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Watershed cuts: thinnings, shortest-path forests and
topological watersheds

Jean Cousty1,2, Gilles Bertrand1, Laurent Najman1 and Michel Couprie1

Abstract— We recently introduced the watershed cuts, a notion
of watershed in edge-weighted graphs. In this paper, our main
contribution is a thinning paradigm from which we derive thr ee
algorithmic watershed cut strategies: the first one is well suited
to parallel implementations, the second one leads to a flexible
linear-time sequential implementation whereas the third one
links the watershed cuts and the popular flooding algorithms.
We state that watershed cuts preserve a notion of contrast,
called connection value, on which are (implicitly) based several
morphological region merging methods. We also establish the
links and differences between watershed cuts, minimum spanning
forests, shortest-path forests and topological watersheds. Finally,
we present illsutrations of the proposed framework to the
segmentation of artwork surfaces and diffusion tensor images.

Index Terms— Watershed, thinning, minimum spanning forest,
shortest-path forest, connection value, image segmentation

INTRODUCTION

SINCE the early work of Zahn [1], several efficient tools for
image segmentation have been expressed in the framework of

edge-weighted graphs. In general, they extract acut from a pixel
adjacency graph (i.e., a graph whose vertex set is the set of image
pixels and whose edge set is given by an adjacency relations on
these pixels). Informally, a cut is a set of edges which, when
removed from the graph, separates it into different connected
components: it is an inter-pixel separation which partition the
image. Given a set of seed-vertices, which “mark” regions of
interest in the image, the goal of these operators is to find a cut
for which each induced connected component contains exactly
one seed and which best matches a criterion based on the image
contents. In order to define such a criterion, each edge of the
graph is weighted by a measure of similarity (or dissimilarity)
between the two pixels linked by this edge. In this context, the
principle ofmin-cut segmentation[2] (and its variant [3]) is to find
a cut for which the (weighted) sum of edge weights is minimal.
Shortest-path forestapproaches such as [4], [5] are also expressed
in edge-weighted graphs. They look for a cut such that each vertex
is connected to the closest seed for a particular distance inthe
graph. In [6], the author considers another approach where the
weight of an edge is interpreted as the probability that a random
walker chooses this edge, when standing at one of its extremity.
Then, the proposed segmentation operator finds a cut for which
each vertex is connected to the seed that this random walker
starting at this vertex will first reach.
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The watershed transform introduced by Beucher and Lantuéjoul
[7] for image segmentation is used as a fundamental step in
many powerful segmentation procedures. Many approaches [7]–
[15] have been proposed to define and/or compute the watershed
of a vertex-weighted graph corresponding to a grayscale image.
The digital image is seen as a topographic surface: the gray level
becomes the elevation, the basins and valleys of the topographic
surface correspond to dark areas, whereas the mountains andcrest
lines correspond to light areas. Intuitively, the watershed is a
subset of the domain, located on the ridges of the topographic
surface, that delineates its catchment basins.

An important motivation of our work is to provide a notion of
watershed in the unifying framework of edge-weighted graphs that
can help to precisely determine the relation between watersheds
and the popular methods presented in the first paragraph. This
paper is the second of a series of two articles dedicated to such a
notion of watersheds in graphs whose edges (rather than vertices)
are weighted. In this framework, a watershed is a cut. Before
going further, let us emphasize that any practical comparison
between watersheds in edge-weighted graphs and in vertex-
weighted graphs should be made with care. Indeed, in general,
the choice of one of these frameworks depends on the application.
In particular, the framework of vertex-weighted graphs is adapted
when the segmented regions must be separated by pixels. In this
case, note that the watershed separation is not necessarilyone
pixel width and can be arbitrary thick (see a study of this problem
in [15], [16]). On the contrary, when an inter-pixel separation is
desired, the framework of edge-weighted graphs is appropriate.

A watershed of a topographic surface may be thought of as a
separating line-set from which a drop of water can flow down
towards several minima. Following this intuitive drop of water
principle, we introduce in [16] the watershed cuts, a notionof
watershed in edge-weighted graphs. We establish [16] the consis-
tency of watershed cuts: they can be equivalently characterized
by their catchment basins (through a steepest descent property)
or by their dividing lines (through the drop of water principle).
In [17], Meyer shows a link between minimum spanning forests
and a flooding algorithm often used to compute watersheds. As
proved in [16], there is indeed an equivalence between watershed
cuts and cuts induced by minimum spanning forests relative to
the minima. Section I of this paper sums up the results of [16]
that are necessary in the sequel.

In Section II, we introduce a new thinning paradigm to char-
acterize and compute the watershed cuts. Intuitively, a thinning
is obtained from an edge-weighted graph by iteratively lowering
the values of the edges that satisfy a certain property. We propose
three different properties for selecting the edges which are to
be lowered. They lead to three different thinning strategies. The
effect of these transforms is to extend the minima of the original
map in a way such that the minima of the transformed map
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constitute a minimum spanning forest relative to the minima
of the original map. Thus, we can prove (Th. 17) that these
thinnings allow for a characterization of watershed cuts. The first
of these three schemes (Section II-B) uses a purely local strategy
to detect the edges which are to be lowered. It is therefore well
suited to parallel implementations. The second one (Section II-
C) leads to a sequential algorithm (AlgorithmM -kernel) which
runs in linear-time (with respect to the number of edges of the
graph) whatever the range of the weight function. We stress that
Algorithm M -kernel, and the one introduced in [16], are the
first watershed algorithms that satisfy such a property. Indeed,
as far as we know, the watershed algorithms available in the
literature (e.g., [4], [8], [9], [13], [14], [18]) all require either a
sorting step, a hierarchical queue or a data structure to maintain a
collection of disjoint sets under the operation of union andnone
of these operations can be performed in linear-time whatever the
range of the weight function. Moreover, in practice, the algorithm
proposed in this paper is more flexible than the one proposed in
[16]. Indeed, the proposed algorithm allows the user to choose
(with respect to the application requirements) between several
strategies for setting the watershed position in the case where
multiple acceptable solutions exist (e.g., when the watershed must
be positioned across a plateau of constant altitude). Finally, our
third thinning strategy (Section II-D) establishes the link between
watershed cuts and the popular flooding algorithms.

Due to noise and texture, the weight maps derived from real-
world images often have a huge number of regional minima.
Thus, their watersheds define too many catchment basins. A
common issue to reduce this so-called over-segmentation isto
use the result of the watershed as a starting point for a region
merging procedure (see, e.g., [19]). In order to identify the
pairs of neighboring regions to be merged, many methods are
based on the values of the points or edges that belong to the
initial separation between regions. In particular, in mathematical
morphology, several methods [20]–[22] are implicitly based on
the assumption that the initial separation satisfies a fundamental
constraint: the values of the points or edges in the separation must
convey a notion of contrast, calledconnection value, between
the minima of the original image. The connection value [23]–
[25] between two minimaA and B is the minimal valueΥ

such that there exists a path fromA to B the maximal value
of which isΥ. From a topographical point of view, this value can
be intuitively interpreted as the minimal altitude that a global
flooding of the relief must reach in order to merge the lakes
that flood A and B. Surprisingly, in vertex-weighted graphs,
several watershed algorithms do not produce a separation that
verifies this property. In this case, the watershed is not on the
most “significant contours” [25] and cannot be used to correctly
compute morphological hierarchies such as those proposed in
[20]–[22]. In Section III, we prove (Th. 20) that the values of
the edges in any watershed cut (and more generally in any cut
induced by a minimum spanning forest) are sufficient to recover
the connection values between the minima of the original map.

In fact, the connection value itself is used for defining several
important segmentation methods such as the fuzzy connectedness
segmentation [5], [26], [27], the image foresting transform [4] or
the topological watershed [23]. Indeed, the two first methods fall
in the category of shortest-path forests if a shortest path between
two points x and y is defined as a path which “realizes” the
connection value betweenx andy. In the sequel, such a shortest-

path forest is called anΥ-shortest-path forest. In Section IV, we
prove (Th. 21) that any minimum spanning forest is aΥ-shortest-
path forest and that the converse is, in general, not true. Then,
we show (Th. 25) that any watershed cut is a topological cut
(i.e., a separation induced by a topological watershed defined in
an edge-weighted graph) but that the converse is, in general, not
true. We emphasize that this study helps, in practice, to choose
among these segmentation techniques the one which will best
solve a particular problem.

The interest of the proposed framework to segment grayscale
images is demonstrated in [16]. In Section V, we illustrate its
versatility to segment different kinds of geometric objects. We
present two recent applications where watershed cuts are used to
segment the surface of artwork 3D objects and to segment the
corpus callosum in brain diffusion tensors images.

This article is self-contained and proofs of the propertiesare
given in the IEEE digital library.

I. WATERSHED CUTS AND MINIMUM SPANNING FORESTS

The intuitive idea underlying the notion of a watershed comes
from the field of topography: a drop of water falling on a
topographic surface follows a descending path and eventually
reaches a minimum. The watershed may be thought of as the
separating lines of the domain of attraction of drops of water. In
[16], we follow explicitly this drop of water principle to define the
notion of a watershed in an edge-weighted graph. This approach
leads to a consistent definition of watersheds (with respectto
characterizations of both catchment basins and dividing lines) as
assessed by Th. 6 in [16]. In this section, after a presentation of
basic notations, we recall the definition of a watershed cut and a
property which establishes its optimality.

A. Edge-weighted graphs

Following the notations of [28], we present basic definitions to
handle edge-weighted graphs.

We define agraph as a pairX = (V (X), E(X)) whereV (X)

is a finite set andE(X) is composed of unordered pairs ofV (X),
i.e., E(X) is a subset of{{x, y} ⊆ V (X) | x 6= y}. Each element
of V (X) is called avertex or a point (ofX), and each element
of E(X) is called anedge (ofX). If V (X) 6= ∅, we say thatX
is non-empty.
Let X be a graph. Ifu = {x, y} is an edge ofX, we say thatx
and y are adjacent (forX). Let π = 〈x0, . . . , xℓ〉 be an ordered
sequence of vertices ofX, π is a path fromx0 to xℓ in X (or
in V (X)) if for any i ∈ [1, ℓ], xi is adjacent toxi−1. In this case,
we say that x0 and xℓ are linked forX. If ℓ = 0, then π is a
trivial path in X. We say thatX is connectedif any two vertices
of X are linked forX.

Let X and Y be two graphs. IfV (Y ) ⊆ V (X) and E(Y ) ⊆

E(X), we say that Y is a subgraph ofX and we writeY ⊆

X. We say thatY is a connected component ofX, or simply a
component ofX, if Y is a connected subgraph ofX which is
maximal for this property,i.e., for any connected graphZ, Y ⊆

Z ⊆ X implies Z = Y .
Important remark. Throughout this paperG denotes a con-

nected graph. In order to simplify the notations, this graphwill
be denoted byG = (V, E) instead ofG = (V (G), E(G)). We will
also assume thatE 6= ∅.

Let X ⊆ G. An edge{x, y} of G is adjacent toX if {x, y} ∩

V (X) 6= ∅ and if {x, y} does not belong toE(X); in this case
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and if y does not belong toV (X), we say thaty is adjacent toX.
If π is a path fromx to y and y is a vertex ofX, then π is a
path fromx to X (in G).

If S is a subset ofE, we denote byS the complementary set
of S in E, i.e., S = E \ S.
Let S ⊆ E, the graph induced byS is the graph whose edge set
is S and whose vertex set is made of all points which belong to
an edge inS, i.e., ({x ∈ V | ∃u ∈ S, x ∈ u}, S). In the following,
when no confusion may occur, the graph induced byS is also
denoted byS.

We denote byF the set of all maps fromE to R and we say
that any map inF weightsthe edges ofG.

Let F ∈ F . If u is an edge ofG, F (u) is thealtitude or weight
of u. Let X ⊆ G andk ∈ R. A subgraphX of G is a minimum
of F (at altitudek) if:

• X is connected; and
• k is the altitude of any edge ofX; and
• the altitude of any edge adjacent toX is strictly greater

thank.

We denote byM(F ) the graph whose vertex set and edge set
are, respectively, the union of the vertex sets and edge setsof all
minima of F . Figs. 1b and c illustrate the definition of minima.

Important remark. In the sequel of this paper,F denotes an
element ofF and therefore the pair(G, F ) is called anedge-
weighted graph.

Before presenting the watershed cuts in the next section, let
us briefly introduce basic ways to define an edge-weighted graph
for segmenting a digital image. In Section V, we also show how
to define edge-weighted graphs to segment triangulated surfaces
and diffusion tensor images. In applications to grayscale image
segmentation,V is the set of picture elements (pixels) andE

is any of the usual adjacency relations,e.g., the 4-adjacency in
2D [29]. Then, a grayscale imageI attributes a value to each
element ofV . For watershed segmentation, we suppose that the
salient contours ofI are located on the highest edges ofG. Thus,
depending on the application, there are several possibilities to set
up the mapF from the imageI.

A common issue is to segment a grayscale image into
its “homogeneous” zones. To this end, one can weight each
edge {x, y} ∈ E with a simple dissimilarity function defined
by F ({x, y}) = |I(x) − I(y)| (see e.g., Figs. 1a and b). This
measure of dissimilarity is strictly local in the sense thatthe
weight of an edge depends on the intensity of the two pixels
linked by this edge. In some practical situations (e.g., in presence
of noise), it is convenient to use a more robust measure based
on a larger neighborhood. For instance, one can weight each
edge {x, y} in E by F ({x, y}) = max{I(z) | z ∈ Nu} −

min{I(z) | z ∈ Nu}, whereNu is the neighborhood ofu = {x, y}

made of all vertices adjacent to eitherx or y (i.e., Nu = {z ∈
V | {x, z} ∈ E or {y, z} ∈ E}). This second strategy is illustrated
in Fig. 1c. Finally, if we want to segment the dark regions of a
grayscale image that are separated by brighter zones, another way
to weight each edgeu ∈ E, linking two pixelsx andy, consists
of taking the minimum (or maximum) value of the intensities at
pointsx andy: F ({x, y}) = min{I(x), I(y)}.

B. Watershed cuts

We first recall the notions of extension [16], [23] and graph
cut which play an important role for defining a watershed in an
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Fig. 1. Illustration of two dissimilarity measures [see text] to weight the
edges of a 4-connected graph from a digital image. In(b) and (c) the bold
subgraphs represent the minima and the dashed edges the watershed cuts.

edge-weighted graph. Intuitively, the regions of a watershed (also
called catchment basins) are associated with the regional minima
of the map. Each catchment basin contains a unique regional
minimum, and conversely, each regional minimum is includedin
a unique catchment basin: the regions of the watershed “extend”
the minima.

Definition 1 (extension, cut):Let X andY be two non-empty
subgraphs ofG.
We say thatY is anextension ofX (in G) if X ⊆ Y and if any
component ofY contains exactly one component ofX.
Let S ⊆ E. We say thatS is a (graph) cut for X if S is an
extension ofX and if S is minimal for this property,i.e., if T ⊆ S

andT is an extension ofX, then we haveT = S.

On a topographic surface, a drop of water flows down towards
a regional minimum. Therefore, before reminding the definition
of watershed cuts, we need the notion of a descending path.

Let π = 〈x0, . . . , xℓ〉 be a path inG. The pathπ is descending
(for F ) if, for any i ∈ [1, ℓ− 1], F ({xi−1, xi}) ≥ F ({xi, xi+1}).

Definition 2 (drop of water principle):Let S ⊆ E. We say
that S satisfies the drop of water principle (forF ) if S is an
extension ofM(F ) and if for any u = {x0, y0} ∈ S, there
exist π1 = 〈x0, . . . , xn〉 and π2 = 〈y0, . . . , ym〉 which are two
descending paths inS such that:
- xn andym are vertices of two distinct minima ofF ; and
- F (u) ≥ F ({x0, x1}) (resp. F (u) ≥ F ({y0, y1})), wheneverπ1

(resp.π2) is not trivial.
If S satisfies the drop of water principle, we say thatS is a
watershed cut, or simply a watershed, ofF .

We illustrate the previous definition on the functionF depicted
in Fig. 2. The functionF contains three minima (in bold Fig. 2a).
We denote byS the set of dashed edges depicted in Fig. 2b. It
may be seen thatS (in bold Fig. 2b) is an extension ofM(F ). Let
us consider the edgeu = {j, k} ∈ S. There existsπ1 = 〈j, f, e, a〉
(resp.π2 = 〈k〉) a descending path inS from j (resp.k) to the
minimum whose vertex set containsa (resp.k); on the one hand,
the altitude of{j, f}, the first edge ofπ1 is equal to 4 which
is a value lower than 5 the altitude ofu; on the other hand〈k〉
is a trivial path. Similarly tou, it can be verified that the two
properties which must be satisfied by the edges in a watershed
hold true for any edge inS. Thus,S is a watershed ofF . Notice
also that a watershed ofF is necessarily a cut forM(F ).
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Fig. 2. A graphG and a mapF . Edges and vertices in bold depict:(a),
M(F ), the minima ofF ; (b), an extensionS of M(F ); (c), a MSF relative
to M(F ). In (b) (resp.(c)) the setS of dashed edges is a watershed cut
of F (resp. a MSF cut forM(F )).

C. Minimum spanning forests: watershed optimality

In [16], we establish the optimality of watersheds. To this end,
the notion of minimum spanning forests relative to subgraphs
of G is introduced. Each of these forests induces a cut. In
this subsection, we recall the definition of these forests and the
equivalence between the watershed cuts and the cuts inducedby
minimum spanning forests relative to the minima (see [16] for
more details). This result will be used to prove the main claim
of this article.

Generally, in graph theory, a forest is defined as a graph that
does not contain any cycle. In this paper, the notion of forest is
not sufficient since we want to deal with extensions of subgraphs
that can contain cycles (e.g., the minima of a map). Therefore, we
present hereafter the notion of a relative forest. It generalizes the
usual notion of a forest in the sense that any forest is a relative
forest, but, in general, a relative forest is not a forest. Intuitively,
a forest relative to a subgraphX of G is an extensionY of X

such that any cycle inY is also a cycle inX. In other words, to
construct a forest relative to an arbitrary subgraphX of G, one can
add edges toX, provided that the added edges do not introduce
new cycles and that the obtained graph remains an extension of X.
Formally, the notion of cycle is not necessary to define a forest.

Definition 3 (forest):Let X and Y be two non-empty sub-
graphs ofG. We say thatY is a forest relative toX if:

i) Y is an extension ofX; and
ii) for any extensionZ ⊆ Y of X, we haveZ = Y when-

everV (Z) = V (Y ).

We say thatY is a spanning forest relative toX (for G) if Y is
a forest relative toX and if V (Y ) = V .

Let X be a subgraph ofG, the weight of X (for F ),
denoted byF (X), is the sum of the weights of the edges

in E(X): F (X) =
P

u∈E(X) F (u).
Definition 4 (minimum spanning forest):Let X andY be two

subgraphs ofG. We say that Y is a minimum spanning forest
(MSF) relative toX (for F , in G) if Y is a spanning forest relative
to X and if the weight ofY is less than or equal to the weight
of any other spanning forest relative toX. In this case, we also
say thatY is a relative MSF.

For instance, the graphY (bold edges and vertices) in Fig. 2c
is a MSF relative toX (Fig. 2a).

Let X be a subgraph ofG and let Y be a spanning forest
relative toX. There exists a cutS for Y which is composed by
the edges ofG whose extremities are in two distinct components
of Y . SinceY is an extension ofX, it can be seen that this cutS

is also a cut forX. We say that this cut is thecut induced byY .
Furthermore, ifY is a MSF relative toX, we say that thatS is
an MSF cut forX.

We recall the theorem proved in [16] which establishes the
optimality of watershed cuts. It states the equivalence between the
cuts which satisfy the drop of water principle and those induced
by the MSFs relative to the minima of a map.

Theorem 5 (optimality, Th. 9 in [16]):Let S ⊆ E. The setS
is an MSF cut forM(F ) if and only if S is a watershed cut ofF .

As an illustration, it can be verified on Fig. 2b,c that the set
of dashed edges is both a watershed cut of the map and an MSF
cut for its minima.

II. OPTIMAL THINNINGS

In this section, we introduce a new paradigm to compute MSFs
relative to the minima, hence to compute watershed cuts. To this
end, we first present a generic thinning paradigm from which we
derive three algorithmic schemes. The first of this three schemes
is well suited to parallel implementations. The second one leads
to a linear-time (with respect to the number of edges of the graph)
sequential watershed algorithm. Finally, the third one allows us to
highlight the links between the watershed cuts and the immersion
paradigm which is frequently used for computing watershedsin
vertex-weighted graphs.

A. Thinnings

Intuitively, a thinning of F is a map obtained fromF by
iteratively lowering down the values of the edges ofG which
satisfy a given property.

Important remark. From now on, we will denote byF⊖

the map fromV to R such that for anyx ∈ V , F⊖(x) is the
minimal altitude of an edge which containsx, i.e., F⊖(x) =

min{F (u) | u ∈ E, x ∈ u}; F⊖(x) is thealtitude of x.
The mapF⊖ associated to the mapF depicted in Fig. 2a is

shown in Fig. 3a.
A lowering is a transformation that replaces the weight of an

edgeu by the weight of the lowest edge adjacent tou while
leaving unchanged the weight of any other edge. The weight ofu

in the transformed map is equal to the minimal altitude of the
vertices that belong tou.

Let u ∈ E. The lowering of F at u is the mapF ′ in F such
that:

• F ′(u) = minx∈u{F
⊖(x)}; and

• F ′(v) = F (v) for any edgev ∈ E \ {u}.
For instance in Fig. 3, the map depicted in(b) (resp.(c) and(d))
is the lowering of the one shown in(a) at the edge{j, n} (resp.
{c, d} and{a, e}).
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Fig. 3. A graphG and some associated maps. The edges and vertices in
bold are the minima of the depicted maps.(a), The values of a mapF ∈ F
are associated to the edges ofG; the values of the mapF⊖ are associated to
the vertices ofG. (b, c, d), ThreeB-thinnings ofF ; (c, d), two M -thinnings
of F ; and (d), an I -thinning of F . (e, f), Two B-kernels ofF ; the two
B-cuts associated to theB-kernels are depicted by the dashed edges.

Intuitively, an edge-propertyis a criterion which attributes, to
each edge of an edge-weighted graph, either the labelTRUE

or the labelFALSE. We will study later on several examples of
such edge-properties which will serve us to define several thinning
strategies.

Definition 6 (edge-property):An edge-property(for G) is a
mapP from E × F in the set{TRUE,FALSE}.
Let P be an edge-property,H be a map inF andu be an edge
in E. If P(u, H) = TRUE, we say thatu satisfiesP for H.

Given an edge-propertyP, we introduce a transformation,
called P-thinning, that acts on maps by iteratively lowering an
initial map at the edges which satisfy the edge-propertyP.

Definition 7 (thinning): Let P be an edge-property andH be
a map inF . The mapH is a P-thinning of F if:

• H = F ; or if
• there exists a mapJ in F which is aP-thinning of F such

that H is the lowering ofJ at an edge which satisfiesP
for J .

If H is aP-thinning ofF and if, for any edgeu in E, P(u, H) =

FALSE, then we say thatH is a P-kernelof F .
In other words, a mapH is aP-thinning ofF if there exists a

(possibly trivial) sequence of maps〈F0, . . . , Fℓ〉 such thatF0 =

F , Fℓ = H and, for anyi ∈ [1, ℓ], Fi is the lowering ofFi−1 at
an edge which satisfiesP for Fi−1. Furthermore, we say thatH

is a P-kernel ofF if H is a P-thinning of F such that there is
no edge ofG which satisfiesP for H.

In the next subsections, we introduce three edge-properties that
lead to three thinning transformations from which three different
algorithmic strategies for watershed cuts are derived.

B. B-thinnings: a local strategy for watershed cuts

We introduce a classification of edges based exclusively on
local properties,i.e., properties which depend only on the adjacent
edges. In particular, we present the notion of a border edge.Then,
we study the thinning transformation which uses the property of
“being a border edge” to detect the edges at which a map should
be lowered. Roughly speaking, the effect of this transform is to
extend the minima of the original map so that the minima of the
transformed map constitute an MSF relative to the minima of the
original map. Hence, consequently to Th. 5, this transform can be
used to extract watershed cuts. Since the notion of a border edge
is local, the associated thinning strategy is well suited toparallel
implementations.

Definition 8 (local edge classification):Let u = {x, y} ∈ E.

• We say thatu is locally separating (forF ) if F (u) >

max(F⊖(x), F⊖(y)).
• We say that u is border (for F ) if F (u) =

max(F⊖(x), F⊖(y)) andF (u) > min(F⊖(x), F⊖(y))1.
• We say thatu is inner (for F ) if F⊖(x) = F⊖(y) = F (u).

k

k’<k k’’<k

k

k’<k k

k

k k
locally separating border inner

Fig. 4. Illustration of the different local configurations for edges.

Fig. 4 illustrates the above definitions. In Fig. 3,{j, n}, {c, d}
and {a, e} are examples of border edges for the map shown
in (a); {i, m} and{k, l} are inner edges for(a) and both{h, l}

and{g, k} are locally-separating for(a). Note that any edge ofG
corresponds exactly to one of the types presented in Def. 8.
Therefore, Def. 8 constitutes a classification of the edges of G.
Furthermore, this classification is local since, the class of any
edge u = {x, y} depends only of the valuesF (u), F⊖(x)

andF⊖(y).
Definition 9 (B-cut): We denote byB the edge-property such

that, for any edgeu ∈ E and for any mapH ∈ F , B(u, H) =

TRUE if and only if u is a border edge forH.
Let H be aB-kernel ofF . The set of all edges inE which are
adjacent to two distinct minima ofH is called aB-cut for F .

In Fig. 3, the maps depicted in(b, c, d) are the lowering of
the map(a) at respectively{j, n}, {c, d} and{a, e}. These three
edges are border edges for(a). Thus the maps(b), (c) and(d) are
threeB-thinnings ofF . The map shown in(e) is a B-kernel of
the maps(a), (b) and(d) but not aB-kernel of(c). The map(f)

1Notice that a notion similar to the one of border edge has beenproposed
in the context of image segmentation under the name ofmin-contractible edge
[30].
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is anotherB-kernel of(a). TheB-cuts associated to(e) and(f)

are represented by dashed edges in the figure.
We now present an important result of this section which

mainly states that theB-kernels can by used to compute MSFs
relative to the minima of a map.

Property 10: Let H ∈ F . If H is a B-thinning of F , then
any MSF relative toM(H) (for H) is an MSF relative toM(F )

(for F ). Furthermore, ifH is a B-kernel of F , then M(H) is
itself an MSF relative toM(F ) (for F ).

In other words, theB-thinning transformation preserves some
of the MSFs relative to the minima of the original map. More
remarkably, the minima of aB-kernel of F constitute precisely
an MSF (for F ) relative to the minima ofF . Hence, theB-
kernels can be used to extract MSFs relative to the minima. We
remind that an MSF relative to the minima of a map defines
a cut composed of all edges which are adjacent to two distinct
components of the MSF. Thus, aB-kernel of a map defines a
B-cut for this map. Hence, by Prop. 10 and Th. 5, we can easily
prove the following corollary which states that aB-kernel ofF
defines a watershed ofF .

Corollary 11: Any B-cut of F is a watershed cut ofF .
Thanks to classical algorithms for minima computation [31],

an MSF relative toM(F ) can be obtained from anyB-kernel
of F . In fact, using the local classification of Def. 8, the minima
of a B-kernel can be extracted in a simpler way. The following
property directly follows from the definitions of aB-kernel and
of a minimum.

Property 12: Let H be aB-kernel ofF . An edgeu ∈ E is in
a minimum ofH if and only if u is inner forH.

Let H denote aB-kernel ofF . On the one hand, the mapH
and its minima can be derived fromF exclusively by local
operations (see Defs. 8, 9 and Prop. 12). On the other hand,
an MSF relative toM(F ) is a globally optimal structure. The
minima of H constitute, by Prop. 10, an MSF relative toM(F ).
Thus, the local and order-independent operations presented in this
section produce a globally optimal structure.

This kind of local, order-independent operations for obtain-
ing optimal structures can be efficiently exploited by dedicated
hardware. For instance, raster scanning strategies for extracting a
B-kernel and its minima (hence an MSF relative to the minima)
can be straightforwardly derived. It has been shown that such
strategies can be fast on adapted hardware [32].

As mentioned above, the propertyB, which selects border
edges, can be tested locally: to check whetherB(u, H) (with u ∈

E and H ∈ F) equalsTRUE, one only needs to consider the
values of the edges adjacent tou. Thus, if a set ofindependent
(i.e., mutually non-adjacent) border edges is lowered in parallel,
then the resulting map is aB-thinning. This property offers
several possibilities of parallel watershed algorithms. In particular,
efficient algorithms for array processors can be derived.

C. M -thinnings: an efficient sequential strategy for watershed
cuts

On a sequential computer, a naive algorithm to obtain aB-
kernel of F could be the following:i) for all u = {x, y} in E,
taken in an arbitrary order, check the values ofF (u), F⊖(x)

andF⊖(y) and wheneverB(u, F ) = TRUE (i.e., u is a border
edge forF ), lower the value ofu down to the minimum ofF⊖(x)

and F⊖(y); ii) repeat stepi) until no border edge remains.
Consider the graphG whose vertex set isV = {0, . . . , n} and

whose edge setE is made of all the pairsui = {i, i + 1} such
that i ∈ [0, n − 1]. Let F (ui) = n − i, for all i ∈ [0, n − 1].
On this graph, if the edges are processed in the order of their
indices, stepi) will be repeated exactly|E| times. The cost of
step i) (check all edges ofG) is O(|E|). Thus, the worst case
time complexity of this naive algorithm is at leastO(|E|2).

In order to reduce this complexity, we introduce a second
thinning transformation, calledM -thinning, in which any edge
is lowered at most once. This process is a particular case of
B-thinning which also produces, when iterated until stability, a
B-kernel of the original map. Thanks to this second thinning
strategy, we derive in Section II-F a linear-time algorithmto
computeB-kernels and, thus, watersheds.

It may be seen that an edge which is in a minimum at a given
step of aB-thinning sequence never becomes a border edge.
Thus, lowering first the edges adjacent to the minima seems to
be a promising strategy. In order to study and understand this
strategy, we may classify any inner, border or locally-separating
edge with respect to the adjacent minima. We thus obtain the 8
cases illustrated in Fig. 5. Any edge is classified in exactlyone
of these classes depending on the values of its adjacent edges and
on the regional minima. In this section we study a thinning which
iteratively lowers down the values of the border edges adjacent
to minima (see Fig. 5F).

locally-separating border inner
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Fig. 5. Edge-classification in a weighted graph. In the figure, any black vertex
belongs to a minimum and two vertices represented by different shapes (i.e.,
square and circle) belong to distinct minima.

Definition 13 (M -cut): We say that an edgeu in E is
minimum-border (forF ), written M-border, if u is border forF
and if exactly one of the vertices inu is a vertex ofM(F ).
We denote byM the edge-property such that, for any edgeu ∈ E

and for any mapH ∈ F , M (u, H) = TRUE if and only if u is
an M-border edge forH.
Let H be anM -kernel ofF . The set of all edges inE which are
adjacent to two distinct minima ofH is called anM -cut of F .

In Fig. 3, the edges{c, d} and {a, e} are M-border edges for
the map(a) whereas{j, n} is not. Thus, the maps(c) and (d)

are M -thinnings of (a) whereas(b) is not. Observe that when
a map is lowered at an M-border edge, one vertex and one
edge are added to a minimum. In Fig. 3, it can be also verified
that the maps(e) and (f) are M -kernels of (a) and that the
associatedM -cuts are watershed cuts of(a). In Section II-E,
we indeed prove the equivalence betweenM -cuts, B-cuts and
watershed cuts. In Section II-F an efficient linear-time (O(|E|))
algorithm to compute theM -cuts is derived. Thus, thanks to
the M -thinnings, we obtain a linear-time sequential algorithm
to compute the watershed cuts of a map.

D. I -thinnings: an immersion strategy for watershed cuts

Among the different schemes to compute a watershed in a
vertex-weighted graph, the immersion strategies [8], [9] are the
most frequently used in applications. They correspond to the
intuitive idea of simulating the flooding of a topographic surface
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from its minima. The watershed lines are made of dams build at
the points where water coming from different minima would meet.
Surprisingly, in general, the links between immersion algorithms
and watersheds are not straightforward. Indeed, as shown in[25],
in vertex-weighted graphs, these algorithms sometimes produce
segmentations which are far from corresponding to the topograph-
ical intuition of a watershed. Among the immersion strategies, the
procedure proposed by F. Meyer in [9] is probably the simplest to
describe and understand. In an edge-weighted graph, it could be
presented as follows: i) mark the minima with distinct labels; ii)
mark the lowest edge containing exactly one labelled vertexwith
this label; and iii) repeat step ii) until idempotence. At the end
of the procedure, the set of edges that link two vertices marked
with distinct labels constitute the “watershed by flooding”.An
important contribution of this subsection and the following one is
to prove that, in edge-weighted graphs, this procedure produces
a watershed cut. In order to prove this result, we introduce the
I -thinnings that can be associated with the above procedure.

Let X be a subgraph ofG, we say that an edgeu is outgoing
from X if one of the vertices inu belongs to the vertex set ofX
and if the other vertex inu does not.

Definition 14 (I -cut): If u is an edge with minimal altitude
among all the edges outgoing fromM(F ), then we say thatu is
an immersion edge forF .
We denote byI the edge-property such that, for any edgeu ∈ E

and for any mapH ∈ F , I (u, H) = TRUE if and only if u is
an immersion edge forH.
Let H be anI -kernel forF . The set of all edges inE which are
adjacent to two distinct minima ofH is called anI -cut for F .
In order to stress the link between immersion andI -thinnings,
let us consider the following straightforward adaptation of the
procedure presented in the introduction of the subsection.

(i) Mark the minima with distinct labels.
(ii) Mark the lowest edgeu containing exactly one labelled

vertex with this label and lower the mapF atu (i.e.,, F := F ′

whereF ′ is the lowering ofF at u).
(iii) Repeat step (ii) until idempotence.

After each iteration of step (ii), the mapF is an I -thinning of
the input map. The set of labelled edges correspond to the minima
of F and each minimum ofF is marked with the label of the
corresponding minimum in the input map. Thus, at the end of this
algorithm the output mapF is anI -kernel of the input map and
the set of all edges that link two vertices marked with distinct
labels is anI -cut of the input map.

Property 15: Any immersion edge forF is an M-border edge
for F .

In Fig. 3, {a, e} is an immersion edge for(a) whereas{c, d}
is not. Thus, the map(d) is an I -thinning of (a) whereas the
map (c) is not. On the one hand, as stated by Prop. 15, any
immersion edge is an M-border edge. On the other hand, as shown
by the previous example, there exist M-border edges which are
not immersion edges. Thus, theM -thinning transform generalizes
the immersion algorithms in edge-weighted graphs. In the next
subsection, we prove that anyI -cut is a watershed. For instance,
in Fig. 3, the maps(e) and (f) are two I -kernels of(a) and
it can be verified that the associatedI -cuts are watershed cuts
of (a).

Prop. 15 also establishes a link with the minimum spanning tree
algorithm due to Prim [33]. To understand this link, we have to
consider the construction (described in Sec. III.B of [16])which

was proposed to show the equivalence between computing an
MSF relative to the minima and computing a minimum spanning
tree. Roughly speaking, from an edge-weighted graph(G, F ), we
start by contracting each minimum ofF into a single vertex. Then
we add an extra-vertex linked to each contracted minimum by an
edge of minimal weight. We thus obtain a new edge-weighted
graph(G′, F ′). As stated by Meyer in [17], it may be seen that
the edges considered by Prim’s algorithm applied on(G′, F ′)

are the same as those considered in a sequence ofI -thinnings.
Therefore, Prop. 15 gives us a clue to precisely determine the
relation between MSFs relative to the minima and the thinning
transforms introduced above. Precisely determining this relation
is the topic of the next subsection.

E. Equivalence betweenI -cuts,M -cuts,B-cuts and watersheds

We clarify the links that exist between the thinnings introduced
above, the MSF relative to the minima and the watersheds.
In particular, we show (Th. 17) that theB-kernels, theM -
kernels and theI -kernels lead to equivalent characterizations of
watershed cuts.

The following property states that the minima ofB-kernels,
the minima ofM -kernels and the minima ofI -kernels ofF are
all MSFs relative toM(F ). More remarkably, any MSF relative
to M(F ) can be obtained as the minima of anM -kernel of F ,
as the minima of anI -kernel of F and also as the minima of
a B-kernel ofF . Therefore, in this sense of minimum spanning
forests, these thinning transformations may be seen asoptimal
thinnings.

Lemma 16:Let X ⊆ G. The four following statements are
equivalent:

(i) there exists anI -kernelH of F such thatM(H) = X;
(ii) there exists anM -kernelH of F such thatM(H) = X;

(iii) there exists aB-kernelH of F such thatM(H) = X;
(iv) X is an MSF relative toM(F ).

Since a relative MSF induces a graph cut forM(F ), from the
previous lemma, we immediately deduce that theI -cuts,M -cuts
and B-cuts are also graph cuts forM(F ). Hence, the following
theorem which states the equivalence between watershed cuts,B-
cuts,M -cuts andI -cuts can be straightforwardly deduced from
Lem. 16.

Theorem 17:Let S ⊆ E. The four following statements are
equivalent:

(i) S is anI -cut for F ;
(ii) S is anM -cut for F ;

(iii) S is a B-cut for F ;
(iv) S is a watershed cut forF .
A major consequence of this theorem is that any algorithm which
computes anI -cut, an M -cut or a B-cut also computes a
watershed. Conversely any watershed of a map can be obtained
as anI -cut, as anM -cut and as aB-cut. In the next section,
we propose an algorithm forM -cuts.

F. Linear-time watershed algorithm based onM -kernels

An efficient linear-time algorithm (AlgorithmM -kernel) to
extract the watershed cuts is proposed. It consists of computing an
M -kernel of a map and its minima. Therefore, by Th. 17, the wa-
tersheds can be computed by taking the edges which link distinct
minima of theM -kernels. The correctness and time-complexity
of this algorithm are analyzed. Finally, implementation details
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to select “interesting” cuts when several watersheds existare
discussed.

Before presenting AlgorithmM -kernel, we recall thatu ∈ E is
a border edge forF if the altitude of one of its extremities equals
the altitude ofu and the altitude of the other one is strictly less
than the altitude ofu.

Algorithm: M -kernel

Data: (V, E,F ): an edge-weighted graph;
Result: F : an M-border kernel of the input map,

and (VM , EM ) its minima.
L← ∅ ;1

ComputeM(F ) = (VM , EM ) andF⊖(x) for eachx ∈ V ;2

foreach u ∈ E outgoing from(VM , EM ) do L← L ∪ {u} ;3

while there existsu ∈ L do4

L← L \ {u} ;5

if u is border forF then6

x← the vertex inu such thatF⊖(x) < F (u) ;7

y ← the vertex inu such thatF⊖(y) = F (u) ;8

F (u)← F⊖(x) ; F⊖(y)← F (u) ;9

VM ← VM ∪ {y} ; EM ← EM ∪ {u} ;10

foreach v = {y′, y} ∈ E with y′ /∈ VM do11

L← L ∪ {v}; //v is outgoing fromM(F )12

In Algorithm M -kernel, to achieve a linear complexity, the
graph(V, E) can be stored as an array of lists which maps to each
point the list of all its adjacent vertices. An additional mapping
can be used to access in constant time the two vertices which
compose a given edge. Nevertheless, for applications to image
processing, and when usual adjacency relations are used, these
structures do not need to be explicit.
Furthermore, to achieve a linear complexity, the minima ofF

must be known at each iteration. To this end, in a first step
(line 2), the minima ofF are computed and represented by two
Boolean arraysVM and EM , the size of which are respectively
|V | and |E|. This step can be performed in linear time thanks to
classical algorithms [31]. Then, in the main loop (line 4), after
each lowering ofF (line 9),VM andEM are updated (line 10). In
order to access, in constant time, the edges which are M-border,
the (non-already examined) edges outgoing from the minima are
stored in a setL (lines 3 and 12). This set can be, for instance,
implemented as a queue. Thus, we obtain the following property.

Property 18: At the end of AlgorithmM -kernel,F is anM -
kernel of the input functionF . Furthermore, AlgorithmM -kernel
terminates in linear time with respect to|E|.

As far as we know, the watershed algorithms available in the
literature (e.g., [4], [8], [9], [13], [14], [18]) all require either a
sorting step, a hierarchical queue or a data structure to maintain
a collection of disjoint sets under the operation of union. On
the one hand, the global complexities of a sorting step and of
a (monotone) hierarchical queue (i.e., a structure from which
the elements can be removed in the order of their altitude) are
equivalent [34]: they both run in linear-time only if the range
of the weights is sufficiently small. On the other hand, the
best complexity for the disjoint set problem is quasi-linear [35].
Therefore, we emphasize that, to the best of our knowledge, the
proposed algorithm (together with the one introduced in [16]) is
the first watershed algorithm that runs in linear-time whatever the

range of the weighting map.
In practice, AlgorithmM -kernel runs about 2 times slower than

the algorithm proposed in [16] which is as fast as minima compu-
tation algorithms. However, AlgorithmM -kernel is more flexible.
Let us consider a map that contains “non-minima plateaus” (i.e.,
connected subgraphs with constant altitude). The mapF of Fig. 6a
illustrates such a situation (see also reference [36] for anin-
depth study of such situations). There exist several watersheds
of F . More precisely, any set containing a single edge at altitude
3 is a watershed ofF . In theory, any of these watersheds can
be obtained by AlgorithmM -kernel. Nevertheless, in practice,
Algorithm M -kernel can be implemented to compute exclusively
some particular watersheds. If the setL is implemented as a
stack (the last element inserted inL is the first one removed
from L), the obtained watershed will be located on the plateaus
borders. In this case, the watershed ofF computed by Algorithm
M -kernel will be either{{b, c}} or {{f, g}}, depending on the
scanning order. On the other hand, if the setL is implemented
as a (monotone) priority queue, such as the hierarchical queue
proposed in [9], then the obtained watershed will be “centered”
(according to the distance induced byG) on the plateaus. In this
case, the watershed ofF computed by AlgorithmM -kernel will
be composed by{d, e}. Figs. 6b,c and d illustrate the differences
between the watersheds obtained by these two implementations,
on a two-dimensional image. Note that the second implementation
of Algorithm M -kernel runs in linear time only if the range of
the weights is sufficiently small since it uses a monotone priority
queue. Note also that the centering condition neither allows us to
uniquely define a watershed (considere.g., a map with a plateau
of even width), nor to compute it order-independently (see [37],
[38] for examples of order-independent segmentation methods).

Algorithm M -kernel associates a catchment basin to each
minimum. In applications, one does not always need a basin for
each minimum. In order to reduce this over-segmentation, some
methods in mathematical morphology use the connection value
to determine which basins to merge. The next section studiesthe
relation between watersheds and connection value.

20 033333a b c d e f g h i

(a)

(b) (c) (d)

Fig. 6. Illustration of watershed cuts in presence of plateaus. (a) A graphG
and a mapF which has one plateau at altitude 3.(b) An image representation
of an edge-weighted graph (4-adjacency relation) derived from a real-world
image (close-up on a microscopic view of a cross-section of auranium oxyde
ceramics). The weight map is obtained by assigning to each edge the minimum
of the values, in the original image, of its two extremities and the image
representation is obtained by doubling the resolution.(c, d) Two watershed
cuts (superimposed in white) obtained by AlgorithmM -kernel implemented
with respectively a stack and a hierarchical queue.

III. C ONNECTION VALUE

From a topographical point of view, the connection value (also
called degree of connectivity [39] or fuzzy connectedness [26]
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up to an inversion ofF [23], [40]) between two minima can
be seen as the altitude of the lowest pass between these two
minima. It corresponds to the minimal altitude at which one needs
to climb in order to reach one minimum from the other. As stated
in the introduction, this value is important for morphological
region merging methods [20]–[22] which simulate the overflows
of catchment basins during a flooding of the topographic surface.
We start this section by defining the connection value. Then,
we show that any MSF relative to any arbitrary subgraph ofG

“preserves” the connection values. Thus, knowing the values of
the edges in an MSF cut forX, one can recover the connection
values between any two components ofX. Hence, according to
Th. 5, the watershed cuts also “preserve” the connection value.

Definition 19 (connection value):Let π = 〈x0, . . . , xl〉 be
a path in G. If π is non-trivial, we set ΥF (π) =

max{F ({xi−1, xi}) | i ∈ [1, l]}. If π is trivial, we setΥF (π) =

F⊖(x0). Let X and Y be two subgraphs ofG, we denote
by Π(X, Y ) the set of all paths fromX to Y in G. The
connection value betweenX andY (in G, for F ) is ΥF (X, Y ) =

min{ΥF (π) | π ∈ Π(X, Y )}.
Let X be any subgraph ofG. The following theorem asserts

that, if the connection value between two components ofX is
equal to k, then the connection value between the two corre-
sponding components in any MSF relative toX is alsok: relative
MSFs preserve the connection values. A major consequence of
this theorem is that the cuts induced by relative MSFs convey
the connection value between the components of the original
subgraph.

Theorem 20:Let X be a subgraph ofG. If Y is an MSF
relative to X, then for any two distinct componentsA and B

of X, we haveΥF (A, B) = ΥF (A′, B′), whereA′ and B′ are
the two components ofY such thatA ⊆ A′ andB ⊆ B′.

For example, in Fig. 2a, the connection value between the two
minima at altitude1 is equal to4. Indeed,ΥF (〈a, e, f, g〉) = 4

whereas the length of any other path from one of these minima to
the other is greater than 4. It can be verified that the connection
value between the two corresponding components of the MSFs
relative to the minima, depicted in Figs. 2c is also4 (notice in
particular thatΥF (〈f, g〉) = 4).

Let S ⊆ E be a watershed cut ofF . As a corollary of Th. 20,
it may be deduced that the connection value between two distinct
catchment basins (i.e., two components ofS) is equal to the
connection value between the two corresponding minima ofF .
Thus, knowing the values of the edges in a watershed ofF , one
can recover the connection values between the minima ofF .

The connection value itself is used to define several important
segmentation methods [4], [5], [12]. Hence, Th. 20 invites us to
study the links between the watershed and these methods.

IV. WATERSHEDS, SHORTEST-PATH FORESTS AND

TOPOLOGICAL WATERSHEDS

In practice, to choose among the numerous segmentation
techniques available in the literature the one which will best
solve a given problem, it is necessary to understand the differ-
ences or links between these techniques [40]–[42]. An interesting
feature of the framework settled in this paper is to provide a
means to compare, from a mathematical point of view, several
methods used for image segmentation. Thanks to relative MSFs
andM -kernels, we provide a mathematical comparison between
watershed cuts, shortest-path forests (the theoretical basis of the

Image Foresting Transform [4] and of the fuzzy connected image
segmentation [5], [40]) and topological watersheds [12], [23].
Furthermore, in [43], based on the framework of this paper, a
link between min-cuts [2] and watershed cuts is provided.

A. Shortest-path forests

We investigate the links between relative MSFs and shortest-
path forests which also constitute an optimization paradigm
used for image segmentation. In particular, the image foresting
transform [4], the inter-pixel flooding watershed [9], [44], and
the relative fuzzy connected image segmentation [5], [26],[27],
[40] fall in the scope of shortest-path forests. Intuitively, these
methods partition the graph into connected components associated
to seed points (also called markers). The component of each
seed consists of the points that are “more closely connected” to
this seed than to any other. In many cases, in order to define
the relation is “more closely connected to”, the chosen measure
is precisely the connection value,i.e., a pathπ′ is considered
as shorter than a pathπ wheneverΥF (π′) < ΥF (π). Then,
point x is more closely connected to seeds than to seeds′ if
the connection value betweenx ands is less than the connection
value betweenx and s′. Given a set of seed points (or seed
graph), the corresponding segmentation can be obtained by an
Υ-shortest-path forest,i.e., a shortest-path forest for whichΥ
defines the length of a path. We show that any MSF relative to
a subgraphX is anΥ-shortest-path spanning forest relative toX

and that the converse is not true2. Furthermore, we prove that both
concepts are equivalent wheneverX corresponds to the minima
of the considered mapF . A consequence of this last result is the
equivalence between the watersheds ofF and the cuts induced
by theΥ-shortest-path spanning forests relative to the minima.

Intuitively, a shortest-path forest relative to a subgraphX of G

is a forest relative toX which is such that, for each vertex, there
exists a path in the forest, which is a shortest path (inG) from
this vertex to the subgraphX.

If x ∈ V , to simplify the notation, the graph({x}, ∅) is denoted
by x. Let X andY be two subgraphs ofG, we say thatY is an
Υ-shortest-path forest relative toX if Y is a forest relative toX
and if, for anyx ∈ V (Y ), there exists, fromx to X, a pathπ

in Y such thatΥF (π) = ΥF (x,X). If Y is an Υ-shortest-path
forest relative toX andV (Y ) = V , thenY is anΥ-shortest-path
spanning forest relative toX, and the cut induced byY is an
SPF cut forX.

Let G be the graph in Fig. 7 andF be the associated map.
Let X, Y, Z be the bold graphs in Figs. 7a,b and c. The graphsY

andZ areΥ-shortest-path spanning forests relative toX.
Theorem 21:Let X andY be two subgraphs ofG. If Y is an

MSF relative toX, thenY is anΥ-shortest-path spanning forest
relative toX. Thus, any MSF cut forX is a SPF cut forX.

The converse of Th. 21 is, in general, not true. For example, the
graphZ (Fig. 7c), is anΥ-shortest-path spanning forest relative
to the graphX (Fig. 7a) whereas it is not an MSF relative to this
graph. On the same example (Fig. 7c) we can also observe that,
contrarily to relative MSFs,Υ-shortest-path spanning forests do
not always preserve the connection value (in the sense of Th.20).
In particular, in Figs. 7a and c, the connection value between
the two components ofX is equal to8, whereas the connection

2This result has been independently presented in two papers [43], [45]
published at a same conference.
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Fig. 7. Links and differences betweenΥ-shortest-path and minimum
spanning forests. First row: a graphG and a mapF . The bold subgraphs
are: (a), a graphX; (b), an MSF relative toX; (c), an Υ-shortest-path
spanning forest relative toX that is not an MSF relative toX. Second row:
illustration, on a synthetic image, of the differences between SPF and MSF
cuts [see text].

value between the two components ofZ is equal to0. Then, on
the contrary of cuts induced by relative MSFs (see for instance
Fig. 7b), the cuts induced byΥ-shortest-path spanning forests are
not necessarily located on the “crests” of the function. Thesecond
row of Fig. 7 illustrates the differences between MSF and SPF
cuts on a synthetic 2D image. The image in Fig. 7d is composed
of three overlaid squares whose intensities are respectively 0,
100 and200. From this image an edge-weighted graph(G, F ) is
derived by considering the 4-adjacency relation and by assigning
to each edgeu = {x, y} the absolute value of the difference of
the intensities ofx andy. Thus, the weight of any edge that links
two pixels belonging to a same zone is equal to0 whereas the
weight of any edge that links two different zones is equal to100.
An image representation of this edge-weighted graph is plotted
in Fig. 7e. Let us also consider as a marker a subgraphX of G

made of two isolated vertices: the first one is located in the black
zone whereas the second one is located at the center of the image.
In Fig. 7f and g, two SPF cuts relative toX are superimposed in
white to the original image. The first one is furthermore an MSF
cut whereas the second one is not.

In fact, if the markerX equalsM(F ), the equivalence between
both concepts can be proved.

Property 22: Let Y be a subgraph ofG. A necessary and
sufficient condition forY to be an Υ-shortest-path spanning
forest relative toM(F ) is that Y is an MSF relative toM(F ).
Furthermore, a subset ofE is an MSF cut forM(F ) if and only
if it is a SPF cut forM(F ).

Whereas the notions ofΥ-shortest-path forests and relative
MSFs are equivalent when extensions of the minima are con-
sidered (Prop. 22), when we consider extensions of arbitrary
subgraphs, the relative MSFs satisfy additional properties, such as
the preservation of the connection value (Th. 20) or the optimality
(in the sense of Def. 4). Relative MSFs is thus a method of

choice for marker-based segmentation procedures, an illustration
of which is provided in [16].

B. Topological watershed

The topological approach to the watershed [12], [23] is settled
in graphs whose vertices are weighted by a functionI. It
considers a transformation that iteratively lowers the values ofI
while preserving some topological properties, namely the number
of connected components of each lower threshold ofI. This
transform and its result are called aW-thinning; a topological
watershedbeing a W-thinning minimal for the≤ relation on maps
(see Appendix in the digital library for formal definitions). For
instance, the map of Fig. 8e is a topological watershed of theone
of Fig. 8d. Thedivide of a topological watershed is the set of
all vertices which do not belong to any minimum (see the non-
bold vertices in Fig. 8e). A topological watershed and its divide
constitute an interesting segmentation which satisfies important
properties (see [18], [23], [25]) not guaranteed by most popular
watershed algorithms. In particular, in [23], [25], the equivalence
between a class of transformations which preserves the connection
value and the W-thinnings is proved. Thus, Th. 20 invites us
to recover the links between watershed cuts and topological
watersheds.

The notion of line graphs presented below (see [15], [46], [47])
provides a way to automatically infer definitions and properties
from vertex-weighted graphs to edge-weighted graphs.

Definition 23 (line graph):The line graph of G = (V, E) is
the graph(E, Γ), such that {u, v} belongs toΓ wheneveru ∈
E, v ∈ E, andu andv are adjacent,i.e., |u ∩ v| = 1.

To each graphG whose edges are weighted by a mapF , we
can associate its line graphG′. The vertices ofG′ are weighted by
F and thus any transformation ofF can be performed either inG
or in G′. Fig. 8 illustrates such a procedure. LetG be the graph
depicted in(a), (b) and (c). The line graph ofG is depicted
in (d), (e) and (f). The map shown in(b, e) is a topological
watershed of the one shown in(a, d) and the map in(c, f) is a
B-kernel.
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Fig. 8. Illustration of line graphs and topological watersheds. The graph
in (d) (resp.(e), (f)) is the line graph of the one in(a) (resp.(b), (c)). The
minima of the associated functions are depicted in bold.;(b, e): a topological
watershed of(a, d); (c, f): a B-kernel of(a, d) which is also a W-thinning
of (a, d).

Definition 24 (topological cut):Let S ⊆ E be a cut forM(F ).
We say thatS is a topological cut forF if there exists a W-
thinning H of F , in the line graph ofG, such thatS is the set of
all edges ofG which are adjacent to two distinct minima ofH.

Theorem 25:Let H be a map fromE to R. If H is a B-
thinning ofF in G, thenH is a W-thinning ofF in the line graph
of G. Moreover, anyB-cut for F is a topological cut forF .
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The previous property is illustrated in Fig. 8 where the map
depicted in Fig. 8c is aB-thinning of F (Fig. 8a), thus a W-
thinning of F . The converse of Th. 25 is not true. The mapH

(Fig. 8b) is a topological watershed ofF but it is not a B-
kernel ofF . Indeed, there is no MSF relative to the minima ofF

associated to the cut produced by the topological watershedH.
Observe, in particular, that the produced cut is not locatedon
the highest “crests” of the original mapF . Fig. 9a shows an
image representation of aB-kernelH obtained from the mapF
represented in Fig. 6a and from which we derived the cut shown
Fig. 6b. Fig. 9b is a topological watershed ofH which, by
Th. 25, is also a topological watershed ofF . Fig. 9c represents
the watershed cut associated with these two maps.

(a) (b) (c)

Fig. 9. Image representation of:(a), aB-kernel of Fig. 6b;(b), a topological
watershed of(a); and (c), the watershed cut associated to both(a) and(b).

An important consequence of Th. 25 is thatB-cuts (hence,
by Th. 16, watershed cuts) directly inherit all the properties of
W-thinnings proved for vertex-weighted graphs [18], [23],[25].

In recent papers [15], [47], [48], we have studied and proposed
solutions to some of the problems encountered by region merging
methods which consider frontiers made of vertices as initial
segmentations. In particular, we have introduced an adjacency
relation onZ

n which is adapted for region merging. An important
property (Prop. 54 in [47]) is that the induced grids, calledthe
perfect fusion grids, are line graphs. If we consider a map which
assigns a weight to the vertices of such a grid, then the set
of definitions and properties given in this paper are still valid.
Thus, the perfect fusion grids constitute an interesting alternative
for defining a watershed which is based on vertices and which
satisfies the drop of water principle.

V. I LLUSTRATION TO SEGMENTATION

In Section I-A, we present different ways to derive edge-
weighted graphs from grayscale images. In [16], we showed how
to use these graphs to automatically segment an image into a
predefined number of regions by coupling watershed cuts with
connected filters [49]. We also illustrated the use of relative MSF
as a marker-based procedure for grayscale image segmentation.

In this section, we illustrate the versatility of the proposed
framework to perform segmentation on different kinds of geomet-
ric objects. Firstly, we show how to segment triangulated surfaces
by watershed cuts, and secondly we apply the watershed cuts to
the segmentation of diffusion tensors images, which are medical
images associating a tensor to each voxel.

A. Surface segmentation

3D shape acquisition and digitizing have received more and
more attention for a decade, leading to an increasing amount
of 3D surface-models (or meshes) such as the one in Fig. 10d.
In a recent work [50], a new search engine has been proposed

for indexing and retrieving objects of interests in a database
of meshes (EROS 3D) provided by the French Museum Center
for Research. One key idea of this search engine is to use
region descriptors rather than global shape descriptors. In order to
produce such descriptors, it is then essential to obtain meaningful
mesh segmentations.

(a) (b) (c)

(d) (e) (f)

Fig. 10. Surface segmentation by watershed.(a): A mesh in black and
its associated graph in gray.(b): A cut on this graph (in bold); and(c),
the corresponding segmentation of the mesh.(d): Rendering of the mesh of
a sculpture.(e): A watershed (in red) of a mapF which behaves like the
inverse of the mean curvature and, in(f), a watershed of a filtered version
of F . The mesh shown in(d) is provided by the French Museum Center for
Research.

Informally, a meshM in the 3D Euclidean space is a set
of triangles, sides of triangles andpoints such that each side
is included in exactly two triangles (see Fig. 10a). In orderto
perform a watershed cut on such a mesh, we build a graphG =

(V, E) whose vertex setV is the set of all triangles inM and
whose edge setE is composed by the pairs{x, y} such thatx
and y are two triangles ofM that share a common side (see
Fig. 10a).

To obtain a segmentation of the meshM thanks to a watershed
cut, we need to weight the edges ofG (or equivalently the sides
of M) by a map whose values are high around the boundaries
of the regions that we want to separate. We have found that the
interesting contours on the EROS 3D meshes are mostly located
on concave zones. Therefore, we weight the edges ofG by a
map F which behaves like the inverse of the mean curvature of
the surface (see [50] for more details). Then, we can computea
watershed cut (in bold in Fig. 10b) which leads to a natural and
accurate mesh segmentation in the sense that the “borders” of the
regions are made of sides of triangles (in bold in Fig. 10c) of
high curvature.

The direct application of this method on the mesh shown
Fig. 10d leads to a strong over-segmentation (Fig. 10e) due to
the huge number of local minima. By using the methodology
introduced in mathematical morphology and our notions, we can
extract all the minima which have a dynamics [24] greater than a
predefined threshold (here 50) and suppress all other minimaby
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a geodesic reconstruction [31]. A watershed cut of the mapF ′

(obtained fromF with such a filtering step) is depicted in Fig. 10f.

B. Segmentation of diffusion tensor images

In the medical context,Diffusion Tensor Images (DTIs)[51]
provide a unique insight into oriented structures within tissues.
A DTI T maps the set of voxelsV ⊆ Z

3 (i.e., V is a cuboid
of Z

3) into the set of3× 3 tensors (i.e., 3× 3 symmetric positive
definite matrices). The valueT (x) of a DTI T at a voxelx ∈ V

describes the diffusion of water molecules atx. For instance,
the first eigenvector ofT (x) (i.e., the one whose associated
eigenvalue is maximal) provides the principal direction ofwater
molecules diffusion at pointx and its associated eigenvalue gives
the magnitude of the diffusion along this direction. Since water
molecules highly diffuse along fiber tracts and since the white
matter of the brain is mainly composed of fiber tracts, DTIs are
particularly adapted to the study of brain architecture. Fig. 11a
shows a representation of a cross-section of a brain DTI where the
tensors are represented by ellipsoids. Indeed, the datum ofa tensor
is equivalent to the one of an ellipsoid. In the brain, the corpus
callosum is an important structure made of fiber tracts connecting
homologous areas of each hemisphere. In order to track the fibers
that pass through the corpus callosum, it is necessary to segment
it first. The next paragraph briefly reviews how to reach this goal
thanks to watershed cuts (see [52] for more details).

We consider the graphG = (V, E) induced by the 6-adjacency
and defined by{x, y} ∈ E iff x ∈ V, y ∈ V andΣi∈{1,2,3}|xi −

yi| = 1, wherex = (x1, x2, x3) and y = (y1, y2, y3). In order to
weight any edge{x, y} of G by a dissimilarity measure between
the tensorsT (x) andT (y), we choose the Log-Euclidean distance
which is known to satisfy an interesting property of invariance by
similarity [53]. Then, we associate to each edge{x, y} ∈ E the
value F ({x, y}) = ‖ log(T (x)) − log(T (y))‖, where log denotes
the matrix logarithm and‖.‖ the Euclidean (sometimes also called
Frobenius) norm on matrices. To segment the corpus callosum
in this graph, we extract (thanks to a statistical atlas, see[52]),
markers for both the corpus callosum and its background and we
compute an MSF-cut for these markers. An illustration of this
procedure is shown in Fig. 11.

CONCLUSION

Fig. 12 summarizes the main results presented in [16] and in
this paper. In the framework of edge-weighted graphs, we intro-
duced thewatershed cuts. Through seven equivalence relations
and two original efficient algorithms, we established strong links
between three important paradigms: topographical, thinning and
optimality paradigms. As far as we know, this constitutes the only
discrete framework in which all these properties hold true.

On the topographical side, we proved in [16] that thewatershed
cuts can be equivalently defined by their “catchment basins”
(through a steepest descent property formalized in the definition
of a basin cut, see Definition 5 in [16]) or by their “dividing
lines” (through a formalization of the intuitive “drop of water
principle”). From the notion of abasin cut, we derived in [16] a
first efficient watershed algorithm.

On the thinning side, we introduced a new paradigm to char-
acterize and compute the watershed cuts. A thinning consists of
iteratively lowering the values of the edges that satisfy a certain
property. We proposed three different properties for selecting

the edges which are to be lowered. The corresponding three
transforms extend the minima of the original map in a way
such that the set of edges (calledB-cuts, M -cuts and I -cuts)
linking two minima of the transformed map constitute precisely
a watershed cut of the original map. Conversely, any watershed
cut is necessarily aB-cut, an M -cut and anI -cut. The first
of these thinnings uses a purely local strategy to detect theedges
which are to be lowered and, therefore, it is well suited to parallel
implementations. The second one leads to a flexible sequential
linear-time (with respect to the number of edges) watershed
algorithm. Finally, the third one establishes the link between the
watershed cuts and the popular immersion scheme which fall in
the topographical category.

On the optimization side, we showed the equivalence between
the watershed cuts and the separations (calledMSF-cutsandSPF-
cuts) induced by two optimal structures: the minimum spanning
forests and theΥ-shortest paths forests relative to the minima.

On the algorithmic side, we would like to emphasize that the
two proposed algorithms both run in linear time whatever the
range of the input function. To the best of our knowledge, these
are the first watershed algorithms satisfying such a property.

Finally, we have shown that any watershed cut allows for
recovering the connection value between the minima of the
original map and thus that it is a topological cut. In mathematical
morphology, this property plays a fundamental role for defining
watershed-based hierarchical segmentation methods [20],[22].

Future works will be focused, on the one hand, on the above
mentioned hierarchical segmentation schemes (includinggeodesic
saliency of watershed contours[22] and incremental MSFs) and
also on watersheds in weighted simplicial complexes, an image
representation adapted to the study of topological properties. On
the other hand, we will study a new minimum spanning tree
algorithm based on watersheds.
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PROOFS

This appendix provides the proofs of the properties given in
this article.

Proofs of Section II

In order to prove Prop. 10, we use a characterization of the
MSFs relative to the minima of a map which involve paths with
steepest descent.

Let π = 〈x0, . . . , xℓ〉 be a path inG. The pathπ is a path
with steepest descent forF if, for any i ∈ [1, ℓ], F ({xi−1, xi}) =

F⊖(xi−1).
Let π = 〈x0, . . . , xℓ〉 be a path inG. We say thatπ is asimple

path if for any two distincti andj in [0, ℓ], xi 6= xj. We say thatπ
is anM-path (for F ) if π is a simple path, ifxℓ is a vertex of
M(F ) and if none ofx0, . . . , xℓ−1 is a vertex ofM(F ). Remark
that anM-path does not contain any edge ofM(F ). Furthermore,
it may be seen that ifY is a forest relativeM(F ), there exists a
uniqueM-path from each vertex ofY .

Lemma 26 (Lemme 8 in [16]):Let X be a spanning forest
relative to M(F ). The graphX is an MSF relative toM(F )

if and only if, for anyx in V , there exists a path inX from x

to M(F ) which is a path with steepest descent forF .
Lemma 27:Let H ∈ F . If H is a B-thinning of F , then any

forest relative toM(H) is a forest relative toM(F ).
Proof: Let u be a border edge forF and let H be the

lowering of F at u. We first prove the property forH. Then,
Lem. 27 can be easily established by induction. Ifu is not an edge
of M(H) thenM(H) = M(F ): the proof is done. Suppose now
thatu is an edge ofM(H). Let u = {x, y} with F⊖(x) ≥ F⊖(y).
The fact thatu is border forF impliesF (u) = F⊖(x) andF (u) >

F⊖(y). Thus,u is not an edge ofM(F ) andx cannot belong to
an edge ofM(F ) (otherwise we would haveF⊖(x) < F (u)).
Therefore,x is not a vertex ofM(F ). The edgeu belongs to
S, the edge set of one minimum ofH. Since H(u) = F⊖(y)

andF (u) > F⊖(y) (by definition of a lowering at a border edge),
there is an edgev 6= u which containsy such thatF (v) = H(v) =

F⊖(y) = H(u). Necessarilyv belongs toS. Hence,S\u 6= ∅ and
it may be seen thatS \ u is exactly the edge set of a minimum
of F . Thus,y is a vertex ofM(F ) and M(H) is an extension
of M(F ). Furthermore, sincex is not a vertex ofM(F ), any
cycle in M(H) is also a cycle inM(F ). Thus, from the very
definition of a forest,M(H) is a forest relative toM(F ) and any
forest relative toM(H) is also a forest relative toM(F ).

The next lemma follows straightforwardly from the definition
of a path with steepest descent.

Lemma 28:If 〈x0, . . . , xℓ〉 and 〈xℓ, . . . , xm〉 are two paths
with steepest descent forF , then π = 〈x0, . . . , xm〉 is a path
with steepest descent forF .

Lemma 29:Let H be aB-thinning of F .
(i) For any vertexx of a minimum ofH, there exists a path in
M(H) from x to M(F ) which is a path with steepest descent
for F .
(ii) Any M-path (for H), with steepest descent forH is a path
with steepest descent forF .

Proof: Let us first suppose thatH is the lowering ofF at a
border edgeu for F .
(i) Let x and y be the two vertices inu. If none of x and y

is a vertex ofM(F ), then M(F ) = M(H) and the proof is
trivial. Suppose thaty is a vertex ofM(F ). Sinceu is a border

edge, F⊖(x) = F (u). Thus, 〈x, y〉 is a path inM(H) with
steepest descent forF . Let z be any vertex ofM(H), z 6= x.
Necessarilyz is also a vertex ofM(F ). Hence,〈z〉 is a path
in M(H) from z to M(F ) with steepest descent forF .
(ii) The property is verified for any trivial path. Let us consider
the case of non-trivial paths. Letx0 ∈ V \ V (M(H)) and
let π = 〈x0, . . . , xℓ〉 be anM-path (forH) with steepest descent
for H. Sincexℓ is a vertex ofM(H) and{xℓ−1, xℓ} is not an edge
of M(H), by the very definition of a minimum,H({xℓ−1, xℓ}) >

H(xℓ). Hence, from the definition of a lowering, we deduce that
u 6= {xℓ−1, xℓ}.
Suppose that there existsi ∈ [1, ℓ− 1] such thatu = {xi−1, xi}.
As π is a path with steepest descent forH, F⊖(xi) =

H({xi, xi+1}). By the very definition of a lowering,{xi−1, xi}

is the only edge ofG whose altitude is different forF and H.
Thus, F ({xi, xi+1}) = H({xi, xi+1}) = F⊖(xi). By definition
of F⊖, F⊖(xi) ≤ F ({xi, xi+1}), henceF⊖(xi) ≤ F⊖(xi).
SinceH is a lowering ofF , F⊖(xi) ≤ F⊖(xi). Hence,F⊖(xi) =

F⊖(xi) = F ({xi, xi+1}). Therefore, sinceF ({xi−1, xi}) >

H({xi−1, xi}), necessarilyF ({xi−1, xi}) > F⊖(xi) and sinceu
is border forF , F⊖(xi−1) = F ({xi−1, xi}). Furthermore, for
any v ∈ E, v 6= u, F (v) = H(v). Thus, in this case,π is a path
with steepest descent forF .
Suppose now that for anyi ∈ [1, ℓ], u 6= {xi−1, xi}. By definition
of a loweringF (u) > H(u), hence, for anyi ∈ [0, ℓ], F⊖(xi) =

F⊖(xi). Thusπ is a path with steepest descent forF .
By induction on(i) and (ii) and thanks to Lem. 28, it may be
seen that Lem. 29 holds true for anyB-thinning of F .

Lemma 30:There is no border edge forF if and only if V is
the vertex set ofM(F ).

Proof: (i) Suppose thatV is not the vertex set
of M(F ). Then, there existsx0 ∈ V which is not a vertex
of M(F ). Since (V, E) is finite, there exists anM-path π =

〈x0, . . . , xℓ〉 with steepest descent forF . Thus, F⊖(xℓ−1) =

F ({xℓ−1, xℓ}). Sinceπ is anM-path,F⊖(xℓ) < F ({xℓ−1, xℓ}).
Hence,{xℓ−1, xℓ} is a border edge forF .
(ii) Suppose that there existsu = {x, y} which is a border edge
for F . Without loss of generality, assume thatF⊖(x) = F (u)

and F⊖(y) < F (u). There is no minimum ofF whose vertex
set containsx sinceF⊖(x) = F (u) and since there is an edge
that containsy whose altitude is strictly less than the one ofu.
Thus,V is not the vertex set ofM(F ).

Proof: [of Prop. 10](i) Let X be an MSF relative toM(H)

for H. By Lem. 27,X is a (spanning) forest relative toM(F ).
We will prove that for any pointx0 in V , there exists inX a
path from x0 to M(F ) which is a path with steepest descent
for F . Thus, by Lem. 26, this will establish the first part of
Prop. 10. From Lem. 26, it may be seen that there exists inX

anM-path (for H), denoted byπ = 〈x0, . . . , xℓ〉, which is a
path with steepest descent forH. By Lem. 29.ii, π is a path
with steepest descent forF . Since xℓ is a vertex of M(H),
by Lem. 29.i, there exists inM(H) a pathπ′ = 〈xℓ, . . . , xm〉
from xℓ to M(F ) which is a path with steepest descent forF .
Since X is an extension ofM(H), M(H) ⊆ X. Hence,π′

is a path inX. Moreover, π is by construction a path inX.
Therefore,π′′ = 〈x0, . . . , xm〉, is a path inX. Since bothπ

and π′ are paths inX with steepest descent forF , by Lem. 28,
π′′ is also a path inX with steepest descent forF , which, by
construction, is a path fromx0 to M(F ).
(ii) Suppose that H is a B-kernel of F . From
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Lem. 30,V (M(H)) = V . Then, any MSF relative toM(H) is
equal toM(H). Hence, from(i), we prove(ii).

Proof: [of Prop. 15] Letu = {x, y0} ∈ E, with x being
a vertex ofM(F ), be an immersion edge forF . By definition
of a minimum, we haveF (u) > F⊖(x). Let π = 〈y0, . . . , yℓ〉

be anyM-path with steepest descent forF . It may be seen
that F ({yℓ−1, yℓ}) ≤ F⊖(y0). Sinceπ is anM-path,{yℓ−1, yℓ}

is outgoing fromM(F ). By hypothesis,F (u) ≤ F ({yℓ−1, yℓ}).
Thus, F (u) ≤ F⊖(y0) and sincey0 ∈ u, necessarily F (u) =

F⊖(y0). Hence,u is a border edge forF .
The following lemma is used to prove Lem. 16. The proof is

similar to the one of Lem. 30 and, thus, omitted.
Lemma 31:There is no M-border edge (resp. immersion edge)

for F if and only if V is the vertex set ofM(F ).
Thanks to the construction presented in Sec. III.B of [16], the

following lemmas can be derived from basic results on minimum
spanning trees (see, in particular Th. 23.1, p. 563, in [54] in order
to prove Lem. 33).

Let X ⊆ G, u ∈ E(X). We writeX\u for (V (X), E(X)\{u}).
Let v ∈ E\E(X). We writeX∪v for the graph(V (X)∪v, E(X)∪

{v}).
Lemma 32:Let X be a subgraph ofG and Y be a spanning

forest relative toX. If u = {x, y} ∈ E(Y ) \ E(X), then there
exists a unique component ofY \ u which does not contain a
component ofX. Furthermore, eitherx or y is a vertex of this
component.

Lemma 33:Let X be a subgraph ofG, let Y be an MSF
relative to X, and let Z ⊆ Y be a forest relative toX such
that Z 6= Y . Let u be an edge of minimal altitude among all the
edges ofY outgoing fromZ. Then, the altitude of any edge ofG

outgoing fromZ is greater than or equal toF (u).
Proof: [of Lem. 16] (i) =⇒ (ii): Let H be anI -kernel

of F and letX = M(H). By Prop. 15,H is aB-thinning ofF . By
Lem. 31,V is the vertex set ofM(H) and, again from Lem. 31,
we deduce thatH is anM -kernel ofF .
(ii) =⇒ (iii): Let H be anM -kernel ofF and letX = M(H).
Trivially H is a B-thinning of F . By Lem. 31,V is the vertex
set ofM(H). Thus, by Lem. 30,H is a B-kernel ofF .
(iii) =⇒ (iv): Prop. 10.
(iv) =⇒ (i): Let X be an MSF relative toM(F ) and let us
consider a sequence of graphsX0, . . . , Xk such that:
- X0 = M(F );
- for anyi ∈ [1, k], Xi = Xi−1∪ui whereui is an edge of minimal
altitude (for F ) among all the edges ofX outgoing fromXi−1;
and
- V is the vertex set ofXk .
It may be seen that such a sequence always exists. Consider also
the associated sequence of mapsF0, . . . Fk such thatF0 = F and
for any i ∈ [1, k], Fi is the lowering ofFi−1 at ui.
We will proceed by induction to establish, for anyi ∈ [1, k], the
following proposition:
(Pi): Fi is anI -thinning of F such thatXi = M(Fi).
Let i ∈ [1, k] and suppose that(Pi−1) holds true. By Prop. 15 and
Lem. 27,(Pi−1) implies thatXi−1 is a forest relative toM(F ).
Therefore, it follows from Lem. 33, that the altitude (forF ) of any
edge ofG outgoing fromXi−1 is greater than or equal toF (ui).
By construction ofFi−1, we haveF (v) = Fi−1(v) for any edge
v outgoing fromXi−1. Thus,ui is an edge with minimal altitude
(for Fi−1) among all the edges outgoing fromXi−1. Furthermore,
thanks to(Pi−1), Xi−1 = M(Fi−1). Hence,ui is an immersion

edge forFi−1, and it follows straightforwardly thatFi is anI -
thinning ofFi−1. Moreover, by(Pi−1), Fi is anI -thinning ofF .
Consequently to the definition of a lowering at an immersion
edge,M(Fi) = M(Fi−1)∪ui. Hence,M(Fi) = Xi−1∪ui = Xi,
which completes the proof of(Pi).
Since (P0) is trivially verified, by induction,Pk is established.
Therefore, by Prop. 15 and Lem. 27,M(Fk) = Xk is a forest
relative to M(F ). Since V (Xk) = V , since Xk ⊆ X (by
construction) and sinceX is a forest relative toM(F ), by the
definition of a spanning forest, we have necessarilyXk = X. By
Lem. 31,Fk is a I -kernel ofF . Hence, by(Pk), there exists an
I -thinning H = Fk of F such thatX = Xk = M(H).

Proofs of Section III

Proof: [of Th. 20] Suppose thatY is an MSF relative toX.
Suppose also that there existA and B, two components ofX
such thatΥF (A,B) 6= ΥF (A′, B′), whereA′ andB′ are the two
components ofY such thatA ⊆ A′ andB ⊆ B′. SinceΠ(A,B) ⊆

Π(A′, B′), ΥF (A,B) > ΥF (A′, B′). Let π = 〈xk, . . . , xℓ〉 be a
path from A′ to B′ such thatΥF (π) = ΥF (A′, B′) and such
that xk (resp. xℓ) is the only vertex ofA′ (resp. B′) in π.
Notice that {xk, xk+1} and {xℓ−1, xℓ} are not edges ofY .
Let πA = 〈x0, . . . , xk〉 (resp.πB = 〈xℓ, . . . , xm〉) be a simple
path in A′ (resp.B′), such thatx0 (resp.xm) is the only point
of πA (resp.πB) which is a point ofA (resp.B). Sinceπ′ =

〈x0, . . . , xm〉 is a path fromA to B, UpsilonF (π′) ≥ ΥF (A, B).
Remark thatΥF (π) < ΥF (A, B) since ΥF (π) = ΥF (A′, B′)

and ΥF (A′, B′) < ΥF (A, B). Thus, we have eitherΥF (πA) ≥
ΥF (A,B) or ΥF (πB) ≥ ΥF (A, B). Without loss of generality,
assume thatΥF (πA) ≥ ΥF (A, B). Let u be any edge ofπA

such thatΥF (u) = ΥF (πA). SinceΥF (π) < ΥF (πA), ΥF (u) >

ΥF ({xk, xk+1}). SinceπA is a simple path inA′, sincex0 is
the only point ofπA which is in A, and since{xk, xk+1} is not
in Y , it may be seen that(Y \ u) ∪ {xk, xk+1} is a spanning
forest relative toX. SinceΥF (u) > ΥF ({xk, xk+1}), (Y \ u) ∪

{xk, xk+1} has a cost strictly less thanY . Thus,Y is not an MSF
relative toX, a contradiction.

Proofs of Section IV

Proof: [of Th. 21] Suppose thatY is an MSF relative toX
which is not anΥ-shortest-path spanning forest relative toX.
There existsx0 ∈ V (Y ) such that for any pathπ in Y from x0

to X, we haveΥF (π) > ΥF (x0, X). Let π = 〈x0, . . . , xℓ〉 be
any such path and suppose, without loss of generality, thatπ is a
simple path. Leti ∈ [0, ℓ−1] be such thatF ({xi, xi+1}) = ΥF (π)

and letu = {xi, xi+1}. We denote byC the connected component
of Y \ u such thatx0 ∈ V (C). Sinceπ is a simple path, from
Lem. 32, we deduce thatC is the unique connected component
of Y \ u which does not contain a connected component ofX.
Let π′ = {y0 = x0, . . . , ym} be a path inG from x0 to X such
that ΥF (π′) = ΥF (x0, X). Let j ∈ [0, m − 1] be such thatyj ∈

V (C) whereasyj+1 /∈ V (C). Let v = {yj , yj+1}. Thus,(Y \u)∪v

is a spanning forest relative toX. Necessarily,F (v) ≤ ΥF (π′).
Hence, sinceΥF (π′) = ΥF (x0, X) and ΥF (π) > ΥF (x0, X),
F (v) < ΥF (π) and F (v) < F ({xi, xi+1}). Thus, from the two
previous observations, we deduce thatY is not an MSF relative
to X, a contradiction.

SinceG is a finite graph, for anyx ∈ V there exists a pathπ
with steepest descent forF from x to M(F ). Then, it may be
seen thatΥF (π) = F (x) = ΥF (x, M(F )).
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Proof: [of Prop. 22](i) Suppose thatX is a spanning forest
relative toM(F ) which is not an MSF relative toM(F ). From
Lem. 26, there exists a vertexx ∈ V such that none of the paths
in X from x to M(F ) is with steepest descent forF . Let P be the
set of all points that can be reached fromx by a path inX with
steepest descent forF . Let y0 be the vertex ofP with minimal
altitude. By hypothesis,y0 is not a vertex ofM(F ). Let π =

〈y0, . . . , yℓ〉 be the uniqueM-path, in X, from y0 to M(F ).
Let i ∈ [0, ℓ−1] be the lowest index such thatyi ∈ P andyi+1 ∈

V \P . If F ({yi, yi+1}) = F⊖(yi), then there existsj ∈ [0, i− 1]

such thatF⊖(yj) < F ({yj , yj+1}) (otherwiseyi+1 would belong
to P ) and thus,F ({yj , yj+1}) > F⊖(y0) (since F⊖(yj) ≥

F (y0) by definition of y0, i and j). If F ({yi, yi+1}) > F⊖(yi),
then F⊖(y0) < F ({yi, yi+1}) sinceF⊖(y0) ≤ F⊖(yi). In both
cases,ΥF (π) > F⊖(y0). From the remark stated above this proof,
we haveΥF (π) > ΥF (y0, M(F )), hence,X is not anΥ-shortest-
path forest relative toM(F ).
(ii) a direct consequence of Th. 21.

Before proving Th. 25, let us introduce a minimal set of
definitions to handle the framework of vertex-weighted graphs
in which topological watersheds are defined.

Let P ⊆ V . Thesubgraph ofG induced byP , denoted byGP ,
is the graph whose vertex set isP and whose edge set is made of
all edges ofG linking two points inP , i.e., GP = (P, {{x, y} ∈
E | x ∈ P, y ∈ P}). Let I be a map fromV to Z, and letk ∈ Z.
We denote byI [k] the subgraph ofG induced by the set of all
pointsx ∈ V such thatI(x) < k; I[k] is called a(level k) lower-
sectionof I.

Definition 34: Let I be a map fromV to Z. Let x in V andk =

I(x). If x is adjacent to exactly one component ofI [k], we say
that x is W-destructible forI.
Let J be a map fromV to Z. We say thatJ is a W-thinning ofI
(in G) if J = I or if J may be derived from I by iteratively
lowering the values of W-destructible points by one.
We say thatJ is a topological watershed ofI if J is a W-thinning
of I and if there is no W-destructible point forJ .

Let us consider the mapI depicted in Fig. 8d (main text). The
points at altitude 2 are both W-destructible whereas the point
at altitude 5 is not. The mapsJ and K depicted, respectively,
in (e) and (f) are W-thinnings ofF . The reader can verify that
there exists a sequence of maps to obtainJ (resp.K) from I by
iteratively lowering by one the values of W-destructible points.
Notice thatJ is a topological watershed ofI, since there is no W-
destructible point forJ and thatK is not a topological watershed
of I since the points at altitude 10, 6 and 4 are W-destructible.

Important remark. To be consistent with the definition of
a topological watershed, in the following, we suppose thatF

maps E to Z. Nevertheless, the topological watershed can be
extended to maps fromE to R and Th. 25 can be generalized
to any mapF ∈ F .

Proof: [of Th. 25] Let u = {x, y} ∈ E be a border
edge for F such thatF (u) = F⊖(x) = k . We will prove
that the lowering ofF at u is a W-thinning of F , hence, by
induction, this will establish Th. 25. From the definition ofa
border edge,F⊖(y) < k. Thus, there exists a set of edgesS ⊆ E,
such thatS = {vi = {y, yi} ∈ E | yi 6= x andF (vi) < k}.
Since any element inS containsy, all the edges inS are in
the same component ofF [k]. Since F⊖(x) = k, none of the
edgesvj = {x, zj} ∈ E with zj 6= y, is in F [k]. Thus, u

is adjacent to exactly one component ofF [k]. Hence,u is W-

destructible forF and the map obtained by lowering the value
of u by one is a W-thinning ofF . By iterating the same arguments,
it may be seen thatu can be lowered down toF⊖(y). In other
words, the lowering ofF at u is a W-thinning ofF .


