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Rapid stabilization for a Korteweg-de Vries

equation from the left Dirichlet boundary

condition

Eduardo Cerpa and Jean-Michel Coron

Abstract

This paper deals with the stabilization problem for the Korteweg-de Vries equation posed on a

bounded interval. The control acts on the left Dirichlet boundary condition. At the right end-point,

Dirichlet and Neumann homogeneous boundary conditions are considered. The proposed feedback law

forces the exponential decay of the system under a smallness condition on the initial data. Moreover,

the decay rate can be tuned to be as large as desired. The feedback control law is designed by using

the backstepping method.
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I. INTRODUCTION

The Korteweg-de Vries (KdV) equation

ut(t, x) + ux(t, x) + uxxx(t, x) + u(t, x)ux(t, x) = 0, (1)
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posed on a bounded domain [0, L] can be seen as a nonlinear control system where the inputs are

the boundary data. From the nature of this equation, one boundary condition at the left end-point

and two boundary conditions at the right end-point have to be imposed. The most studied case

considers boundary conditions on

u(t, 0), u(t, L), and ux(t, L). (2)

Surprisingly, the control properties of this system are very different depending on where the

controls are located. If we act on the left Dirichlet boundary condition and homogeneous data is

considered at the right, then the system behaves like a heat equation and only null-controllability

can be proven [22], [7]. On the other hand, if we act on the two right data and homogeneous

boundary condition is considered at the left, then the system behaves like a wave equation with

an infinite speed of propagation, in the sense that exact controllability holds for any time of

control [21]. Another fascinating phenomena occurs when we put only one control input at the

right end-point and keep homogeneous the other two boundary conditions: there exist some

spatial domains (intervals of some given lengths) for which the corresponding linearized KdV

equation is not any more controllable [21], [8]. In despite of that, in these critical cases the

nonlinearity gives the exact controllability of the nonlinear KdV equation [5], [1], [2]. However,

for some critical intervals the applied method requires a minimal time of control, which is not

known to be really necessary.

Due to the existence of these critical intervals for the linear system, we do not know if the

energy of the KdV equation is decreasing when the three boundary conditions considered are

homogeneous (free control case). For instance, if L = 2π, the time-independent function given

by (1− cos(x)) satisfies

ut(t, x) + ux(t, x) + uxxx(t, x) = 0, u(t, 0) = u(t, 2π) = ux(t, 2π) = 0. (3)

Therefore we find out a stationary solution of the linear KdV equation with homogeneous

boundary conditions and consequently a solution with non-decreasing energy. This implies that
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for the free control case with L = 2π, the linearized system associated to the KdV equation (1)

is not exponentially stable.

With a feedback control law acting at the left hand side such phenomenon does not appear

and the method we propose in this case allows to address the problem of rapid exponential

stabilization: given a desired decay rate, we find a feedback law exponentially stabilizing the

system at that rate.

Based on the hyperbolic nature of the KdV equation controlled from the right, a method

introduced in [10], [30] is used in [3] to get the rapid stabilization of the linear KdV equation

from the Neumann boundary condition on the right. This gramian-based approach comes from

the finite dimensional theory [18], [9] and was first introduced for PDE in the context of internal

control [25]. This method requires the controllability of the linear system and therefore a non

critical interval has to be considered.

In this paper, we applied the backstepping method to design the feedback control law. The

backstepping method is very known as a ODE control method (see [11] and [4, Section 12.5]).

The first extensions to PDE have appeared in [6] and [17]. Later on, Krstic and his collaborators

introduced a modification of the method by means of an integral transformation of the PDE.

This invertible transformation map the original PDE into an asymptotically stable one. In this

context, the first continuous backstepping designs were proposed for the heat equation [16], [27].

The applications to wave equation appeared later in [12], [29], [26]. An excellent starting point

to get inside this method is the book [13] by Krstic and Smyshlyaev.

This paper is organized as follows. In Section II, we formulate the problem and state the

main result. Section III contains the backstepping design of the feedback control law. Section

IV is devoted to prove the exponential decay of the L2-norm of the solutions for the linearized

system around the origin. In Section V, we prove that this result still holds for the nonlinear KdV

control system when the initial condition is small enough. Some extensions to the non-constant

coefficient case and different boundary conditions are considered in Section VI. Finally, some

final remarks are given in Section VII.

Remark 1: The stabilization of the KdV equation by using an internal feedback control law
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was addressed in [20], [19] (see also [23], [15] for KdV equations with other nonlinearities).

They have proved the following semi-global stabilization. Let L > 0, R > 0 and a = a(x) a

damping term satisfying a(x) ≥ a0 > 0, forall x ∈ ω where ω is nonempty open subset of

(0, L). Then, there exist C = C(R) > 0 and µ = µ(R) > 0 such that

‖u(t, x)‖L2(0,L) ≤ Ce−µt‖u(0, ·)‖L2(0,L), ∀t ≥ 0 (4)

for any solution of ut(t, x) + ux(t, x) + uxxx(t, x) + a(x)u(t, x) + u(t, x)ux(t, x) = 0,

u(t, 0) = u(t, L) = ux(t, L) = 0,
(5)

with ‖u(0, ·)‖L2(0,L) ≤ R. This result is different from ours in the sense that the exponential

decay rate can not be imposed as large as desired. A key role in their design is played by the

damping term a = a(x), which prevents the existence of critical domains and allows to work

with a dissipative system for any L. Other internal feedback control laws (static or time-varying

ones) for the KdV equation with periodic boundary conditions can be found in [24], [14].

II. PROBLEM STATEMENT AND MAIN RESULT

Given L > 0, we consider the following nonlinear control system on the interval [0, L] ut(t, x) + ux(t, x) + uxxx(t, x) + u(t, x)ux(t, x) = 0,

u(t, 0) = κ(t), u(t, L) = 0, ux(t, L) = 0.
(6)

For any positive λ, we address the problem of building some feedback control law κ(t) =

κ(u(t, ·)) such that the origin is exponentially stable for the corresponding closed-loop system

(6) and the exponential decay rate is λ.

By using the backstepping method, we are able to find such a control law. The design is based

on the linearized system around the origin. The linear closed-loop system is exponentially stable

and the same result is obtained for the nonlinear KdV equation by adding a smallness condition

on the initial data.

Our main theorem is the following.
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Theorem 2: For any λ > 0, there exist a feedback control law κ = κ(u(t, ·)), r > 0 and

D > 0 such that

‖u(t, ·)‖L2(0,L) ≤ De−λt‖u(0, ·)‖L2(0,L), ∀t ≥ 0, (7)

for any solution of (6) satisfiying ‖u(0, ·)‖L2(0,L) ≤ r.

The feedback law κ is explicitly defined as follows

κ(t) =

∫ L

0

k(0, y)u(t, y)dy, (8)

where the function k = k(x, y) is characterized in Section III as the solution of a given partial

differential equation depending on λ.

Remark 3: As we shall see in Section VI, Theorem 2 also holds if system (6) is replaced by ut(t, x) + ux(t, x) + uxxx(t, x) + u(t, x)ux(t, x) = 0,

u(t, 0) = κ(t), ux(t, L) = 0, uxx(t, L) = 0.
(9)

or  ut(t, x) + γ(x)ux(t, x) + uxxx(t, x) + u(t, x)ux(t, x) + δ(x)u(t, x) = 0,

u(t, 0) = κ(t), u(t, L) = 0, ux(t, L) = 0,
(10)

where γ, δ are given functions in C1([0, L]) and C([0, L]), respectively.

III. CONTROL DESIGN

The backstepping method applied here is based on the linear part of the equation. In this way,

we consider the control system linearized around the origin ut(t, x) + ux(t, x) + uxxx(t, x) = 0,

u(t, 0) = κ(t), u(t, L) = 0, ux(t, L) = 0.
(11)

Given a positive parameter λ, we look for a transformation Π : L2(0, L)→ L2(0, L) defined
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by

w(x) = Π(u(x)) := u(x)−
∫ L

x

k(x, y)u(y)dy, (12)

such that the trajectory u = u(t, x), solution of (11) with

κ(t) =

∫ L

0

k(0, y)u(t, y)dy, (13)

is map into the trajectory w = w(t, x), solution of the linear system wt(t, x) + wx(t, x) + wxxx(t, x) + λw(t, x) = 0,

w(t, 0) = 0, w(t, L) = 0, wx(t, L) = 0.
(14)

For system (14), called the target system, we have for any t ≥ 0

d

dt

∫ L

0

|w(t, x)|2dx = −|wx(t, 0)|2 − 2λ

∫ L

0

|w(t, x)|2dx ≤ −2λ

∫ L

0

|w(t, x)|2dx (15)

and therefore we easily obtain for w = w(t, x) the exponential decay at rate λ

‖w(t, ·)‖L2(0,L) ≤ e−λt‖w(0, ·)‖L2(0,L), ∀t ≥ 0. (16)

In Section IV, we prove that, thanks to the invertibility of the map Π, the exponential decay

(16) also holds for system (11).

Naturally, we can wonder if this decay rate is sharp. Let us notice that the eigenvalues of

system (14) are the eigenvalues of wt(t, x) + wx(t, x) + wxxx(t, x) = 0,

w(t, 0) = 0, w(t, L) = 0, wx(t, L) = 0,
(17)

shifted to the left λ units. Thus, we are lead to study the eigenvalues σ of −φ′(x)− φ′′′(x) = σφ(x),

φ(0) = 0, φ(L) = 0, φ′(L) = 0.
(18)

Surprisingly, the location of the eigenvalues of (18) depends on the length of the interval.
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From [21], we know that there exist some eigenvalues located on the imaginary axis if and only

if L ∈ {2π
√

k2+k`+`2

3

/
(k, `) ∈ N2}, which is called the set of critical lengths for this problem.

In Figure 1, the first five eigenvalues of system (17) are plot for different values of L. In case (a),

L = 1 (non-critical) and the first eigenvalue σ1 is approximately −72. The system behaves like

a dissipative one. In (b), L = 2π (critical) and we have σ1 = 0. The system has one conservative

component given by the eigenfunction φ(x) = 1− cos(x). In (c), L = 2π
√

7/3 and the first two

eigenvalues are imaginary numbers σ1 = 0.2i and σ2 = −0.2i. This examples show the different

behaviors system (14) can have and the important role played by the parameter λ in our design.

In conclusion, the decay in (16) is optimal for some values of L.

(a)
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Figure 1. The first five eigenvalues of system (17) for (a) L = 1, (b) L = 2π, and (c) L = 2π
√

7/3, respectively.

Let us focus in the key step, which is finding the kernel k = k(x, y) such that w(t, x) =

Π(u(t, x)) satisfies (14). For that, we perform the following computations

wt(t, x) = ut(t, x)−
∫ L
x
ut(t, y)k(x, y)dy

= ut(t, x) +
∫ L
x

(uy(t, y) + uyyy(t, y)) k(x, y)dy

= ut(t, x)−
∫ L
x
u(t, y) (ky(x, y) + kyyy(x, y)) dy

− k(x, x)(u(t, x) + uxx(t, x))

+ ky(x, x)ux(t, x)− kyy(x, x)u(t, x) + k(x, L)u(t, L)

+ k(x, L)uxx(t, L)− ky(x, L)ux(t, L) + kyy(x, L)u(t, L),

(19)

wx(t, x) = ux(t, x) + k(x, x)u(t, x)−
∫ L
x
kx(x, y)u(t, y)dy, (20)
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wxx(t, x) = uxx(t, x) + u(t, x) d
dx
k(x, x) + k(x, x)ux(t, x)

+ kx(x, x)u(t, x)−
∫ L
x
kxx(x, y)u(t, y)dy,

(21)

and

wxxx(t, x) = uxxx(t, x) + u(t, x) d2

dx2
k(x, x) + 2ux(t, x) d

dx
k(x, x)

+ k(x, x)uxx(t, x) + u(t, x) d
dx
kx(x, x) + kx(x, x)ux(t, x)

+ kxx(x, x)u(t, x)−
∫ L
x
kxxx(x, y)u(t, y)dy.

(22)

Thus, given λ ∈ R and using (11), we have

wt(t, x) + wx(t, x) + wxxx(t, x) + λw(t, x) =

−
∫ L

x

u(t, y)
(
kxxx(x, y) + kx(x, y) + kyyy(x, y) + ky(x, y) + λk(x, y)

)
dy

+ k(x, L)uxx(t, L) + ux(t, x)
(
ky(x, x) + kx(x, x) + 2

d

dx
k(x, x)

)
+ u(t, x)

(
λ+ kxx(x, x)− kyy(x, x) +

d

dx
kx(x, x) +

d2

dx2
k(x, x)

)
. (23)

After the above computations and since d
dx
k(x, x) = kx(x, y) + ky(x, y), we obtain that one

has (14) for every u solution of (11) with (13) if the kernel k = k(x, y) defined in the triangle

T := {(x, y)
/
x ∈ [0, L], y ∈ [x, L]} satisfies

kxxx(x, y) + kyyy(x, y) + kx(x, y) + ky(x, y) = −λk(x, y), in T ,

k(x, L) = 0, in [0, L],

k(x, x) = 0, in [0, L],

kx(x, x) =
λ

3
(L− x), in [0, L].

(24)

Let us make the following change of variable

t = y − x, s = x+ y, (25)
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and define G(s, t) := k(x, y). We have k(x, y) = G(x+ y, y − x) and therefore

kx = Gs −Gt, ky = Gs +Gt, (26)

kxx = Gss − 2Gst +Gtt, kyy = Gss + 2Gst +Gtt, (27)

kxxx = Gsss − 3Gsst + 3Gstt −Gttt, (28)

kyyy = Gsss + 3Gsst + 3Gstt +Gttt. (29)

Now, the function G = G(s, t), defined in T0 := {(s, t)
/
t ∈ [0, L], s ∈ [t, 2L− t]}, satisfies

6Gtts(s, t) + 2Gsss(s, t) + 2Gs(s, t) = −λG(s, t), in T0,

G(s, 2L− s) = 0, in [L, 2L],

G(s, 0) = 0, in [0, 2L],

Gt(s, 0) =
λ

6
(s− 2L), in [0, 2L].

(30)

Let us transform this system into an integral one. We write the equation in variables (η, ξ),

integrate ξ in (0, τ) and use that 6Gts(η, 0) = λ. Next, we integrate τ in (0, t) and use that

Gs(η, 0) = 0. Finally, we integrate η in (s, 2L− t) and use that G(2L− t, t) = 0. Thus, we can

write the following integral form for G = G(s, t)

G(s, t) = −λt
6

(2L− t− s)

+
1

6

∫ 2L−t

s

∫ t

0

∫ τ

0

(
2Gsss(η, ξ) + 2Gs(η, ξ) + λG(η, ξ)

)
dξdτdη. (31)

To prove that such a function G = G(s, t) exists, we use the method of successive approxi-

mations. We take as an initial guess

G1(s, t) = −λt
6

(2L− t− s) (32)

and define the recursive formula as follows,

Gn+1(s, t) =
1

6

∫ 2L−t

s

∫ t

0

∫ τ

0

(
2Gn

sss(η, ξ) + 2Gn
s (η, ξ) + λGn(η, ξ)

)
dξdτdη. (33)
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Performing some computations, we get for instance

G2(s, t) =
1

108

{
t3
(
λ− λ2L+

λ2t

4

)(
2L− t− s

)
+
t3λ2

4

[
(2L− t)2 − s2

]}
, (34)

and more generally the following formula

Gk(s, t) =
k∑
i=1

(
aikt

2k−1 + bikt
2k
)[

(2L− t)i − si
]
, (35)

where the coefficients satisfy bkk = 0 and more importantly, there exist positive constants M,B

such that, for any k ≥ 1 and any (s, t) ∈ T0

∣∣Gk(s, t)
∣∣ ≤M

Bk

(2k)!
(t2k−1 + t2k). (36)

This implies that the series
∑∞

n=1G
n(s, t) is uniformly convergent in T0. Therefore the series

defines a continuous function G : T0 → R

G(s, t) =
∞∑
n=1

Gn(s, t) (37)

and we get a solution of our integral equation. Indeed, we can write

G = G1 +
∞∑
n=1

Gn+1

= G1 +
1

6

∞∑
n=1

∫ 2L−t

s

∫ t

0

∫ τ

0

(
2Gn

sss(η, ξ) + 2Gn
s (η, ξ) + λGn(η, ξ)

)
dξdτdη

= G1 +
1

6

∫ 2L−t

s

∫ t

0

∫ τ

0

(
2
∞∑
n=1

Gn
sss(η, ξ) + 2

∞∑
n=1

Gn
s (η, ξ) + λ

∞∑
n=1

Gn(η, ξ)
)
dξdτdη

= G1 +
1

6

∫ 2L−t

s

∫ t

0

∫ τ

0

(
2Gsss(η, ξ) + 2Gs(η, ξ) + λG(η, ξ)

)
dξdτdη. (38)

where we have used that the corresponding series
∑

n≥1G
n
s and

∑
n≥1G

n
sss are also uniformly

convergent.

Once we have found the function G = G(s, t), we get the existence of the kernel k = k(x, y).

It is easy to see that the map Π : L2(0, L) → L2(0, L), defined by (12), is continuous and
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consequently we have the existence of a positive constant Dκ such that

‖Π(f)‖L2(0,L) ≤ Dκ‖f‖L2(0,L), ∀f ∈ L2(0, L). (39)

In Figure 2, we plot the gain kernel k(0, y) (see (12)) as a function of y ∈ [0, L] for different

lengths (a) L = 1 (non-critical), (b) L = 2π (critical) and (c) L = 2π
√

7/3 (critical). The kernel

functions are defined with λ = 1. This illustrate the fact that case (a) is easier to stabilizes

than case (b), which is easier to stabilizes than case (c). This is due to the location of the

corresponding open-loop eigenvalues as shown in Figure 1.

Figure 2. Gain kernel k(0, y) corresponding to λ = 1 for (a) L = 1, (b) L = 2π, and (c) L = 2π
√

7/3, respectively.

IV. STABILITY OF THE LINEAR SYSTEM

We know that the target system (14) is exponentially stable. In order to get the same conclusion

for the linear system (11), the method we are applying uses the inverse transformation Π−1. For

that, we introduce a kernel function `(x, y) which satisfies

`xxx(x, y) + `yyy(x, y) + `x(x, y) + `y(x, y) = λ`(x, y), in T ,

`(x, L) = 0, in [0, L],

`(x, x) = 0, in [0, L],

`x(x, x) =
λ

3
(L− x), in [0, L],

(40)

The existence and uniqueness of such a kernel ` = `(x, y) are proven in the same way than

for the kernel k = k(x, y) in Section III. Once we have defined ` = `(x, y), it is easy to see that
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the transformation Π−1 is characterized by

u(x) = Π−1(w(x)) := w(x) +

∫ L

x

`(x, y)w(y)dy. (41)

Let us see that k(x, y) and `(x, y) are related by the formula

`(x, y)− k(x, y) =

∫ y

x

k(x, η)`(η, y)dη, (42)

which in fact proves that Π−1 maps a trajectory of (14) into a trajectory of (11) with control

κ(t) defined by (13). Indeed, by plugging (41) into (12)and using Fubini’s theorem we get, for

any w ∈ L2(0, L), that for any x ∈ [0, L]∫ L

x

(`(x, y)− k(x, y))w(y)dy =

∫ L

x

∫ y

x

k(x, η)`(η, y)w(y)dηdy, (43)

which proves (42) for any (x, y) ∈ T .

The map Π−1 : L2(0, L) → L2(0, L) is continuous and therefore we get the existence of a

positive constant D` such that

‖Π−1(f)‖L2(0,L) ≤ D`‖f‖L2(0,L), ∀f ∈ L2(0, L). (44)

Let us prove that system (11)-(13) is exponentially stable. In fact, given u0 ∈ L2(0, L), we

define

w0(x) = Π(u0(x)) := u0(x)−
∫ L

x

k(x, y)u0(y)dy. (45)

The solution of (14) with initial condition w(0, x) = w0(x) satisfies (15), i.e.

‖w(t, ·)‖L2(0,L) ≤ e−λt‖w0(·)‖L2(0,L), ∀t ≥ 0. (46)

Moreover, the solution of (11) is given by u(t, x) = Π−1(w(t, x)). Thus, from (39),(44) and
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(46) we have for any t ≥ 0

‖u(t, ·)‖L2(0,L) ≤ D`‖w(t, ·)‖L2(0,L)

≤ D`e
−λt‖w0(·)‖L2(0,L) ≤ D`Dke

−λt‖u0(·)‖L2(0,L), (47)

which proves the exponential decay at rate λ for system (11) with feedback law (13).

V. STABILITY OF THE NONLINEAR SYSTEM

Let u = u(t, x) be a solution of the nonlinear equation (6) with the control κ given by (13).

Then, w = Π(u(t, x)) satisfies

wt(t, x) + wx(t, x) + wxxx(t, x) + λw(t, x)

= −
(
w(t, x) +

∫ L

x

`(x, y)w(t, y)dy

)(
wx(t, x) +

∫ L

x

`x(x, y)w(t, y)dy

)
(48)

with homogeneous boundary conditions

w(t, 0) = 0, w(t, L) = 0, wx(t, L) = 0. (49)

We multiply (48) by w and integrate in (0, L) to obtain

d

dt

∫ L

0

|w(t, x)|2dx = −|wx(t, 0)|2 − 2λ

∫ L

0

|w(t, x)|2dx − 2

∫ L

0

w(t, x)F (t, x)dx (50)

where the term F = F (t, x) is given by

F (t, x) = w(t, x)

∫ L

x

`x(x, y)w(t, y)dy + wx(t, x)

∫ L

x

`(x, y)w(t, y)dy

+

(∫ L

x

`(x, y)w(t, y)dy

)(∫ L

x

`x(x, y)w(t, y)dy

)
. (51)

We can prove that there exists a positive constant C = C(‖`‖C1(T )) such that

∣∣∣2 ∫ L

0

w(t, x)F (t, x)dx
∣∣∣ ≤ C

(∫ L

0

|w(t, x)|2
)3/2

(52)
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and therefore, if there exists t0 ≥ 0 such that

‖w(t0, ·)‖L2(0,L) ≤
λ

C
, (53)

then we obtain

d

dt

∫ L

0

|w(t, x)|2dx ≤ −λ
∫ L

0

|w(t, x)|2dx, ∀t ≥ t0. (54)

Thus, we get

‖w(t, ·)‖L2(0,L) ≤ e−
λ
2
t‖w(0, ·)‖L2(0,L), ∀t ≥ 0, (55)

provided that

‖w(0, ·)‖L2(0,L) ≤
λ

C
. (56)

As we did for the linear system, by using the continuity of the transformations Π and Π−1 (see

(39) and (44)) and (55), we obtain the exponential decay of the nonlinear equation (6). From

(56), we have to add a smallness condition on the initial data of system (6). This concludes the

proof of Theorem 2.

VI. SOME EXTENSIONS

As mentioned in Remark 3, this method can be applied to stabilize other related KdV systems.

In this Section, we focus in the linear control design because the nonlinear part of the argument is

the same as in Section V. More precisely, we show the equations that define the kernel functions

corresponding to each case.

A. Different boundary conditions

In order to stabilize system ut(t, x) + ux(t, x) + uxxx(t, x) = 0,

u(t, 0) = κ(t), ux(t, L) = 0, uxx(t, L) = 0,
(57)
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we have to consider a kernel k = k(x, y) satisfying on the triangle T := {(x, y)
/
x ∈ [0, L], y ∈

[x, L]} the equation

kxxx(x, y) + kyyy(x, y) + kx(x, y) + ky(x, y) = −λk(x, y), in T ,

kyy(x, L) = 0, in [0, L],

k(x, x) = 0, in [0, L],

kx(x, x) =
λ

3
(L− x), in [0, L].

(58)

The transformation

w(x) = Π(u(x)) := u(x)−
∫ L

x

k(x, y)u(y)dy, (59)

map the solution u = u(t, x) into the trajectory w = w(t, x), solution of the target system wt(t, x) + wx(t, x) + wxxx(t, x) + λw(t, x) = 0,

w(t, 0) = 0, wx(t, L) = 0, wxx(t, L) = 0,
(60)

which is exponentially asymptotically stable for λ > 0, with a decay at least equals to λ. By

making the change of variable

t = y − x, s = x+ y, (61)

and defining G(s, t) := k(x, y), we get that G is solution of

G(s, t) = −λ
6

(2L− s)− 2

∫ t

0

Gs(s, τ)dτ − 2

∫ t

0

∫ τ

0

Gss(s, ξ)dξdτ

+
1

6

∫ t

0

∫ τ

0

∫ 2L−ξ

s

(
− 4Gsss(η, ξ) + 2Gs(η, ξ) + λG(η, ξ)− 12Gsst(η, ξ)

)
dξdτdη (62)

that can be studied by applying again the method of successive approximations..
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B. Non-constant coefficient case

Given two functions γ ∈ C1([0, L]) and δ ∈ C([0, L]), we consider the non-constant coefficient

linear KdV equation ut(t, x) + γ(x)ux(t, x) + uxxx(t, x) + δ(x)u = 0,

u(t, 0) = κ(t), u(t, L) = 0, ux(t, L) = 0,
(63)

and the target system wt(t, x) + γ(x)wx(t, x) + wxxx(t, x) + (λ+ δ(x))w(t, x) = 0,

w(t, 0) = 0, w(t, L) = 0, wx(t, L) = 0,
(64)

which is exponentially asymptotically stable for λ large enough. In fact,

λ ≥ max
x∈[0,L]

|γ′(x)− 2δ(x)|

is a sufficient condition to ensure an exponential decay rate equals to λ/2 for solutions of (64).

In this case, the kernel k = k(x, y) to be considered in order to define the corresponding

transformation (59) is the solution of

kxxx(x, y) + kyyy(x, y) + γ(x)kx(x, y) + γ(y)ky(x, y) = α(x, y)k(x, y), in T ,

k(x, L) = 0, in [0, L],

k(x, x) = 0, in [0, L],

kx(x, x) =
λ

3
(L− x), in [0, L].

(65)

where α is defined by

α(x, y) = −(λ+ γ′(y) + δ(x) + δ(y)). (66)
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By using the change of variable (61), system (65) can be lead to the equation

G(s, t) = −λt
6

(2L− t− s)

+
1

6

∫ 2L−t

s

∫ t

0

∫ τ

0

(
2Gsss(η, ξ) + a1(η, ξ)Gs(η, ξ)

+ a2(η, ξ)Gt(η, ξ) + α
(η − ξ

2
,
η + ξ

2

)
G(η, ξ)

)
dξdτdη, (67)

where

a1(η, ξ) = γ
(η + ξ

2

)
+ γ
(η − ξ

2

)
and a2(η, ξ) = γ

(η + ξ

2

)
− γ
(η − ξ

2

)
. (68)

As before, this equation can be studied by applying the method of successive approximations.

C. A non-zero equilibrium state

We consider u = u(t, x) solution of (6). If instead of linearizing this system around zero, we

do that around a non-zero equilibrium state z = z(x) solution of z′(x) + z′′′(x) + z(x)z′(x) = 0,

z(0) = U0, z(L) = 0, z′(L) = 0,
(69)

with U0 6= 0, we have to consider the control system vt(t, x) + (1 + z(x))vx(t, x) + vxxx(t, x) + zx(x)v(t, x) = 0,

v(t, 0) = h(t), v(t, L) = 0, vx(t, L) = 0,
(70)

where v = v(t, x) and h = h(t) are the first-order approximation of the state (u(t, x)−z(x)) and

the control (κ(t)− U0), respectively. Thus, by using the control design in Subsection VI-B for

non-constant coefficients, we can locally stabilizes system (6) around a non-zero equilibrium.

VII. CONCLUSIONS

We have applied the backstepping method to build some boundary feedback laws, which

locally stabilize the Korteweg-de Vries equation posed on a finite interval. Our control acts on

the Dirichlet boundary condition at the left hand side of the interval where the system evolves.
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The closed-loop system is proven to be locally exponentially stable with a decay rate that can

be chosen to be as large as we want. This approach allows to consider the KdV equation (6)

with other boundary conditions and low order terms as ux or u with non-constant coefficients

depending on the space variable.

The situation where we act on the right end-point is different. If we consider homogeneous

Dirichlet condition on the left and one or two control inputs at the right hand side of the

interval, then we are not able to prove the backstepping method works with the transformation

(12). Indeed, when imposing

wt + wx + wxxx + λw = 0 (71)

on the target system, we get the following expression at x = L to vanish

k(x, L)uxx(t, L) + k(x, L)u(t, L) + kyy(x, L)u(t, L)− ky(x, L)ux(t, L). (72)

As we do not have to our disposal uxx(t, L), the first term above arises the condition k(x, L) = 0.

Even if we do not care about the two last terms in (72), in order to keep w(t, 0) = u(t, 0) = 0,

we have to impose k(0, y) = 0 for any y ∈ (0, L). With these four boundary restrictions (the

other two are on k(x, x)), the third order kernel equation satisfied by k = k(x, y) becomes

overdetermined. Therefore, it is not clear if such a function k = k(x, y) exists.

A natural idea to deal with controls at x = L is to use the transformation

w(t, x) = u(t, x)−
∫ x

0

k(x, y)u(t, y)dy, (73)

instead of (12). However, it is not clear if that approach works. In fact, if we do that, we have

to deal now with the extra condition ky(x, 0) = 0 for any x ∈ (0, L). This is due to the fact

that when imposing wt + wx + wxxx + λw = 0 on the target system, we get the extra term

ux(t, 0)ky(x, 0) to be cancelled. As previously, this fourth restriction gives an overdetermined

kernel equation for k = k(x, y). Moreover, the existence of critical lengths when only one

control is considered at the right end-point suggests that either the existence of the kernel or the
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invertibility of the corresponding map Π should fail for some spatial domains.

Two related problems that remain still open are the boundary global or semi-global stabilization

and the output feedback control problem. The boundary global stabilization is hard because it

is needed a really nonlinear design as in [14] for the KdV equation with periodic boundary

conditions. Concerning the output feedback control problem, we believe it could be solved by

applying the backstepping approach in order to built some observers as done in [28], [12] for

the heat and the wave equations respectively.
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