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Quaternionic Sparse Approximation

Quentin Barthélemy, Anthony Larue and Jérôme I. Mars

Abstract In this paper, we introduce a new processing procedure for quater-

nionic signals through consideration of the well-known orthogonal matching pur-

suit (OMP), which provides sparse approximation. We present a quaternionic ex-

tension, the quaternionic OMP, that can be used to process a right-multiplication

linear combination of quaternionic signals. As validation, this quaternionic OMP is

applied to simulated data. Deconvolution is carried out and presented here with a

new spikegram that is designed for visualization of quaternionic coefficients, and

finally this is compared to multivariate OMP.

1 Introduction

In signal processing, some tools have been recently extended to the quaternion space

H. For example, we can cite quaternionic correlation for vector images [8], quater-

nionic adaptive filtering [11], quaternionic independent component analysis [13],

and blind extraction of quaternionic sources [5].

For the sparsity domain, sparse approximation algorithms [12] are given for real

or complex signals. To our knowledge, these have not been applied to quaternionic

signals. Considering orthogonal matching pursuit (OMP) [9], we present an exten-

sion to quaternions. This algorithm, which is termed quaternionic OMP (Q-OMP),

can be used to process quadrivariate signals (and thus including trivariate signals).
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For the quaternionic signal y ∈H
N of N samples and a dictionary Φ ∈H

N×M of

M atoms {φm}
M
m=1, the decomposition of the signal y is carried out on the dictionary

Φ such that:

y =
M

∑
m=1

φm xm + ε , (1)

assuming xm∈H are the coding coefficients and ε ∈HN the residual error. It is this

right-multiplication model that will be considered for the following quaternionic

sparse approximation. This model is used in different real-world applications, such

as wind forecasting and colored images denoising [11], and in blind source extrac-

tion of EEG mixtures [5].

In this paper, we first consider sparse approximation and the OMP algorithm in

Section 2. We then present the quaternionic extension Q-OMP in Section 3. In Sec-

tion 4, we specify our work for the shift-invariant case, and we introduce a new

visualization tool for quaternionic sparse decompositions. Finally, in Section 5, the

Q-OMP is applied to deconvolute simulation data, and then compared to multivari-

ate OMP (M-OMP).

2 Sparse Approximation

The sparse approximation principle and the OMP algorithm are presented in this

section, with processing of only complex signals.

2.1 Principle and existing algorithms

Considering a signal y ∈ C
N of N samples and a dictionary Φ ∈ C

N×M of M atoms

{φm}
M
m=1, the decomposition of the signal y is carried out on the dictionary Φ such

that:

y = Φx+ ε , (2)

assuming x∈CM are the coding coefficients and ε ∈CN the residual error. The dic-

tionary is normed, which means that its columns (atoms) are normed, so that coef-

ficients x reflect the energy of each atom in the signal. Moreover, the dictionary is

said to be redundant when M>N.

One way to formalize the decomposition under the sparsity constraint is:

minx ‖ y−Φx‖2
2 s.t. ‖x‖0≤K , (3)

where K≪M is a constant and ‖x‖0 the ℓ0 pseudo-norm that is defined as the cardi-

nality of x. This formulation is composed of a data-fitting term and a term of sparsi-

fication, to obtain the sparsest vector x. Pursuit algorithms [12] tackle sequentially

(3) increasing K iteratively, although unfortunately this optimization is nonconvex:
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that means the obtained solution can get stuck in a local minimum. Nevertheless,

these algorithms are fast when searching very few coefficients. Among the multiple

ℓ0-Pursuit algorithms, we can cite the well-known matching pursuit (MP) [6], its

orthogonal version, OMP [9] and multivariate OMP (M-OMP) [1] for treating mul-

tivariate signals. Note that another way consists of relaxing the sparsification term

from an ℓ0 norm to an ℓ1 norm, which gives a convex optimization problem [12].

2.2 Review of Orthogonal Matching Pursuit

We present the step-by-step OMP that is introduced in [9] with complex signals.

Given a redundant dictionary Φ , OMP produces a sparse approximation of a signal

y (Algorithm 1).

After an initialization (step 1), OMP selects at the current iteration k the atom that

produces the absolute strongest decrease in the mean square error (MSE)
∥

∥εk−1
∥

∥

2

2
.

This is equivalent to selecting the atom that is the most correlated with the residue.

The inner products between the residue εk−1 and atoms φm are computed (step 4).

The selection (step 6) searches the maximum of their absolute values to determine

the optimal atom φmk , denoted dk. An active dictionary Dk ∈C
N×k is formed, which

collects all of the selected atoms (step 7). Coding coefficients xk are computed via

the orthogonal projection of y on Dk (step 8). This is often carried out recursively

by different methods using the current correlation value Ck
mk : QR factorization [3],

Cholesky factorization [2], or block matrix inversion [9]. The obtained coefficients

vector xk = [xm1 ; xm2 ... xmk ]
T

is reduced to its active (i.e. nonzero) coefficients, with

(.)T denoting the transpose operator.

Different stopping criteria (step 11) can be used: a threshold on k for the number

of iterations, a threshold on the relative MSE (rMSE)
∥

∥εk
∥

∥

2

2
/‖y‖2

2, or a threshold on

the decrease in the rMSE. At the end, the OMP provides a K-sparse approximation

of y:

ŷK =
K

∑
k=1

xmk φmk . (4)

Used thereafter, M-OMP [1] deals with the multivariate signals acquired simul-

taneously.

3 Quaternionic Orthogonal Matching Pursuit

In this section, we present the Q-OMP, the quaternionic extension of the OMP. As

mentioned above, different implementations of the OMP projection step exist. In

the following, we have chosen to extend the block matrix inversion method [9]. We

first outline the quaternionic space and notations, and we then detail the Q-OMP

algorithm.



4 Quentin Barthélemy, Anthony Larue and Jérôme I. Mars

Algorithm 1 : x = OMP (y,Φ)

1: initialization : k = 1, ε0=y, dictionary D0=∅

2: repeat

3: for m← 1,M do

4: Inner Products : Ck
m←

〈

εk−1,φm

〉

5: end for

6: Selection : mk← arg maxm

∣

∣Ck
m

∣

∣

7: Active Dictionary : Dk← Dk−1 ∪ φmk

8: Active Coefficients : xk←arg minx

∥

∥ y−Dkx
∥

∥

2

2

9: Residue : εk← y−Dkxk

10: k← k+1

11: until stopping criterion

3.1 Quaternions

The quaternionic space, denoted as H, is an extension of the complex space C using

three imaginary parts [4]. A quaternion q∈H is defined as: q= qa + qbi+ qc j +
qdk, with qa, qb, qc, qd ∈R and with the imaginary units defined as: i j= k, jk= i,

ki= j and i jk= i2 = j2 = k2 =−1. The quaternionic space is characterized by its

noncommutativity: q1q2 6=q2q1. The scalar part is S(q)=qa, and the vectorial part

is V (q)= qbi+ qc j + qdk. If its scalar part is null, a quaternion is said to be pure

and full otherwise. The conjugate q∗ is defined as: q∗ = S(q)−V (q) and we have

(q1q2)
∗=q∗2 q∗1 .

Now considering quaternionic vectors q1, q2 ∈H
N , we define the inner product

as: 〈q1,q2〉=qH
2 q1, with (.)H denoting the conjugate transpose operator. The asso-

ciated ℓ2 norm is denoted by ‖.‖2. Note that an alternative definition can be chosen:

〈q1,q2〉=qH
1 q2, which is only the conjugate of the previous one. 1

In the previous section, OMP was explained for complex variables with the tradi-

tional left-multiplication between scalars and vectors. Due to the noncommutativity

of quaternions, only the right-multiplication given in Eq. (1) will be considered in

the following. Moreover, the quadrivariate data studied are filled in the full quater-

nionic variables thereafter.

3.2 Algorithm description

Owing to noncommutativity, the variables order is now crucial. The description of

the Q-OMP algorithm is similar to Algorithm 1 (we have taken care to already

give the appropriate parameter order in the OMP algorithm), assuming quaternionic

signals and the use of right-multiplication. In this section, the changes are detailed,

and in particular, the orthogonal projection.

1 Note also that the inner product in R
N×4 : 〈q1,q2〉=S(qH

1 q2), which is often used for quaternionic

processings, is not considered here.
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The inner product
〈

εk−1,φm

〉

(step 4) remains the expression to maximize to

select the optimal atom (see Appendix). It is now the quaternionic inner product de-

fined in Section 3.1. Coefficients xk (step 8) are calculated by orthogonal projection:

the recursive procedure [9] is extended to quaternions and with right-multiplication,

as is described below (for normed kernels). Foremost, Ak is defined as the Gram

matrix of the active dictionary Dk−1:

Ak = (Dk−1)H Dk−1 =













〈d1,d1〉 〈d2,d1〉 . . . 〈dk−1,d1〉

〈d1,d2〉 〈d2,d2〉 . . . 〈dk−1,d2〉

...
...

. . .
...

〈d1,dk−1〉 〈d2,dk−1〉 . . . 〈dk−1,dk−1〉













. (5)

At iteration k, the recursive procedure for the orthogonal projection is computed in

seven stages:

1: vk = (Dk−1)H dk = [ 〈dk,d1〉 ; 〈dk,d2〉 ...〈dk,dk−1〉 ]
T ,

2: bk = A−1
k vk ,

3: β = 1/(‖dk‖
2− vH

k bk) = 1/(1− vH
k bk) ,

4: αk =Ck
mk ·β .

To provide the orthogonal projection, coefficients xmi of vector xk are corrected at

each iteration. Adding a superscript (to coefficients xmi ) denotes the iteration, and

the update is:

5: xk
mi = xk−1

mi −bkαk , for i = 1 .. k−1 ,

6: xk
mk = αk .

The Gram matrix update is given by:

Ak+1 =

[

Ak vk

vH
k 1

]

(6)

and using the block matrix inversion formula, we obtain its left-inverse:

7 : A−1
k+1 =

[

A−1
k +βbkbH

k −βbk

−βbH
k β

]

. (7)

For the first iteration, the procedure is reduced to: x1
m1 =C1

m1 and A1 = 1.

As Algorithm 1, and with the described modifications, the Q-OMP provides a

K-sparse approximation of y:

ŷK =
K

∑
k=1

φmk xmk . (8)
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4 The shift-invariant case and the spikegram

In this section, we focus on the shift-invariant case, and a new spikegram for quater-

nionic decompositions is introduced.

4.1 The shift-invariant case

In the shift-invariant case, we want to sparsely code the signal y as a sum of a

few short structures, named kernels, that are characterized independently of their

positions. This is usually applied to time series data, and this model avoids the block

effects in the analysis of largely periodic signals, and provides a compact kernel

dictionary [10].

The L shiftable kernels of the compact dictionary Ψ are replicated at all of the

positions, to provide the M atoms of the dictionary Φ . The N samples of the signal

y, the residue ε , and the atoms φm are indexed 2 by t. The kernels {ψl}
L
l=1 can

have different lengths. The kernel ψl(t) is shifted in τ samples to generate the atom

ψl(t− τ): zero-padding is carried out to have N samples. The subset σl collects the

active translations τ of the kernel ψl(t). For the few kernels that generate all of the

atoms, Eq. (2) becomes:

y(t) =
M

∑
m=1

φm(t) xm + ε(t) =
L

∑
l=1

∑
τ∈σl

ψl(t−τ) xl,τ + ε(t) . (9)

To sum up, in the shift-invariant case, the signal y is approximated as a weighted

sum of a few shiftable kernels ψl .

The Q-OMP algorithm is now specified for the shift-invariant case. The inner

product between the residue εk−1 and each atom φm (step 4) is now replaced by

the correlation with each kernel ψl . Quaternionic correlation is defined in [8], al-

though with the alternative inner product. In our case, the non-circular quaternionic

correlation between quaternionic signals q1(t) and q2(t) is:

Γ {q1,q2}(τ) = 〈q1(t),q2(t− τ)〉= qH
2 (t− τ)q1(t) . (10)

The selection (step 6) determines the optimal atom that is now characterized by

its kernel index lk and its position τk. The orthogonal projection (step 8) gives the

vector xk =
[

xl1,τ1 ; xl2,τ2 ... xlk,τk

]T

. Finally, Eq. (8) of the K-sparse approximation

becomes:

ŷK =
K

∑
k=1

ψlk(t−τk) xlk,τk . (11)

2 Note that a(t) and a(t − t0) do not represent samples, but the signal a and its translation of t0
samples.
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4.2 The spikegram for quaternionic decompositions

We now explain how to visualize the coefficients obtained from a shift-invariant

quaternionic decomposition. Usually, real coding coefficients xl,τ are displayed by

a time-kernel representation called a spikegram [10]. This condenses three indica-

tions:

• the temporal position τ (abscissa),

• the kernel index l (ordinate),

• the coefficient amplitude xl,τ (gray level of the spike).

This presentation allows an intuitive readability of the decomposition. With complex

coefficients, the coefficient modulus is used for the amplitude, and its argument

gives the angle, which is written next to the spike [1]. This coefficient presentation

provides clear visualization.

To display quaternionic coefficients and to maintain good visualization, each

quaternionic coefficient is written such that:

xl,τ =
∣

∣xl,τ

∣

∣ ·q l,τ and q l,τ = e
iθ 1

l,τ · ekθ 2
l,τ · e jθ 3

l,τ , (12)

with the coefficient modulus
∣

∣xl,τ

∣

∣ that represents the atom energy, and q l,τ as a unit

quaternion (i.e. its modulus is equal to 1). This unit quaternion has only 3 degrees

of freedom, which we arbitrary define as the Euler angles [4]. These parameters de-

scribe in a univocal way the considered quaternion on the unit sphere. Thereafter, we

use this practical angle formalism, although without any rotation in the processing.

Two color bars are set up for the quaternionic spikegram: one for coefficient am-

plitude, and the other for the parameters assimilated to the Euler angles. The angles

scale, defined from -180 to 180 in degrees, is visually circular; a negative value just

above -180 thus appears visually close to a positive value just below 180. Finally,

the quaternionic coefficients xl,τ are displayed in this way with six indications:

• the temporal position τ (abscissa),

• the kernel index l (ordinate),

• the coefficient amplitude
∣

∣xl,τ

∣

∣ (color bar),

• the 3 parameters θ 1
l,τ , θ 2

l,τ , θ 3
l,τ displayed vertically (circular color bar).

This representation is used for Fig. 1 and 2, and it provides an intuitive visualization

of the different parameters.

5 Experiments and Comparisons

In this section, the Q-OMP is illustrated with deconvolution and then compared

to the M-OMP. In this experiment, the data considered are trivariate, rather than

quadrivariate, only so as not to load down figures and to maintain clearer reading.
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Filled in pure quaternions, trivariate signals are processed using full quaternions

for coding coefficients. A dictionary Ψ of L=6 non-orthogonal kernels is artificially

built, and five coding coefficients xl,τ are generated (with overlaps between atoms).

First, the quaternionic signal y∈HN is formed using Eq. (11), which is plotted in

Fig. 1a. The first imaginary part yb is plotted as the solid green line, the second,

yc, as the dotted black line, and the third, yd , as the dashed blue line. Then, white

Gaussian noise is added, giving the noised signal yn that is now characterized by an

RSB of 0 dB. This is shown in Fig. 1b, maintaining the the line style convention.

Then, we deconvolute this signal yn through the dictionary Ψ using Q-OMP with

K=5 iterations. The denoised signal ŷn, that is obtained by computing the K-sparse

approximation of yn, is plotted in Fig. 1c. The coding coefficients xl,τ are the result

of the deconvolution, and they are shown in Fig. 1d, using the spikegram introduced

in Section 4.2.

Fig. 1 Original (a), noised (b) and approximated (c) quaternionic signals (first imaginary part yb

as the solid green line; the second, yc, as the dotted black line; and the third, yd , as the dashed blue

line), and the associated spikegram (d).
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We observe that Q-OMP recovers the generated coefficients well, and the approx-

imation ŷn is close to the original signal y; the rMSE is only 2.8 %. This experiment

is randomly repeated 100 times, and the averaged rMSE is 4.7%. This illustrates

the Q-OMP efficiency for denoising and deconvolution. In Fig. 1d, note that coeffi-

cients x6,50 and x6,100 are coded with different amplitudes, but with the similar unit

quaternion q.

Q-OMP is now compared to M-OMP, only using the trivariate case. The pure

quaternionic signal yn is now filled in a trivariate real signal y
n
∈RN×3 as well as the

kernel dictionary. The M-OMP is applied with K =5 iterations, and this gives the

denoised signal ŷ
n

that is plotted in Fig. 2a. The rMSE is 81.7%, and the average

over 100 experiments is 76.8%. The associated spikegram is shown in Fig. 2b, us-

ing the original visualization. We observe that the strong coefficients are relatively

well recovered, although the others are not (temporal shift τ , kernel index l, and

amplitude). However, although the strongest coefficients are recognized, this is not

sufficient to obtain a satisfactory approximation. Indeed, multivariate sparse approx-

imation is not adapted to this case, as it cannot take into account the cross-terms of

the quaternionic vectorial part.

Fig. 2 Approximated trivariate real signal ŷ
n

(a) and its associated spikegram (b).

A full quaternionic signal y∈HN giving a quadrivariate real signal y∈RN×4 is

now considered. If the coefficients are strictly real, the two methods are equivalent.

If not, the Q-OMP performs better, although for the complexity, the quadrivariate

correlation only has 4 terms, whereas the quaternionic one has 16.
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6 Conclusion

We have presented here a new tool for sparse approximation with quaternions: the

Q-OMP, a quaternionic extension of the OMP. This processes a right-multiplication

linear combination of quaternionic signals. We have also presented a new spikegram

visualization for the quaternionic coefficients. For the validation, the Q-OMP was

applied to deconvolute simulation data, and is compared to the M-OMP.

The potential uses of Q-OMP include quaternionic signal processing such as

deconvolution, denoising, variable selection, dimensionality reduction, dictionary

learning, and all of the other classical applications that are based on sparsity.

Prospects are to present the left-multiplication Q-OMP.

Acknowledgements The authors thank N. Le Bihan from GIPSA-DIS and Prof. S. Sangwine

from University of Essex for their precious advises about quaternions.

Appendix

The MSE objective function is J = ‖ε‖2
2 = εHε . The derivation of J with respect to

x is computed below.
To not lengthen the paper, calculus stages are not completely detailed.

∂J

∂x
=

∂J

∂xa

+
∂J

∂xb

i+
∂J

∂xc

j+
∂J

∂xd

k

=
∂εH

∂xa

ε + εH ∂ε

∂xa

+
∂εH

∂xb

εi+ εH ∂ε

∂xb

i+
∂εH

∂xc

ε j+ εH ∂ε

∂xc

j+
∂εH

∂xd

εk+ εH ∂ε

∂xd

k. (13)

Developing all the terms of ε = y−φx and εH = yH − x∗φ H , we obtain:

∂ε/∂xa =−(φa +φbi+φc j+φdk) =−φ ∂εH/∂xa =−(φ
T
a −φ T

b i−φ T
c j−φ T

d k) =−φ H

∂ε/∂xb =−(−φb +φai+φd j−φck) ∂εH/∂xb =−(−φ T
b −φ T

a i−φ T
d j+φ T

c k)

∂ε/∂xc =−(−φc−φd i+φa j+φbk) ∂εH/∂xc =−(−φ T
c +φ T

d i−φ T
a j−φ T

b k)

∂ε/∂xd =−(−φd +φci−φb j+φak) ∂εH/∂xd =−(−φ T
d −φ T

c i+φ T
b j−φ T

a k).

Replacing these eight terms in Eq. (13), we have:

∂J

∂x
= −φ H ε− εH φ

−(−φ T
b −φ T

a i−φ T
d j+φ T

c k)(−εb + εai+ εd j− εck) (14)

−εH(−φa−φbi−φc j−φdk)

−(−φ T
c +φ T

d i−φ T
a j−φ T

b k)(−εc− εd i+ εa j+ εbk) (15)

−εH(−φa−φbi−φc j−φdk)

−(−φ T
d −φ T

c i+φ T
b j−φ T

a k)(−εd + εci− εb j+ εak) (16)

−εH(−φa−φbi−φc j−φdk)

= −φ H ε +2εH φ +(14)+(15)+(16). (17)
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Developing the three terms (14), (15) and (16), adding and factorizing, we obtain:

(14)+(15)+(16) =−φ H ε−2εH φ . (18)

With Eq. (17), we finally have:

∂J

∂x
=−φ H ε +2εH φ −φ H ε−2εH φ

=−2φ H ε =−2〈ε,φ〉 . (19)

Thus, we can conclude that the atom which produces the strongest decrease of

the MSE ‖ε‖2
2 is the most correlated to the residue, as in the complex case.

Remark that this quaternion derivation has been done with the sum of compo-

nentwise gradients. It is called pseudogradient by Mandic et al. who propose a

quaternion gradient operator in [7]. Using these new derivative rules, we obtain

∂J/∂x∗ = −φ Hε + 1/2 εHφ . However, maximizing this expression does not give

the optimal atom. It does not allow to recover known atoms in a simulated signal.
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