both eliminated, because these two terms are both
even with respect to I-reversal.
In our letter, we have plotted only the data with

|I| ≤ 12 A because the stray phase shifts increase rapidly
for larger currents and the data was corrected for the AC
contribution to the phase shift. In figure 8, we present
all the collected data without any correction for the con-
tribution of the AC phase shift. We have used differ-
ent symbols to distinguish the measurements done with
|I| ≤ 12 or > 12A and we have made separate fits of
these two sets of data using ϕfinal(V, I) = αV I+β. The
fit results are:

α = (−194± 6)× 10−8 rad/VA

β = (7± 4)× 10−4 rad

if |I| ≤ 12 A (12)

and

α = (−216± 14)× 10−8 rad/VA

β = (−26± 19)× 10−4 rad

if |I| > 12 A (13)

In both fits, the intercept β for V I = 0 is compatible with
a vanishing value, as expected. The data with |I| ≤ 12
A is less dispersed than the data with |I| > 12 A and
this appears clearly on the error bar of the slope α. From
the spatial dependence of the magnetic and electric fields
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and lithium atom electric polarizability [12], we have pre-
dicted the value of the slope of the HMW phase as a func-
tion of V I product, ϕHMW (V, I) /(V I) = −128 × 10−8

rad/VA. The modulus of the fitted slope is larger than
the predicted value for the two fits and the discrepancy
is equal 52% if |I| 6 12 A and 69% if |I| > 12 A. We
think that some residual stray phase shift has not been
completely eliminated and the resulting error increases
with the modulus of the current |I|. As a consequence,
we consider that, even for the data set with |I| 6 12
A, the discrepancy between the expected slope and the
measured slope of ϕfinal vs V I is still dominated by this
residual systematic effect.
In ϕfinal, there is a minor contribution of the AC phase

shift which can be calculated thanks to our model with no
adjustable parameter. We have calculated this correction
which never exceeds 3 mrad for the data set with |I| 6 12
A and we have made this correction in figure 3 of our
letter. This last correction reduces the discrepancy on
the slope of the measured phase ϕfinal vs. V I to 31%.

FIG. 8: Measured values of ϕfinal as a function of the V I
product. The data points with |I | ≤ 12 A are plotted in red
as well as their fit represented by a dotted line. The data
points with |I | > 12 A are plotted in black as well as their
fit represented by a dashed line. The expected dependence of
ϕHMW with V I is represented by a black full line.

VIII. CONCLUDING REMARKS

The analysis briefly summarized here explains how we
have proceeded to extract the HMW phase shift from
stray phase shifts due to defects of the interaction re-
gion. Indeed, thanks to its odd parity with respect
to V -reversal and I-reversal, we have been able to dis-
tinguish this phase shift from various systematic effects
which have been observed and fairly well explained. The
description of these systematic effects is rather complex

because several defects must be taken into account and
also because the signal is a weighted average over 8 sub-
levels. The analytical model we have developed to de-
scribe systematic effects on ϕEB and VEB explains our
observations in a consistent way but, in its present form,
this model is not sufficient to give very accurate values
of the systematic phase shifts which would be needed to
extract precisely the HMW contribution to the observed
phase. We attribute the discrepancy between the mea-
sured slope of ϕfinal vs V I and the expected slope of
ϕHMW as due to residual systematic effects.

In conclusion, thanks to a thorough analysis of system-
atic effects, we have been able to detect the HMW phase
shift but it is difficult to estimate the systematic part of
our error bar. We think that it would be interesting to
make a more precise measurement but this will be possi-
ble only if we are able to reduce systematic effects. The
first mean will be to use smaller values of the HMW cur-
rent I so that the description of the Zeeman phase shifts
will be more accurate, but the most efficient technique
is to eliminate the average over the 8 sub-levels which
is the main source of systematic errors. Atomic beams
pumped in a single sub-level with a high purity (typically
more than 97% of the population can be in the selected
state) have been achieved with sodium [22] and cesium
[23] and we think that it should be possible to achieve
a similar result with lithium. It is possible to pump the
atoms either in any one of the two mF = 0 sub-levels or
in the F = 2,mF = +2 or −2 sub-levels. The Zeeman
effect of the F = 2,mF = +2 or −2 sub-levels is purely
linear and we think that these levels would be a better
choice than the mF = 0 sub-level which have a non-zero
field-dependent magnetic moment as soon as hyperfine
uncoupling is not negligible. With an optically pumped
beam in the F = 2,mF = +2 or −2 sub-level, the mea-
surement will give the sum of the HMW and AC phase
and we can separate the two contributions by changing
the sign of mF , thus changing the sign of the AC phase
without changing the HMW phase.

It will be also very interesting to verify that the HMW
phase is independent of the atom velocity. In our ex-
periment, it is possible to vary the lithium beam mean
velocity by changing the carrier gas, from 700 m/s (with
krypton) up to 3400 m/s (helium) [24] but the distance
between interferometer arms, which varies like 1/v, be-
comes too small to introduce a septum when v & 2000
m/s, if we use first-order diffraction. We can run the in-
terferometer with second-order diffraction but the pres-
ence of weak first-order diffraction beams makes the ex-
periment less clean and limits the quality of the phase
measurements. With a velocity range from 700 − 2000
m/s, a test of the variation of the HMW phase with ve-
locity would be possible and significant if the error bar
on the HMW phase is reduced near 10%.



10

[1] Y. Aharonov and A. Casher, Phys. Rev. Lett. 53, 319
(1984).

[2] X.-G. He and B.H.J. McKellar, Phys. Rev. A 47, 3424
(1993).

[3] M. Wilkens, Phys. Rev. Lett. 72, 5 (1994).
[4] K.A. Milton Rep. Prog. Phys. 69, 16371711(2006).
[5] H. Wei, R. Han and X. Wei, Phys. Rev. Lett. 75, 2071

(1995).
[6] Y. Sato and R. Packard, J. Phys. Conf. Series 150,

032093 (2009).
[7] R.C. Casella, Phys. Rev. Lett. 65, 2217 (1990) and ref-

erences therein.
[8] K. Sangster et al., Phys. Rev. Lett. 71, 3641 (1993).
[9] J.P. Dowling et al., Phys. Rev. Lett. 83, 2486 (1999).

[10] C.R. Ekstrom et al., Phys. Rev. A 51, 3883 (1995).
[11] S. Lepoutre, PhD thesis, Université P. Sabatier (2011),
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