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Watershed cuts: thinnings, shortest-path forests anc
topological watersheds

Jean Cousty?, Gilles Bertrand, Laurent Najmah and Michel Couprié

Abstract— We recently introduced the watershed cuts, a notion ~ The watershed transform introduced by Beucher and Lamiiéj
of watershed in edge-weighted graphs. In this paper, our mai  [7] for image segmentation is used as a fundamental step in
contr!butl_on is a thinning paradlgm from whlch we (_jenve th_r €€ many powerful segmentation procedures. Many approaches [7
algorithmic watershed cut strategies: the first one is well gited [15] have been proposed to define and/or compute the watérshe

to parallel implementations, the second one leads to a flexi f ; iahted h ding t @
linear-time sequential implementation whereas the third me ©' @ Vertéx-weighted graph corresponding 1o a grayscalgema

links the watershed cuts and the popular flooding algorithms ~The digital image is seen as a topographic surface: the gy |
We state that watershed cuts preserve a notion of contrast, becomes the elevation, the basins and valleys of the topbigra
called connection value, on which are (implicitly) based seral  surface correspond to dark areas, whereas the mountaingestd
morphological region merging methods. We also establish th |ines correspond to light areas. Intuitively, the wateslie a

links and differences between watershed cuts, minimum spaing g pset of the domain, located on the ridges of the topographi
forests, shortest-path forests and topological watershed Finally, surface. that delineates its catchment basins

we present illsutrations of the proposed framework to the . o ) . .
segmentation of artwork surfaces and diffusion tensor imags. AN important motivation of our work is to provide a notion of
watershed in the unifying framework of edge-weighted gsabiat

can help to precisely determine the relation between watels
and the popular methods presented in the first paragrapls. Thi
paper is the second of a series of two articles dedicateddio su
notion of watersheds in graphs whose edges (rather thaice®rt
INTRODUCTION are weighted. In this framework, a watershed is a cut. Before
going further, let us emphasize that any practical comparis
INCE the early work of Zahn [1], several efficient tools fometween watersheds in edge-weighted graphs and in vertex-
image segmentation have been expressed in the frameworkefighted graphs should be made with care. Indeed, in general
edge-weighted graphs. In general, they extractizfrom a pixel  the choice of one of these frameworks depends on the agplicat
adjacency graphi.¢., a graph whose vertex set is the set of image particular, the framework of vertex-weighted graphs iapted
pixels and whose edge set is given by an adjacency relations\ghen the segmented regions must be separated by pixelssin th
these pixels). Informally, a cut is a set of edges which, whasase, note that the watershed separation is not neceseagly
removed from the graph, separates it into different comectpixel width and can be arbitrary thick (see a study of thisopem
components: it is an inter-pixel separation which partitibe in [15], [16]). On the contrary, when an inter-pixel sepamatis
image. Given a set of seed-vertices, which “mark” regions @fesired, the framework of edge-weighted graphs is apprEpri
interest in the image, the goal of these operators is to findta ¢ A watershed of a topographic surface may be thought of as a
for which each induced connected component contains gxadeparating line-set from which a drop of water can flow down
one seed and which best matches a criterion based on the imgg¢ards several minima. Following this intuitive drop of et
contents. In order to define such a criterion, each edge of thenciple, we introduce in [16] the watershed cuts, a notidn
graph is weighted by a measure of similarity (or dissimi{gri watershed in edge-weighted graphs. We establish [16] theizo
between the two pixels linked by this edge. In this contelx t tency of watershed cuts: they can be equivalently chaiaeter
principle ofmin-cut segmentatiof2] (and its variant [3]) is to find by their catchment basins (through a steepest descentryppe
a cut for which the (weighted) sum of edge weights is minimagr by their dividing lines (through the drop of water prineip
Shortest-path forestpproaches such as [4], [5] are also expressel [17], Meyer shows a link between minimum spanning forests
in edge-weighted graphs. They look for a cut such that eatbxe and a flooding algorithm often used to compute watersheds. As
is connected to the closest seed for a particular distandbein proved in [16], there is indeed an equivalence between wlager
graph. In [6], the author considers another approach whege tuts and cuts induced by minimum spanning forests relative t
weight of an edge is interpreted as the probability that @eem the minima. Section | of this paper sums up the results of [16]
walker chooses this edge, when standing at one of its extremthat are necessary in the sequel.
Then, the proposed segmentation operator finds a cut forhwhic In Section II, we introduce a new thinning paradigm to char-
each vertex is connected to the seed that this random walkgferize and compute the watershed cuts. Intuitively, anthg
starting at this vertex will first reach. is obtained from an edge-weighted graph by iteratively kinge
the values of the edges that satisfy a certain property. \Weqgse
! Université Paris-Est, Laboratoire d'Informatique Gaspslonge, Equipe three different properties for selecting the edges whigh tar
ASE:NE?AEgoEﬁir:AE;%ZTiZ - ASCLEPIOS Team, France be lowered. They lead to three different thinning strategihe
Email addressesj.cousty, g.bertrand, l.najman, m.cougi@esiee.fr effect of these transforms is to extend the minima of theiaig
This work was partially supported by ANR grant SURF-NT055825. map in a way such that the minima of the transformed map

Index Terms— Watershed, thinning, minimum spanning forest,
shortest-path forest, connection value, image segmentati
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constitute a minimum spanning forest relative to the minimpath forest is called aif-shortest-path forest. In Section 1V, we
of the original map. Thus, we can prove (Th. 17) that thegwove (Th. 21) that any minimum spanning forest i¥-&hortest-
thinnings allow for a characterization of watershed cutse Tirst path forest and that the converse is, in general, not truen,Th
of these three schemes (Section II-B) uses a purely locategly we show (Th. 25) that any watershed cut is a topological cut
to detect the edges which are to be lowered. It is therefole wé.e., a separation induced by a topological watershed defined in
suited to parallel implementations. The second one (Sedtio an edge-weighted graph) but that the converse is, in genestl
C) leads to a sequential algorithm (Algorithm# -kernel) which true. We emphasize that this study helps, in practice, t@s#o
runs in linear-time (with respect to the number of edges ef ttamong these segmentation techniques the one which will best
graph) whatever the range of the weight function. We strleas t solve a particular problem.
Algorithm .#-kernel, and the one introduced in [16], are the The interest of the proposed framework to segment grayscale
first watershed algorithms that satisfy such a propertyeddd images is demonstrated in [16]. In Section V, we illustrdge i
as far as we know, the watershed algorithms available in tkersatility to segment different kinds of geometric obgecive
literature €.g, [4], [8], [9], [13], [14], [18]) all require either a present two recent applications where watershed cuts aktos
sorting step, a hierarchical queue or a data structure toteinia segment the surface of artwork 3D objects and to segment the
collection of disjoint sets under the operation of union aoede corpus callosum in brain diffusion tensors images.
of these operations can be performed in linear-time whaténee  This article is self-contained and proofs of the propertes
range of the weight function. Moreover, in practice, theoathm given in the IEEE digital library.
proposed in this paper is more flexible than the one propased i
[16]. Indeed, the proposed algorithm allows the user to shoo |. WATERSHED CUTS AND MINIMUM SPANNING FORESTS
(with respect to the application requirements) betweerersév  The intuitive idea underlying the notion of a watershed ceme
strategies for setting the watershed position in the caseravhfrom the field of topography: a drop of water falling on a
multiple acceptable solutions exig.§, when the watershed musttopographic surface follows a descending path and evéntual
be positioned across a plateau of constant altitude). Ifin@r reaches a minimum. The watershed may be thought of as the
third thinning strategy (Section II-D) establishes thelbetween separating lines of the domain of attraction of drops of water
watershed cuts and the popular flooding algorithms. [16], we follow explicitly this drop of water principle to defé the

Due to noise and texture, the weight maps derived from realotion of a watershed in an edge-weighted graph. This approa
world images often have a huge number of regional minimigads to a consistent definition of watersheds (with respect
Thus, their watersheds define too many catchment basins.clparacterizations of both catchment basins and dividingsh as
common issue to reduce this so-called over-segmentatidn isassessed by Th. 6 in [16]. In this section, after a presentati
use the result of the watershed as a starting point for a megibasic notations, we recall the definition of a watershed odta
merging procedure (see, e.g., [19]). In order to identifg thproperty which establishes its optimality.
pairs of neighboring regions to be merged, many methods are
based on the values of the points or edges that belong to the Edge-weighted graphs
initial separation between regions. In particular, in neathtical Following the notations of [28], we present basic definisida
morphology, several methods [20]-[22] are implicitly bdstn pangle edge-weighted graphs.
the assumption that the initial separation satisfies a fuedéah  \we define agraphas a pairX = (V(X), E(X)) whereV (X)
constraint: the values of the points or edges in the separatust s 5 finite set andz(X) is composed of unordered pairs 6f.X),
convey a notion of contrast, callecbnnection valuebetween je p(x)is a subset of {z,y} C V(X) | z # y}. Each element
the minima of the original image. The connection value [23]gf v/ () is called avertex or a point (ofX), and each element
[25] between two minimaA and B is the minimal valueY of g(x) is called anedge (ofX). If V(X) # 0, we say thatx
such that there exists a path frorh to B the maximal value s non-empty
of which is Y. From a topographical point of view, this value can et x pe a graph. Ifu = {z,y} is an edge ofY, we say that:
be intuitively interpreted as the minimal altitude that @l anqy are adjacent (forX). Let 7 = (zq,...,z,) be an ordered
flooding of the relief must reach in order to merge the lakegquence of vertices of,  is a path fromzo to z, in X (or
that flood A and B. Surprisingly, in vertex-weighted graphs,in v (x)) if for any i € [1, 4], z; is adjacent tas;_;. In this case,
several watershed algorithms do not produce a separatéin e say that z, and z, are linked for X. If ¢ = 0, then = is a
verifies this property. In this case, the watershed is nothen tyrjyial path in X. We say thatX is connectedf any two vertices
most “significant contours” [25] and cannot be used to cdlyec of x are linked forX.
compute morphological hierarchies such as those propased i| et X andy be two graphs. IfV (V) C V(X) and E(Y) C
[20]-{22]. In Section Ill, we prove (Th. 20) that the valuet 0 (x) we say that Y is a subgraph ofX and we writeY C
the edges in any watershed cut (and more generally in any ggt \we say thafi” is a connected component of, or simply a
induced by a minimum spanning forest) are sufficient to recovcomponent ofy, if Y is a connected subgraph of which is
the connection values between the minima of the original.mapnaximal for this propertyi.e., for any connected grap#, Y C

In fact, the connection value itself is used for defining save Z C X impliesZ =Y.
important segmentation methods such as the fuzzy conmexted Important remark. Throughout this papet denotes a con-
segmentation [5], [26], [27], the image foresting transfdd] or nected graph. In order to simplify the notations, this grapt
the topological watershed [23]. Indeed, the two first meshfadl be denoted byr = (V, E) instead ofG = (V(G), E(G)). We will
in the category of shortest-path forests if a shortest pattvéen also assume thakt # (.
two pointsz and y is defined as a path which “realizes” the Let X C G. An edge{z,y} of G is adjacent toX if {z,y} N
connection value betweenandy. In the sequel, such a shortestV (X) # ¢ and if {x,y} does not belong td&(X); in this case
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and ify does not belong t& (X), we say thay is adjacent taX. 91819
If = is a path fromz to y andy is a vertex ofX, thenr is a
path fromz to X (in G).

If S is a subset ofZ, we denote by S the complementary set| 9 | 9 | 9
of SinE,ie, S=FE\S.
Let S C E, the graph induced by is the graph whose edge set
is S and whose vertex set is made of all points which belong to
an edge inS, i.e, ({z € V | Ju € S,z € u}, S). In the following,
when no confusion may occur, the graph inducedshys also
denoted bys.

We denote byF the set of all maps fron’ to R and we say

that any map inF weightsthe edges of>. ) i o .
. . . . Fig. 1. lllustration of two dissimilarity measures [seetjeo weight the
Let F € 7. If uis an edge of7, F(u) is thealtltgde or_ WEIght edges of a 4-connected graph from a digital image(binand (c) the bold
of u. Let X C G andk € R. A subgraphX of G is aminimum subgraphs represent the minima and the dashed edges thshesteuts.

of F (at altitude k) if:

¢ X is connected; and
o k is the altitude of any edge of’; and

« the altitude of any edge adjacent 0 is strictly greater edge-weighted graph. Intuitively, the regions of a watedsfalso
thank. called catchment basins) are associated with the regioimmz
We denote byM (F) the graph whose vertex set and edge sef the map. Each catchment basin contains a unique regional
are, respectively, the union of the vertex sets and edgeofets minimum, and conversely, each regional minimum is inclugted
minima of F. Figs. 1b and c illustrate the definition of minima.a unique catchment basin: the regions of the watershedridkte
Important remark. In the sequel of this papeE’ denotes an the minima.

element of7” and therefore the pailG, I') is called anedge-  pefinition 1 (extension, cut)lLet X andY be two non-empty
weighted graph. subgraphs of7.

Before presenting the watershed cuts in the next section, \ge say thaty is anextension ofX (in G) if X C Y and if any
us briefly introduce basic ways to define an edge-weightephgra.omponent ofy contains exactly one component &t
for segmenting a digital image. In Section V, we also show hopet ¢ — £ We say thats is a (graph) cut for X if S is an
to define edge-weighted graphs to segment triangulatedc®sT oy sansion ofy and if 5 is minimal for this propertyi.e., if 7 C S
and diffusion tensor images. In applications to grayscalege ,nq7T is an extension of¢, then we havel’ = . N
segmentation) is the set of picture elements (pixels) amd )
is any of the usual adjacency relatioresg, the 4-adjacency in  On & topographic surface, a drop of water flows down towards
2D [29]. Then, a grayscale imagk attributes a value to each@ regional minimum. Therefore, bef.ore reminding th_e dedinit
element of V. For watershed segmentation, we suppose that tAEWatershed cuts, we need the notion of a descending path.
salient contours of are located on the highest edges®fThus, Let m = (xq,...,z,) be a path inG. The pathr is descending
depending on the application, there are several posw@hilio set (for F) if, for any i € [1,£— 1], F({z;_1,2;}) > F({zs, zi11})-
up the mapi* fr(_)m the.|mage[. . . Definition 2 (drop of water principle)Let S C E. We say
. A common 'szfe Is 1o segment a grayscale 'mage 'nf%:t S satisfies the drop of water principle (faF) if S is an
its “homogeneous” zones. To this end, one can weight eag

. . R . . ension of M(F) and if for anyu = {xo,y0} € S, there
edge {z,y} € F with a simple dissimilarity function defined exist 1 = (zo,...,an) andm = (yo,...,ym) Which are two

by F({z,y}) = |I(z) — I(y)| (seee.g, Figs. 1a and b). This descending paths i such that:
measure of dissimilarity is strictly local in the sense thfa@ 2. anduv.. are vertices of tW(; distinct minima of* and
weight of an edge depends on the intensity of the two pixels " Ym ’

linked by this edge. In some practical situatioasy( in presence rg(g_)é)lrs({;gt’ ﬁ\/}igl(.resp- Fu) = F({yo, y1})), wheneverr,

i ). ' comenent o e st e Sy o e e, we s e
edge {z.y} in £ by F({z.y}) = max{I(s) | » € Nu} watershed cut, or simply a watershed, /of

min{I(z) | z € N.}, whereN, is the neighborhood af = {z,y} We illustrate the previous definition on the functiéhdepicted
made of all vertices adjacent to eitheror Yy (i_e_, Ny, = {Z c in Flg 2. The functionF" contains three minima (In bold Flg 23)
V | {z, 2} € E or {y, z} € E}). This second strategy is illustratedWe denote bys the set of dashed edges depicted in Fig. 2b. It
in Fig. 1c. Finally, if we want to segment the dark regions of Enay be seen tha (in bold Fig. 2b) is an extension off (F'). Let
grayscale image that are separated by brighter zones eanegly Us consider the edge= {j, k} € S. There existsr; = (j, f, e, a)

to weight each edge € E, linking two pixelsz andy, consists (resp.m2 = (k)) a descending path i from j (resp.k) to the

of taking the minimum (or maximum) value of the intensitigs aminimum whose vertex set containgresp.k); on the one hand,

pointsz andy: F({z,y}) = min{I(x),I(y)}. the altitude of{j, f}, the first edge ofr; is equal to 4 which
is a value lower than 5 the altitude of on the other handk)

is a trivial path. Similarly tou, it can be verified that the two
B. Watershed cuts properties which must be satisfied by the edges in a watershed
We first recall the notions of extension [16], [23] and graphold true for any edge i¥. Thus,S is a watershed of’. Notice
cut which play an important role for defining a watershed in aamso that a watershed @f is necessarily a cut fob/ (F).
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in B(X): F(X) =3 ,cpx) Fu).

Definition 4 (minimum spanning forestiet X andY be two
subgraphs ofi7. We say that Y is a minimum spanning forest
(MSF) relative toX (for F, in G) if Y is a spanning forest relative
to X and if the weight ofY is less than or equal to the weight
of any other spanning forest relative 0. In this case, we also
say thatY is arelative MSFE

For instance, the graph (bold edges and vertices) in Fig. 2c
is a MSF relative toX (Fig. 2a).

Let X be a subgraph off and letY be a spanning forest
relative to X. There exists a cu$ for Y which is composed by
the edges ofy whose extremities are in two distinct components
of Y. SinceY is an extension of, it can be seen that this cSt
is also a cut forX. We say that this cut is theut induced byy".
Furthermore, ifY is a MSF relative toX, we say that that is
an MSF cut forX.

We recall the theorem proved in [16] which establishes the
optimality of watershed cuts. It states the equivalenceéet the
cuts which satisfy the drop of water principle and those awdl
by the MSFs relative to the minima of a map.

Theorem 5 (optimality, Th. 9 in [16])Let S C E. The setS
is an MSF cut forM (F') if and only if S is a watershed cut af'.

Fa 2 A hG and Ed 4 vertices i bold denidt As an illustration, it can be verified on Fig. 2b,c that the set
Af('F)" the g]ri";f’ma Oaf‘;; g))i“:rﬁ’i;(tengﬁfrggf A\Qle(rl;(:)es((:l;\ aOMSFegl‘gﬁz;e of dashed edges is both a watershed cut of the map and an MSF

to M(F). In (b) (resp.(c)) the setS of dashed edges is a watershed cufUt for its minima.
of F' (resp. a MSF cut fol\/ (F")).

Il. OPTIMAL THINNINGS

In this section, we introduce a new paradigm to compute MSFs
relative to the minima, hence to compute watershed cutshigo t
end, we first present a generic thinning paradigm from whieh w

In [16], we establish the optimality of watersheds. To thid.enderive three algorithmic schemes. The first of this threeses
the notion of minimum spanning forests relative to subgsaphs well suited to parallel implementations. The second @zal$
of G is introduced. Each of these forests induces a cut. {6 a linear-time (W|th respect to the number of edges of tla@}g)‘
this SUbseCtion, we recall the definition of these forest the sequentia| watershed a|g0rithm' Fina”y’ the third onevedl us to
equivalence between the watershed cuts and the cuts indycedhighlight the links between the watershed cuts and the irsioer

minimum spanning forests relative to the minima (see [16] fharadigm which is frequently used for computing watersheds
more details). This result will be used to prove the mainmlai yertex-weighted graphs.

of this article.
Generally, in graph theory, a forest is defined as a graph th&t Thinnings
does not contain any cycle. In this paper, the notion of toigs
not sufficient since we want to deal with extensions of sutlgga
that can contain cycleg(g, the minima of a map). Therefore, we
present hereafter the notion of a relative forest. It gdizesthe
usual notion of a forest in the sense that any forest is aivelat
forest, but, in general, a relative forest is not a foreduitively,
a forest relative to a subgrapki of G is an extensiort’” of X

such that any cycle mf is also a cycle inX. In other words, to The map#© associated to the map depicted in Fig. 2a is
construct a forest relative to an arbitrary subgrapbf G, one can g - in Fig. 3a

add edges toX, provided tha_t the added edges do not introduce A loweringis a transformation that replaces the weight of an
new cycles and that the obtained graph remains an extentivn Oedgeu by the weight of the lowest edge adjacent towhile

Formally, the notion of cycle is not necessary to define astore leaving unchanged the weight of any other edge. The weight of

Definition 3 (forest):Let X and Y be two non-empty SUb- i the transformed map is equal to the minimal altitude of the
graphs ofG. We say thatv” is aforest relative toX if: vertices that belong te.

C. Minimum spanning forests: watershed optimality

Intuitively, a thinning of F is a map obtained from¥ by
iteratively lowering down the values of the edges ®@fwhich
satisfy a given property.

Important remark. From now on, we will denote by®
the map fromV to R such that for anyz € V, F®(z) is the
minimal altitude of an edge which contains i.e, F®(z) =
min{F(u) | u € E,z € u}; FO(x) is thealtitude of .

i) Y is an extension of\; and Let w € E. The lowering of F at « is the mapF’ in F such
i) for any extensionZ C Y of X, we haveZ = Y when- that:
everV(z) =V(Y). o F'(u) = minge,{F°(z)}; and
We say thaty” is a spanning forest relative t&X (for G) if Y is e F'(v) = F(v) for any edgev € E\ {u}.
a forest relative toX and if V(Y) = V. For instance in Fig. 3, the map depicted(in (resp.(c) and(d))

Let X be a subgraph ofG, the weight of X (for F), is the lowering of the one shown if) at the edge{j, n} (resp.
denoted by F(X), is the sum of the weights of the edgedc,d} and{a,e}).
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Fig. 3.
bold are the minima of the depicted mags), The values of a map’ € F
are associated to the edges(@fthe values of the map'® are associated to Fig 4. [llustration of the different local configurationsrfedges.
the vertices ofG. (b, ¢, d), Three#-thinnings of F'; (¢, d), two .# -thinnings
of F'; and (d), an .-thinning of F. (e, f), Two #-kernels of F’; the two
HB-cuts associated to thég-kernels are depicted by the dashed edges.

A graphG and some associated maps. The edges and vertices in

FALSE, then we say thatf is a #-kernelof F.

In other words, a mag is a 2-thinning of F' if there exists a
(possibly trivial) sequence of magg$y, ..., Fy) such thatFy =
F, F, = H and, for any: € [1,¢], F; is the lowering ofF;_; at
an edge which satisfie® for F;_;. Furthermore, we say tha&l
is a 2-kernel of F' if H is a 22-thinning of F' such that there is
no edge ofG which satisfies for H.

In the next subsections, we introduce three edge-propetia
lead to three thinning transformations from which thrededént
algorithmic strategies for watershed cuts are derived.

B. #-thinnings: a local strategy for watershed cuts

We introduce a classification of edges based exclusively on
local propertiesi.e., properties which depend only on the adjacent
edges. In particular, we present the notion of a border ebuyen,
we study the thinning transformation which uses the prgpeft
“being a border edge” to detect the edges at which a map should
be lowered. Roughly speaking, the effect of this transfosntoi
extend the minima of the original map so that the minima of the
transformed map constitute an MSF relative to the miniménhef t
original map. Hence, consequently to Th. 5, this transfoam fwe
used to extract watershed cuts. Since the notion of a borgr e
is local, the associated thinning strategy is well suitegamallel
implementations.

Definition 8 (local edge classification)}et u = {z,y} € E.

o We say thatu is locally separating (forF) if F(u) >
max(FO (z), FO(y)).

e« We say that v is border (for F) if F(u)
max(F®(x), F°(y)) and F(u) > min(F°(z), F° (y))%

o We say that is inner (for F) if F©(z) = F9(y) = F(u).

k k k
k'<k k'<k k'<k k k k
locally separating border inner

Fig. 4 illustrates the above definitions. In Fig.{3, n}, {c, d}
and {a,e} are examples of border edges for the map shown
in (a); {i,m} and{k,(} are inner edges fofa) and both{h,}

Intuitively, an edge-propertyis a criterion which attributes, to and{g, ¥} are locally-separating fofz). Note that any edge af

each edge of an edge-weighted graph, either the IaGeV E

corresponds exactly to one of the types presented in Def. 8.

or the labelFALSE. We will study later on several examples ofTherefore, Def. 8 constitutes a classification of the edde§.o

such edge-properties which will serve us to define seveiratiting
strategies.

Definition 6 (edge-property)An edge-property(for G) is a
map & from E x F in the set{TRUE, FALSE}.
Let & be an edge-propertyy be a map inF andu be an edge
in £.If Z(u, H) =TRUE, we say that. satisfiess? for H.

Furthermore, this classification is local since, the clasany
edgeu = {z,y} depends only of the value#(u), F°(z)
and F° (y).

Definition 9 #-cut): We denote byz the edge-property such
that, for any edge: € £ and for any mapH € F, B(u,H) =
TRUE if and only if u is a border edge fofl.

Given an edge-property”?, we introduce a transformation, Let H be a#-kernel of F'. The set of all edges i which are
called £2-thinning, that acts on maps by iteratively lowering amdjacent to two distinct minima off is called a%-cut for F.

initial map at the edges which satisfy the edge-property
Definition 7 (thinning): Let & be an edge-property and be
a map inF. The mapH is a £-thinning of F if:
e H=F;orif
« there exists a mag in F which is aZ#-thinning of F' such
that H is the lowering ofJ at an edge which satisfie®
for J.

If His a2-thinning of £ and if, for any edge: in E, & (u, H) =

In Fig. 3, the maps depicted i, c,d) are the lowering of
the map(a) at respectively{j,n}, {c,d} and{a,e}. These three
edges are border edges fan. Thus the mapgb), (¢) and(d) are
three #-thinnings of F'. The map shown irfe) is a #-kernel of
the mapsa), (b) and (d) but not a#-kernel of (¢). The map(f)

INotice that a notion similar to the one of border edge has Ipeeposed
in the context of image segmentation under the nanmainfcontractible edge
[30].
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is another®-kernel of (a). The #-cuts associated t@) and(f) whose edge sek is made of all the pairs; = {i,i + 1} such
are represented by dashed edges in the figure. thati € [0,n — 1]. Let F(u;) = n — 1, for all ¢« € [0,n — 1].

We now present an important result of this section whicBn this graph, if the edges are processed in the order of their
mainly states that thes-kernels can by used to compute MSFéndices, stepi) will be repeated exactlyFE| times. The cost of

relative to the minima of a map. step i) (check all edges af) is O(|E]). Thus, the worst case
Property 10: Let H € F. If H is a #-thinning of F, then time complexity of this naive algorithm is at least|E|?).

any MSF relative taV/ (H) (for H) is an MSF relative taV/(F') In order to reduce this complexity, we introduce a second

(for F). Furthermore, ifH is a #-kernel of F', then M (H) is thinning transformation, called#-thinning, in which any edge

itself an MSF relative taV/ (F) (for F). is lowered at most once. This process is a particular case of

In other words, thez-thinning transformation preserves somez-thinning which also produces, when iterated until stapila
of the MSFs relative to the minima of the original map. Morez-kernel of the original map. Thanks to this second thinning
remarkably, the minima of @&-kernel of F constitute precisely strategy, we derive in Section II-F a linear-time algorithm
an MSF (for F) relative to the minima off’. Hence, the®- compute#-kernels and, thus, watersheds.
kernels can be used to extract MSFs relative to the minima. Welt may be seen that an edge which is in a minimum at a given
remind that an MSF relative to the minima of a map definesgep of a#-thinning sequence never becomes a border edge.
a cut composed of all edges which are adjacent to two distirithus, lowering first the edges adjacent to the minima seems to
components of the MSF. Thus, &-kernel of a map defines abe a promising strategy. In order to study and understarsl thi
Z#-cut for this map. Hence, by Prop. 10 and Th. 5, we can eas#yrategy, we may classify any inner, border or locally-safiag
prove the following corollary which states thatzkernel of ¥ edge with respect to the adjacent minima. We thus obtain the 8
defines a watershed df. cases illustrated in Fig. 5. Any edge is classified in exaotig
Corollary 11: Any #-cut of F' is a watershed cut of'. of these classes depending on the values of its adjacens edge
Thanks to classical algorithms for minima computation [31pbn the regional minima. In this section we study a thinningolvh
an MSF relative toM (F) can be obtained from anyg-kernel iteratively lowers down the values of the border edges adjac
of F. In fact, using the local classification of Def. 8, the minimao minima (see Fig. 5F).
of a #-kernel can be extracted in a simpler way. The following

property directly follows from the definitions of @&-kernel and locally-separating border inner

of a minimum. o S S e S
Property 12: Let H be a%-kernel of . An edgeu € Eis in || A K< Kk B ks e Bk oy Gk Tk

a minimum of # if and only if v is inner for A. c % r b % xR % R T

Let H denote az-kernel of F. On the one hand, the map — . ) )
Fig. 5. Edge-classification in a weighted graph. In the figany black vertex

and It§ minima can be derived front exclusively by local belongs to a minimum and two vertices represented by diffeshapesife.,
operations (see Defs. 8, 9 and Prop. 12). On the other hangyuare and circle) belong to distinct minima.

an MSF relative toM (F) is a globally optimal structure The
minima of H constitute, by Prop. 10, an MSF relative X6(F).
Thus, the local and order-independent operations preséntais
section produce a globally optimal structure.

This kind of local, order-independent operations for aftai
ing optimal structures can be efficiently exploited by dettida Ve denote by# the edge-property such that, for any edge £
hardware. For instance, raster scanning strategies foaatixig a 2nd for any mapt € 7, .#(u, H) = TRUE if and only if u is
#-kernel and its minima (hence an MSF relative to the minim&" M-border edge for. , ,
can be straightforwardly derived. It has been shown thah suk€t # be an.#-kernel of I". The set of all edges i& which are
strategies can be fast on adapted hardware [32]. adjace_nt to two distinct minima off is called an#-cut of F.

As mentioned above, the propertg, which selects border N Fig. 3, the edgegc, d} and {a,c} are M-border edges for
edges, can be tested locally: to check wheti#én, H) (with « ¢~ the Map(a) whereas{j, n} is not. Thus, the mapé) and (d)
E and H € F) equalsTRUE, one only needs to consider the®® {///-thmnlngs of (a) whereas(b) is not. Observe that when
values of the edges adjacentdo Thus, if a set ofindependent & Map is lowered at an M-border edge, one vertex and one
(i.e, mutually non-adjacent) border edges is lowered in pdrall§d9e are added to a minimum. In Fig. 3, it can be also verified
then the resulting map is @-thinning. This property offers that the maps(e) and (f) are .#-kemels of (a) and that the
several possibilities of parallel watershed algorithmspdrticular, 2sSociated-cuts are watershed cuts 6&). In Section II-E,
efficient algorithms for array processors can be derived. we indeed prove the equivalence betwegficuts, %-cuts and

watershed cuts. In Section II-F an efficient linear-tind(|¢|))

gorithm to compute the#-cuts is derived. Thus, thanks to
e ./-thinnings, we obtain a linear-time sequential algorithm

) ) ) ) to compute the watershed cuts of a map.
On a sequential computer, a naive algorithm to obtaim-a

kernel of F could be the following:) for all v = {z,y} in E,
taken in an arbitrary order, check the values Iofu), F©(z)
and F° (y) and whenever4(u, F) = TRUE (i.e, u is a border ~ Among the different schemes to compute a watershed in a
edge forF), lower the value of. down to the minimum of*®(z)  vertex-weighted graph, the immersion strategies [8], [€] the

and F®(y); i) repeat stepi) until no border edge remains.most frequently used in applications. They correspond ® th
Consider the grapliz whose vertex set i = {0,...,n} and intuitive idea of simulating the flooding of a topographiafage

Definition 13 (#-cut): We say that an edge: in E is
minimum-border (forF’), written M-border if « is border forF
and if exactly one of the vertices im is a vertex ofM (F').

C. .#-thinnings: an efficient sequential strategy for WatersheﬁjI
cuts

D. .#-thinnings: an immersion strategy for watershed cuts
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from its minima. The watershed lines are made of dams build was proposed to show the equivalence between computing an
the points where water coming from different minima wouldetne MSF relative to the minima and computing a minimum spanning
Surprisingly, in general, the links between immersion Athms tree. Roughly speaking, from an edge-weighted gr@ph?'), we

and watersheds are not straightforward. Indeed, as shoy@%jn start by contracting each minimum éfinto a single vertex. Then

in vertex-weighted graphs, these algorithms sometimedus® we add an extra-vertex linked to each contracted minimum by an
segmentations which are far from corresponding to the tgudg edge of minimal weight. We thus obtain a new edge-weighted
ical intuition of a watershed. Among the immersion stragegthe graph (G’, F’). As stated by Meyer in [17], it may be seen that
procedure proposed by F. Meyer in [9] is probably the sintitles the edges considered by Prim's algorithm applied (6H, F)
describe and understand. In an edge-weighted graph, itldmil are the same as those considered in a sequencé-tbinnings.
presented as follows: i) mark the minima with distinct lapeél) Therefore, Prop. 15 gives us a clue to precisely determiee th
mark the lowest edge containing exactly one labelled vesti#ix relation between MSFs relative to the minima and the thiginin
this label; and iii) repeat step ii) until idempotence. Aetand transforms introduced above. Precisely determining thiation

of the procedure, the set of edges that link two vertices athrkis the topic of the next subsection.

with distinct labels constitute the “watershed by floodingin

important contribution of this subsection and the followione is g Equivalence between-cuts,.#-cuts, #-cuts and watersheds
to prove that, in edge-weighted graphs, this procedureymesl . . . " .
P ' g g graphs, P We clarify the links that exist between the thinnings introed

a watershed cut. In order to prove this result, we introdume t . L
-thinnings that can be associated with the above procedure above, the MSF relative to the minima and the watersheds.
In particular, we show (Th. 17) that theg-kernels, the.#-

Let X. be a subgraph OG we say that an edge is outgoing kernels and the7-kernels lead to equivalent characterizations of
from X if one of the vertices in, belongs to the vertex set of
. . watershed cuts.
and if the other vertex in. does not. . -
L ) ) . - . The following property states that the minima &f-kernels,
Definition 14 (#-cut): If « is an edge with minimal altitude L o
among all the edges outgoing fronf(F), then we say that is the minima of.#-kernels and the minima o -kernels of I’ are
ong at 9 going ' y all MSFs relative toM (F'). More remarkably, any MSF relative
animmersion edge fof'. . o
to M(F) can be obtained as the minima of a#-kernel of F,
We denote bys the edge-property such that, for any edge £ o -
and for any mapi € 7, . (u, H) = TRUE if and only if  is as the minima of ans-kernel of F and also as the minima of
y ' ’ y a %-kernel of F. Therefore, in this sense of minimum spanning

an immersion edge fofi. forests, these thinning transformations may be seenptisnal
Let H be an.#-kernel for F. The set of all edges i which are ' 9 y pét

. - . . thinnings
adjacent to two dIStht. minima. aff IS caIIed. ans cut.for. I Lemma 16:Let X C G. The four following statements are
In order to stress the link between immersion aAethinnings, equivalent:

let us consider the following straightforward adaptatidnttoe
procedure presented in the introduction of the subsection.

(i) Mark the minima with distinct labels.

(i) Mark the lowest edgeu containing exactly one labelled
vertex with this label and lower the madpatu (i.e.,, F := F’
where F’ is the lowering of " at ).

(i) Repeat step (ii) until idempotence.

(i) there exists ans-kernel H of F' such thatM (H) = X,
(i4) there exists anz-kernel H of F such thatM (H) = X;
(7i1) there exists aB-kernel H of F such thatM (H) = X;;
(iv) X is an MSF relative tQV/(F").

Since a relative MSF induces a graph cut fdi(F), from the
previous lemma, we immediately deduce that theuts,.#-cuts
) ] - ) o and #-cuts are also graph cuts far (F'). Hence, the following
After each iteration of step (ii), the map is an.7-thinning of heqrem which states the equivalence between watershedzut

the input map. The set of labelled edges correspond to themain ¢, -cuts and.#-cuts can be straightforwardly deduced from
of F and each minimum of* is marked with the label of the Lem. 16.

corresponding minimum in the input map. Thus, at the endisf th Theorem 17:Let S C E.
algorithm the output map’ is an.#-kernel of the input map and -
the set of all edges that link two vertices marked with didtin
labels is ans-cut of the input map.

Property 15: Any immersion edge fof' is an M-border edge
for F.

In Fig. 3, {a,e} is an immersion edge fofa) whereas{c, d}

The four following statements are
equivalent:

(¢) S is an.7-cut for F;
(i) S is an.#-cut for F,
(i41) S is a #A-cut for F;
(iv) S is a watershed cut foF'.
is not. Thus, the magd) is an .#-thinning of (a) whereas the A major consequence of this theorem is that any algorithntivhi
computes an.#-cut, an.Z-cut or a #-cut also computes a

map (C). IS not. Qn the one hand, as stated by Prop. 15, AWatershed. Conversely any watershed of a map can be obtained

immersion edge is an M-border edge. On the other hand, asshow -
. . . as an.z-cut, as an#-cut and as az-cut. In the next section,

by the previous example, there exist M-border edges whieh ar .

- . S . We propose an algorithm fow7-cuts.

not immersion edges. Thus, th&-thinning transform generalizes

the immersion algorithms in edge-weighted graphs. In thd ne ) .

subsection, we prove that ang-cut is a watershed. For instancef Linear-time watershed algorithm based o#i-kernels

in Fig. 3, the mapge) and (f) are two .#-kernels of(a) and An efficient linear-time algorithm (Algorithm#-kernel) to

it can be verified that the associate@icuts are watershed cutsextract the watershed cuts is proposed. It consists of ctingpan

of (a). . -kernel of a map and its minima. Therefore, by Th. 17, the wa-

Prop. 15 also establishes a link with the minimum spannieg trtersheds can be computed by taking the edges which linkndisti
algorithm due to Prim [33]. To understand this link, we hawe tminima of the.#-kernels. The correctness and time-complexity

consider the construction (described in Sec. Ill.B of [I®lich of this algorithm are analyzed. Finally, implementation ailet
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to select “interesting” cuts when several watersheds exist range of the weighting map.

discussed. In practice, Algorithm.#-kernel runs about 2 times slower than
Before presenting Algorithm#-kernel, we recall that € Eis the algorithm proposed in [16] which is as fast as minima aomp

a border edge foF if the altitude of one of its extremities equalstation algorithms. However, Algorithm?-kernel is more flexible.

the altitude ofu and the altitude of the other one is strictly less.et us consider a map that contains “non-minima plateaie; (

than the altitude of.. connected subgraphs with constant altitude). The mapFig. 6a
illustrates such a situation (see also reference [36] forinan
Algorithm: _z-kernel depth study of such situations). There exist several wateis

of F'. More precisely, any set containing a single edge at akitud
Result 7: an M-border kernel of the input map, 3isa vyatershed oF._ In theory, any of these wat(_ersheds_can
: - be obtained by Algorithm#-kernel. Nevertheless, in practice,
and (Vyy, Epy) its minima. - . .
Le0: Algorithm {.///-kernel can be |mplementeq to. compute exclusively
ComputeM(F) = (Var, En;) and F©(x) for eachz € V; some particular Watershgds. If the .sl'etls |mplemented as a
: ) stack (the last element inserted inis the first one removed
foreach « € E outgoing from(Vy;, Eps) do L — LU {u} ; . .
: : from L), the obtained watershed will be located on the plateaus
while there existsu € L do . :
) borders. In this case, the watershedro€omputed by Algorithm
L~ L\{u}; . ) .

#-kernel will be either{{b,c}} or {{f,¢}}, depending on the
scanning order. On the other hand, if the gets implemented
as a (monotone) priority queue, such as the hierarchicaleue
proposed in [9], then the obtained watershed will be “cetér
(according to the distance induced &Y on the plateaus. In this
case, the watershed &f computed by Algorithm#-kernel will
be composed byd, e}. Figs. 6b,c and d illustrate the differences
between the watersheds obtained by these two implememtatio
on a two-dimensional image. Note that the second implertienta
of Algorithm .#-kernel runs in linear time only if the range of

In Algorithm .#-kemel, to achieve a linear complexity, thetn® Weights is sufficiently small since it uses a monotonerityi
graph(V, E) can be stored as an array of lists which maps to eaSHEUe: Note_also that the centenng_ condition nelt_her allog/to
point the list of all its adjacent vertices. An additional pping Uniduely define a watershed (consideg, a map with a plateau
can be used to access in constant time the two vertices whfhi€ven width), nor to compute it order-independently (s&#,[
compose a given edge. Nevertheless, for applications tgema38] for examples of order-independent segmentation nusho
processing, and when usual adjacency relations are usese th Algorithm .Z-kernel associates a catchment basin to each
structures do not need to be explicit. minimum. In applications, one does qot always need a basin fo
Furthermore, to achieve a linear complexity, the minimarof ©&ch minimum. In order to reduce this over-segmentatiomeso
must be known at each iteration. To this end, in a first stépethods in mathematical morphology use the connectionevalu
(line 2), the minima ofF" are computed and represented by twiP dgtermlne which basins to merge. The next section studees
Boolean arrayd/y; and Ey, the size of which are respectivelyrelat'on between watersheds and connection value.
|V| and |E|. This step can be performed in linear time thanks tt 0 ®m (03 @3e3IHn3dHlolg
classical algorithms [31]. Then, in the main loop (line 4ea
each lowering ofF (line 9), V), andE); are updated (line 10). In
order to access, in constant time, the edges which are Mehor
the (non-already examined) edges outgoing from the miniraa
stored in a sef. (lines 3 and 12). This set can be, for instance
implemented as a queue. Thus, we obtain the following ptgpe

Property 18: At the end of Algorithm.#-kernel, F is an.#-
kernel of the input functior. Furthermore, Algorithm#-kernel
terminates in linear time with respect (&. (b)

As far as we know, the watershed algorithms available in tHFégO-I 6. lllustre;]t_ioa r?f Watersf;etd Cutstinltptrzse%cerf_pme(az) A grap??

H : H ana a mapy wnici as one plateau at altituae n image representation
“ter?ture €9, [4].’ (8], [9]’ [13], [14], [18]) all require elthe!‘ a of an edgr:jweighted graphp(4-adjacency relegtic))n) deriv%mfapreal-world

sorting step, a hierarchical queue or a data structure toteiBi jnage (close-up on a microscopic view of a cross-sectionwhaium oxyde

a collection of disjoint sets under the operation of uniom Oceramics). The weight map is obtained by assigning to eagh ttk minimum

the one hand, the global complexities of a sorting step and ‘riéft:“eese\ﬁzfsﬁ :2 (t)TJ‘iai?]r(ie%insl Z?)i%ﬁh Oft}ites rt;"é% |3§(g$$itmavc§t;2ﬁgg

a (monotone) hierarchical quel_"ee(’ a structure fr_om _WhICh cht)s (superimposed in white)yobtainedgby Algorithm-l’(ernel implemented
the elements can be removed in the order of their a|t|tude) alith respectively a stack and a hierarchical queue.

equivalent [34]: they both run in linear-time only if the g

of the weights is sufficiently small. On the other hand, the

best complexity for the disjoint set problem is quasi-linfZb].

Therefore, we emphasize that, to the best of our knowledge, t [1l. CONNECTION VALUE

proposed algorithm (together with the one introduced if)[16 From a topographical point of view, the connection valusdal
the first watershed algorithm that runs in linear-time whatehe called degree of connectivity [39] or fuzzy connectednezf] [

Data: (V, E, F): an edge-weighted graph;

if » is border for F' then
x « the vertex inu such thatF®(z) < F(u) ;
y «— the vertex inu such thatF® (y) =
F(u) <—Fe(l’) ; Fe(y) — F(u) ;
Var <= Var U{y} ; By — Epp U {u}
foreach v = {y/,y} € E with ¢/ ¢ V; do
| L — Lu{v};/lvis outgoing fromM (F)

© 0O N o g b~ WN R

R =
N B O
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up to an inversion off’ [23], [40]) between two minima can Image Foresting Transform [4] and of the fuzzy connectedjena
be seen as the altitude of the lowest pass between these s@gmentation [5], [40]) and topological watersheds [12]3]]
minima. It corresponds to the minimal altitude at which oeeds Furthermore, in [43], based on the framework of this paper, a
to climb in order to reach one minimum from the other. As statdink between min-cuts [2] and watershed cuts is provided.

in the introduction, this value is important for morpholcgi
region merging methods [20]-[22] which simulate the overfo
of catchment basins during a flooding of the topographicaserf
We start this section by defining the connection value. Then, We investigate the links between relative MSFs and shertest
we show that any MSF relative to any arbitrary subgraphGof path forests which also constitute an optimization pamadig
“preserves” the connection values. Thus, knowing the \&iofe used for image segmentation. In particular, the image fioigs
the edges in an MSF cut fox, one can recover the connectionfransform [4], the inter-pixel flooding watershed [9], [44ind
values between any two componentsof Hence, according to the relative fuzzy connected image segmentation [5], [E51],

Th. 5, the watershed cuts also “preserve” the connectioneval [40] fall in the scope of shortest-path forests. Intuitivethese

A. Shortest-path forests

Definition 19 (connection value)tet = = (zo,...,z;) be Methods partition the graph into connected componentsaied
a path in G. If = is non-trivial, we setYp(r) = (O seed points (also called markers). The component of each
max{F({z;_1,2;}) | i € [1,]]}. If 7 is trivial, we setY p(x) = Seed consists of the points that are “more closely connéeted

F®(z0). Let X and Y be two subgraphs ofz, we denote this seed than to any other. In many cases, in order to define
by II(X,Y) the set of all paths fromX to Y in G. The the relation is “more closely connected to”, the chosen wieas

connection value betweexi andY (in G, for F) is Tr(X,Y) = is precisely the connection valueg., a pathz’ is considered
min{Yp(r) | 7 € (X, Y)}. as shorter than a path wheneverYp(r') < Yp(x). Then,

Let X be any subgraph of. The following theorem asserts point = is more closely connected to seedhan to seeds’ if
that, if the connection value between two componentsXofs the connection value betweenand s is less than the connection
equal tok, then the connection value between the two corrd/@lue betweerw and s’. Given a set of seed points (or seed
sponding components in any MSF relativeXois alsok: relative 9raph), the corresponding segmentation can be obtainechby a
MSFs preserve the connection values. A major consequencelgfhortest-path forest,e., a shortest-path forest for whicti
this theorem is that the cuts induced by relative MSFs convégfines the length of a path. We show that any MSF relative to
the connection value between the components of the origifafubgraphX is anY-shortest-path spanning forest relativeXo
subgraph. and that the converse is not tru€urthermore, we prove that both

Theorem 20:Let X be a subgraph ofz. If Y is an MSF Cconcepts are equivalent whenevgrcorresponds to the minima
relative to X, then for any two distinct components and B of the considered map'. A consequence of this last res_ult is the
of X, we haveY (A, B) = Tp(A’, B'), where A’ and B’ are equivalence between the watershedsFoaind the cuts induced
the two components of such thatd C A’ and B C B'. by the T-shortest-path spanning forests relative to the minima.

For example, in Fig. 2a, the connection value between the twolntuitively, a shortest-path forest relative to a subgraplf ¢
minima at altitudel is equal to4. Indeed, Y r((a,e, f,g)) = 4 is a forest relative toX which is such that, for each vertex, there
whereas the length of any other path from one of these minima&Xists a path in the forest, which is a shortest path)nfrom
the other is greater than 4. It can be verified that the coiorect this vertex to the subgraph’.
value between the two corresponding components of the MSFdf = € V, to simplify the notation, the grapt{=},0) is denoted
relative to the minima, depicted in Figs. 2c is alsgnotice in by =. Let X andY” be two subgraphs ofr, we say that” is an
particular thatY ((f, g)) = 4). T-shortest-path forest relative t& if Y is a forest relative toX

Let S C E be a watershed cut af. As a corollary of Th. 20, and if, for anyz € V(Y), there exists, frome to X, a pathr
it may be deduced that the connection value between twandistiin ¥ such thatY p(r) = Yp(z,X). If Y is anY-shortest-path
catchment basinsi.¢., two components of5) is equal to the forestrelative toX andV/(Y) =V, thenY"is anT-shortest-path
connection value between the two corresponding minimar of SPanning forest relative td(, and the cut induced by is an
Thus, knowing the values of the edges in a watershef,afne SPF cut for.X.
can recover the connection values between the minima. of Let G be the graph in Fig. 7 and’ be the associated map.

The connection value itself is used to define several importa-€t X, Y, Z be the bold graphs in Figs. 7a,b and c. The graphs
segmentation methods [4], [5], [12]. Hence, Th. 20 invitestes @nd Z are Y-shortest-path spanning forests relativeXo

study the links between the watershed and these methods. Theorem 21:Let X andY be two subgraphs of:. If Y is an
MSF relative toX, thenY is anY-shortest-path spanning forest

relative to X. Thus, any MSF cut foX is a SPF cut forX.

The converse of Th. 21 is, in general, not true. For exampte, t
raph Z (Fig. 7c), is anY-shortest-path spanning forest relative
'the graphX (Fig. 7a) whereas it is not an MSF relative to this

graph. On the same example (Fig. 7c) we can also observe that,
contrarily to relative MSFsY-shortest-path spanning forests do

IV. WATERSHEDS SHORTESTFPATH FORESTS AND
TOPOLOGICAL WATERSHEDS

In practice, to choose among the numerous segmentat
techniques available in the literature the one which wilktbe
solve a given problem, it is necessary to understand therdiff

ences or links between these techniques [40]-[42]. Andsterg not always preserve the connection value (in the sense d0jh.

feature of the framework settled in this paper is to provide A particular, in Figs. 7a and c, the connection value betwee

: : . I
means to compare, from a mathematlcal point of VIEW, Sevey Ie two components ok is equal to8, whereas the connection
methods used for image segmentation. Thanks to relativesMS
and.#-kernels, we provide a mathematical comparison betweereThis result has been independently presented in two pagéis [45]

watershed cuts, shortest-path forests (the theoreticas lod the published at a same conference.
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2 : . -
8 2 2 8 > °L°L°—O? choice for marker-based segmentation procedures, atration
0 0 of which is provided in [16].
[, O [, o- - - O [, O O 5
9 8 0 9 8 0 9 8 0
a c B. Topological watershed

The topological approach to the watershed [12], [23] iSlextt
in graphs whose vertices are weighted by a functibnlt
considers a transformation that iteratively lowers thei@alof I
while preserving some topological properties, namely tnaler
of connected components of each lower thresholdl ofThis
transform and its result are calledVd-thinning a topological
watershedeing a W-thinning minimal for the& relation on maps
(see Appendix in the digital library for formal definitiongjor
instance, the map of Fig. 8e is a topological watershed obtiee
of Fig. 8d. Thedivide of a topological watershed is the set of
all vertices which do not belong to any minimum (see the non-
bold vertices in Fig. 8e). A topological watershed and itad#
constitute an interesting segmentation which satisfiesoitapt
properties (see [18], [23], [25]) not guaranteed by mostutep
watershed algorithms. In particular, in [23], [25], the Balence
between a class of transformations which preserves theection
value and the W-thinnings is proved. Thus, Th. 20 invites us
to recover the links between watershed cuts and topological
watersheds.

The notion of line graphs presented below (see [15], [46]])[4
provides a way to automatically infer definitions and proipsr
from vertex-weighted graphs to edge-weighted graphs.

value between the two components ofis equal to0. Then, on ~ Definition 23 (line graph):The line graph of G = (V, E) is
the contrary of cuts induced by relative MSFs (see for irstanthe graph(£,T), such that {u,v} belongs toI' wheneveru €
Fig. 7b), the cuts induced by-shortest-path spanning forests ard?: v € E, andu andv are adjacent,e., [uNv| = 1.

not necessarily located on the “crests” of the function. 3deond ~ T0 each graplG whose edges are weighted by a mépwe
row of Fig. 7 illustrates the differences between MSF and SFan associate its line grajgif. The vertices of7’ are weighted by
cuts on a synthetic 2D image. The image in Fig. 7d is composédand thus any transformation &f can be performed either i
of three overlaid squares whose intensities are respactiye OF in G'. Fig. 8 illustrates such a procedure. I@tbe the graph
100 and200. From this image an edge-weighted gragh F) is depicted in(a), (b) and (c). The line graph ofG is depicted
derived by considering the 4-adjacency relation and bygagsy N (d), (¢) and (f). The map shown inb,e) is a topological
to each edge: = {z,y} the absolute value of the difference ofvatershed of the one shown {n,d) and the map inc, f) is a
the intensities of: andy. Thus, the weight of any edge that links%-kernel.
two pixels belonging to a same zone is equabtwhereas the 0 10 6 0 0 5 0 0 o
weight of any edge that links two different zones is equal(®. ¢ Y 7 T P T

An image representation of this edge-weighted graph isquot 2 OI OI 5 OI Oi 4 8 SI
in Fig. 7e. Let us also consider as a marker a subgrsiptf G 3 © 5 ° 2 ° 0 > 5 o 0 25 o
made of two isolated vertices: the first one is located in thelb

(a) (b) (c)
zone whereas the second one is located at the center of tge.ima (4)—10—(6) @05 ()—10—(0)
In Fig. 7f and g, two SPF cuts relative  are superimposed in 9.5.8.@ @.8.8.@ 0.5.8.@
white to the original image. The first one is furthermore anFVIS 9.9.9 @‘9‘@ @‘6‘@
(d) (e) (f)

(a) (0) (c)
(d) (¢)
(f) (9)
Fig. 7. Links and differences betweeilf-shortest-path and minimum
spanning forests. First row: a gragh and a mapF'. The bold subgraphs
are: (a), a graphX; (b), an MSF relative toX; (c), an Y-shortest-path
spanning forest relative t& that is not an MSF relative t&. Second row:

illustration, on a synthetic image, of the differences ket SPF and MSF
cuts [see text].

cut whereas the second one is not.
In fact, if the markerX equalsM (F), the equivalence betWeenFig. 8. lllustration of line graphs and topological watexdh. The graph
both concepts can be proved. in (d) (resp.(e), (f)) is the line graph of the one ifu) (resp.(b), (c)). The
Property 22: Let Y be a subgraph of7. A necessary and minima of the associated functions are depicted in bgld.¢): a topological
sufficient condition forY to be an Y-shortest-path spanning \g}azzrsdh)ed ola, d); (¢, f): a #-kemel of (a, d) which is also a W-thinning
forest relative toM (F) is thatY is an MSF relative taV/(F). e
Furthermore, a subset @ is an MSF cut forM (F') if and only
if it is a SPF cut forM (F). Definition 24 (topological cut):Let S C E be a cut forM (F).
Whereas the notions of-shortest-path forests and relativeVe say thatS is a topological cut for £ if there exists a W-
MSFs are equivalent when extensions of the minima are cdhinning H of F, in the line graph of7, such thatsS is the set of
sidered (Prop. 22), when we consider extensions of arpitraall edges ofG which are adjacent to two distinct minima &f.

subgraphs, the relative MSFs satisfy additional propgrsach as
the preservation of the connection value (Th. 20) or thengiity
(in the sense of Def. 4). Relative MSFs is thus a method

Theorem 25:Let H be a map fromE to R. If H is a #-
thinning of F' in G, thenH is a W-thinning ofF in the line graph
of G. Moreover, any#-cut for F is a topological cut forF.
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The previous property is illustrated in Fig. 8 where the mafor indexing and retrieving objects of interests in a dasaba
depicted in Fig. 8c is a#-thinning of F (Fig. 8a), thus a W- of meshes (EROS 3D) provided by the French Museum Center
thinning of F. The converse of Th. 25 is not true. The map for Research. One key idea of this search engine is to use
(Fig. 8b) is a topological watershed df but it is not a#- region descriptors rather than global shape descriptorsider to
kernel of F'. Indeed, there is no MSF relative to the minimarof produce such descriptors, it is then essential to obtaimingful
associated to the cut produced by the topological waterghed mesh segmentations.
Observe, in particular, that the produced cut is not locaied
the highest “crests” of the original map. Fig. 9a shows an
image representation of @-kernel H obtained from the map’
represented in Fig. 6a and from which we derived the cut shown
Fig. 6b. Fig. 9b is a topological watershed &f which, by
Th. 25, is also a topological watershed Bf Fig. 9c represents
the watershed cut associated with these two maps. (a)

:ﬂ '1

(a) (b) (c)

Fig. 9. Image representation dfi), a #-kernel of Fig. 6b;(b), a topological
watershed ofa); and (c), the watershed cut associated to bath and (b).

An important consequence of Th. 25 is th&tcuts (hence,
by Th. 16, watershed cuts) directly inherit all the propestof
W-thinnings proved for vertex-weighted graphs [18], [2[Z5]. (d) (e) (f)

In recent papers [15], [47], [48], we have studied and predosFig. 10. Surface segmentation by watershéd): A mesh in black and
solutions to some of the problems encountered by regioningergits associated graph in gragb): A cut on this graph (in bold); andc),

methods which consider frontiers made of vertices as Initif corresponding segmentation of the meh: Rendering of the mesh of
a sculpture.(e): A watershed (in red) of a map’ which behaves like the

segmentations. In particular, we haV_e intrOdl_Jced an anfyCe inverse of the mean curvature and, (ifi), a watershed of a filtered version
relation onZ™ which is adapted for region merging. An importanbf F. The mesh shown iiid) is provided by the French Museum Center for

property (Prop. 54 in [47]) is that the induced grids, caltad Research.

perfect fusion grids, are line graphs. If we consider a mahvh

assigns a weight to the vertices of such a grid, then the seinformally, a mesh M in the 3D Euclidean space is a set
of definitions and properties given in this paper are stilidva of triangles sidesof triangles andpoints such that each side
Thus, the perfect fusion grids constitute an interestingrahtive is included in exactly two triangles (see Fig. 10a). In ortter
for defining a watershed which is based on vertices and whipkrform a watershed cut on such a mesh, we build a géaph

satisfies the drop of water principle. (V,E) whose vertex set is the set of all triangles in/ and
whose edge sel is composed by the pairke, y} such thatz
V. ILLUSTRATION TO SEGMENTATION and y are two triangles ofpM that share a common side (see

. : : ig. 10a).
In Section I-A, we present different ways to derive edg(ﬁ'g . .
weighted graphs from grayscale images. In [16], we showed ho To obtam(?tsegmg r;]tﬁ;]on o(]; the n}eMlthar-\ksl to t? V\{ﬁter$ged
to use these graphs to automatically segment an image intG'% Webnee 0 We'r? ele ges@ (ﬁ.r re]quwa e; ?/1 ESI gs_
predefined number of regions by coupling watershed cuts wi M) by a map whose values are high around the boundaries

connected filters [49]. We also illustrated the use of retaMSF 0 the r_egions that we want to separate. We have found that the
as a marker-based procedure for grayscale image Segmentatilnterestmg contours on the EROS 3D meshes are mostly tbcate

In this section, we illustrate the versatility of the propds on concave zones. Therefore, we weight the edge& dy a

framework to perform segmentation on different kinds ofrget map F which behaves like the inverse of the mean curvature of

ric objects. Firstly, we show how to segment triangulatedeses the surface (see [50] for more details). Then, we can compute

by watershed cuts, and secondly we apply the watershed (EutéNPterS?ed cuL(m bold [[nt!zlg._l(sﬁ) which Iter:]a(:sthto ‘% naltnurai an
the segmentation of diffusion tensors images, which areicakd accurate mesh segmentation In the sense that the “bor 0
images associating a tensor to each voxel regions are made of sides of triangles (in bold in Fig. 10c) of

high curvature.

. The direct application of this method on the mesh shown

A. Surface segmentation Fig. 10d leads to a strong over-segmentation (Fig. 10e) due t
3D shape acquisition and digitizing have received more amide huge number of local minima. By using the methodology

more attention for a decade, leading to an increasing amoumitroduced in mathematical morphology and our notions, am® c

of 3D surface-models (or meshes) such as the one in Fig. 1@dtract all the minima which have a dynamics [24] greaten tha

In a recent work [50], a new search engine has been propogeddefined threshold (here 50) and suppress all other mibyma
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a geodesic reconstruction [31]. A watershed cut of the fap the edges which are to be lowered. The corresponding three

(obtained fromF with such a filtering step) is depicted in Fig. 10f.transforms extend the minima of the original map in a way

such that the set of edges (callegicuts .#-cuts and .#-cutg

linking two minima of the transformed map constitute prebis

a watershed cut of the original map. Conversely, any waggrsh
In the medical contextiffusion Tensor Images (DTISP1] ¢yt is necessarily a-cut, an.#-cut and an.#-cut. The first

provide a unique insight into oriented structures withssties. f these thinnings uses a purely local strategy to detecedges

A DTI T maps the set of voxels” C Z* (i.e, V is a cuboid \yhich are to be lowered and, therefore, it is well suited tafbealr

of Z%) into the set of3 x 3 tensors ie., 3 x 3 symmetric positive jmplementations. The second one leads to a flexible seguienti

definite matrices). The valu€(xz) of a DTI T" at a voxelz € V' |inear-time (with respect to the number of edges) watershed

describes the diffusion of water molecules aat For instance, algorithm. Finally, the third one establishes the link begw the

the first eigenvector off’(z) (i.e. the one whose associatedyatershed cuts and the popular immersion scheme whichnfall i

eigenvalue is maximal) provides the principal directionwafter pe topographical category.

molecules diffusion at point and its associated eigenvalue gives o, the optimization side, we showed the equivalence between

the magnitude of the diffusion along this direction. Sincatev 1o \watershed cuts and the separations (CAlI&-cutsand SPF-

molecules highly_di_ffuse _along fiber tracts gnd since thetewhicuts induced by two optimal structures: the minimum spanning

matter of the brain is mainly composed of fiber tracts, DT® afyrasis and ther-shortest paths forests relative to the minima.

particularly adapted to the study of brain architectur@. Hila 5, the algorithmic side, we would like to emphasize that the

shows a representation of a cross-section of a brain DTIeer 1, ,ronosed algorithms both run in linear time whatever the

tensors are represented by ellipsoids. Indeed, the datarteofsor range of the input function. To the best of our knowledgesehe

is equwalfent tq the one of an ellipsoid. In t_he brain, thepuer are the first watershed algorithms satisfying such a prapert
callosum is an important structu_re made of flbertractscamga_ Finally, we have shown that any watershed cut allows for
homologous areas of each hemisphere. _In_ order to track msf'brecovering the connection value between the minima of the
that pass through the corpus callosum, it is necessary toesgg

it first. The next paragraph briefly reviews how to reach thualg original map and thus that it is a topological cut. In mathtcaa
' hol thi ty pl fund tal role for def
thanks to watershed cuts (see [52] for more details). morphology, this property plays a fundamental role for degn

Wi ider th ~ (v B induced by the 6-adi watershed-based hierarchical segmentation methods [2]],
dch(.)nsé ﬁr € grapg E v, &m u‘c/e dyz €ba Ja(?ency Future works will be focused, on the one hand, on the above
and defined byz,y} € Eiff = € V.y € V and Sie1,2331% —  antioned hierarchical segmentation schemes (inclugimglesic

vi| =1, wherex = (w1, 25, 23) andy = (y1, 42, y3). In order to saliency of watershed contouf82] andincremental MSFsand
weight any edg€z, y} of G by a dissimilarity measure between ) . R .
also on watersheds in weighted simplicial complexes, argéna

the tensors” () andT (y), we choose the Log-Euclidean diStanC(?epresentation adapted to the study of topological prigserOn
which is known to satisfy an interesting property of invadea by

L ; the other hand, we will study a new minimum spanning tree
similarity [53]. Then, we associate to each edgey} € F the . y P g
algorithm based on watersheds.
value F({z,y}) = || log(T(x)) — log(T'(y))||, wherelog denotes
the matrix logarithm angl.|| the Euclidean (sometimes also called
Frobenius) norm on matrices. To segment the corpus callosum REFERENCES
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Fig.

Fig. 12.

(b)

13

11. Diffusion tensor images segmentati¢n): A close-up on a cross-section of a 3D brain D{8): Image representation of the markers (same
cross-section aga)), obtained from a statistical atlas, for the corpus callegdark gray) and for its background (light gray)): Segmentation of the corpus
callosum by an MSF-cut for the markers. The tensors belgnginthe component of the MSF which extends the marker labétterpus callosum” are
removed from the initial DTI: thus the corresponding voxafspear black.

A

Topological cut
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MST algorithms |
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SPF cut
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THINNING PARADIGMS
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PROOFS edge, FO(z) = F(u). Thus, (z,y) is a path inM(H) with
This appendix provides the proofs of the properties given f{S€PeSt descent fdr. Let = be any vertex ofM (H), z # .
this article. Necessarilyz is also a vertex ofM (F). Hence,(z) is a path
in M(H) from > to M(F) with steepest descent fdr.
(i¢) The property is verified for any trivial path. Let us consider
Proofs of Section Il the case of non-trivial paths. Lety € V \ V(M(H)) and

In order to prove Prop. 10, we use a characterization of td 7 = (zo,...,z,) be anM-path (for ) with steepest descent

MSFs relative to the minima of a map which involve paths witfor 2. Sincez, is a vertex of\/ (i) and{z,_, z} is not an edge
steepest descent. of M(H), by the very definition of a minimum# ({z,_1,x¢}) >

Let = = (zo,...,7;) be a path inG. The pathr is a path (z¢). Hence, from the definition of a lowering, we deduce that
with steepest descent fét if, for any i € [1,4], F({zi_1,2;}) = ¢ 7 {ze—1, ¢}
FO(zi_1). Suppose that there exists [1,¢ — 1] such thatu = {x;_1,z;}.

Let 7 = (zo, ..., ;) be a path inG. We say thatr is asimple AS 7 is a path with steepest descent fof, F°(z;) =
pathif for any two distincti and; in [0, ¢], z; # ;. We say thatr ({zi,zi11}). By the very definition of a lowering{z; 1, z;}
is an M-path (for F) if = is a simple path, ifz, is a vertex of IS the only edge of7 whose altitude is different fof’ and H.
M(F) and if none ofzo, ..., z,_, is a vertex ofM(F). Remark Thus, F({z;,zi+1}) = H({zj,xi11}) = F(x;). By definition
that anM-path does not contain any edgeldF). Furthermore, Of F©, F©(z;) < F({xjzi41}), hence FO(z;) < F©(xy).
it may be seen that i’ is a forest relative\/(F), there exists a SinceH is a lowering ofF', F©(x;) < F©(x;). Hence F (x;) =
unique M-path from each vertex of . FO(x;) = F({zi,2i41}). Therefore, sinceF({z;_1,x:}) >

Lemma 26 (Lemme 8 in [16])Let X be a spanning forest /7 ({zi—1,z:}), necessarily({z;—1,z:}) > FO(2;) and sinceu
relative to M (F). The graphX is an MSF relative to/ () IS border forF, F©(x;_1) = F({z;_1,z;}). Furthermore, for
if and only if, for anyz in V, there exists a path i from o @Wv € E, v # u, F(v) = H(v). Thus, in this caser is a path

to M(F) which is a path with steepest descent far with steepest descent faf. o
Lemma 27:Let H € F. If H is a #-thinning of ', then any Suppose now that for anye [1, ], u # {z;_1,z:}. By dgflnmon
forest relative toM (H) is a forest relative toV/(F). of a lowering F(u) > H(u), hence, for any € [0, /], F*°(z;) =

Proof: Let u be a border edge fof' and let # be the Fe@i)' Thus is a path with steepest descent for
lowering of F at u. We first prove the property fof. Then, By induction on(:) and (i) and thanks .to .Lem. 28, it may be
Lem. 27 can be easily established by induction. i not an edge S€en that Lem. 29 holds true for arg-thinning of F. u
of M(H) then M(H) = M(F): the proof is done. Suppose now Lemma 30:There is no border edge far if and only if V' is
thatw is an edge of\/ (H). Letu = {x,y} with F©(z) > FO(y). the vertex set of\/(F).

The fact that: is border forF implies F(u) = F©(z) andF(u) > Proof: (i) Suppose thatV is not the vertex set
F®(y). Thus,u is not an edge of/(F) andz cannot belong to of M(F). Then, there existsy € V which is not a vertex
an edge ofM(F) (otherwise we would havé™®(z) < F(u)). of M(F). Since (V,E) is finite, there exists anV-path = =
Therefore,z is not a vertex ofM(F). The edgeu belongs to (zo,...,z,) with steepest descent faF. Thus, F®(z,_) =
S, the edge set of one minimum df. Since H(u) = FO(y) F({z¢_1,¢}). Sincer is an M-path, F°(z,) < F({zy_1,2,}).
andF(u) > F°(y) (by definition of a lowering at a border edge)Hence,{z,_1, ¢} is a border edge foF.
there is an edge # u which containg; such thatF'(v) = H(v) = (it) Suppose that there exists= {x,y} which is a border edge
F©(y) = H(u). Necessarily belongs taS. Hence,S\u # ) and for F. Without loss of generality, assume thaf (z) = F(u)
it may be seen tha$ \ u is exactly the edge set of a minimumand F°(y) < F(u). There is no minimum ofF whose vertex
of F. Thus,y is a vertex of M (F) and M(H) is an extension set containse since F°(z) = F(u) and since there is an edge
of M(F). Furthermore, since: is not a vertex ofM(F), any that containsy whose altitude is strictly less than the onewf
cycle in M(H) is also a cycle inM(F). Thus, from the very Thus,V is not the vertex set oM (F). [ ]
definition of a forestM (H) is a forest relative td/(F") and any Proof: [of Prop. 10](¢) Let X be an MSF relative ta/(H)
forest relative toM (H) is also a forest relative ta/(F). B for H. By Lem. 27,X is a (spanning) forest relative to/(F).
The next lemma follows straightforwardly from the definitio We will prove that for any pointz in V, there exists inX a
of a path with steepest descent. path fromzy to M(F) which is a path with steepest descent
Lemma 28:1f (xq,...,z¢) and (zy,...,zm) are two paths for F. Thus, by Lem. 26, this will establish the first part of
with steepest descent far, thenw = (xo,...,zm) iS @ path Prop. 10. From Lem. 26, it may be seen that there exist¥ in
with steepest descent far. an M-path (for H), denoted byr = (xo,...,z,), which is a
Lemma 29:Let H be a#-thinning of F. path with steepest descent féf. By Lem. 29.ii, = is a path
(z) For any vertexz of a minimum of H, there exists a path in with steepest descent faF. Since z, is a vertex of M(H),
M(H) from z to M(F) which is a path with steepest descenby Lem. 29.i, there exists id/(H) a pathr’ = (z,...,zm)
for F. from z, to M(F) which is a path with steepest descent for
(ii) Any M-path (for H), with steepest descent fdf is a path Since X is an extension ofM(H), M(H) C X. Hence,n’
with steepest descent fdf. is a path inX. Moreover, 7 is by construction a path irX.

Proof: Let us first suppose thdf is the lowering ofF’ at a Therefore,n” = (zq,...,zm), is a path inX. Since bothx
border edge: for F. andz’ are paths inX with steepest descent fdr, by Lem. 28,
(i) Let z andy be the two vertices in.. If none ofz andy =" is also a path inX with steepest descent far, which, by
is a vertex of M(F), then M(F) = M(H) and the proof is construction, is a path fromg to M (F).
trivial. Suppose thay is a vertex of M (F'). Sincew is a border (i) Suppose that H is a %-kernel of F. From
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Lem. 30,V(M(H)) = V. Then, any MSF relative ta/(H) is
equal toM (H). Hence, from(:), we prove(ii). [ |
Proof: [of Prop. 15] Letu = {z,yo} € FE, with = being
a vertex of M(F), be an immersion edge faF. By definition
of a minimum, we haveF'(u) > F°(x). Let m = (yo,...,ye)
be any M-path with steepest descent fét. It may be seen
that F({ye—1,y¢}) < F©(yo). Sincer is an M-path, {y,_1, ¢}
is outgoing fromM (F). By hypothesis,F(u) < F({yr_1,v¢}).
Thus, F(u) < F®(yo) and sinceyy € u, necessarily F(u) =
F®(yo). Hence,u is a border edge foF. [ |

16

edge forF;_q, and it follows straightforwardly thaf; is an .#-
thinning of F;_1. Moreover, by(P;_1), F; is an.#-thinning of F.
Consequently to the definition of a lowering at an immersion
edge,M(FZ-) = M(Fi_l)Uui. Hence,M(Fi) = X;—1Uu; = X;
which completes the proof afp;).

Since (Py) is trivially verified, by induction, Py, is established.
Therefore, by Prop. 15 and Lem. 2Ff(F}) = X} is a forest
relative to M(F). Since V(X;) = V, since X;; C X (by
construction) and sinc& is a forest relative taV/(F'), by the
definition of a spanning forest, we have necessatily= X. By

The following lemma is used to prove Lem. 16. The proof isem. 31,F}, is a.#-kernel of . Hence, by(P;), there exists an

similar to the one of Lem. 30 and, thus, omitted.

Z-thinning H = F}, of F such thatX = X, = M(H). [ |

Lemma 31:There is no M-border edge (resp. immersion edge)

for F if and only if V' is the vertex set of/ (F).

Thanks to the construction presented in Sec. Ill.B of [16¢ t

Proofs of Section IlI
Proof: [of Th. 20] Suppose that” is an MSF relative toX.

following lemmas can be derived from basic results on mimmu Suppose also that there exidt and B, two components ofX

spanning trees (see, in particular Th. 23.1, p. 563, in [B4jrder
to prove Lem. 33).

Let X C G,u € E(X). We write X \u for (V(X), E(X)\{u}).
Letv € F\ E(X). We write XUv for the graph(V (X)Uv, E(X)U
{v}).

Lemma 32:Let X be a subgraph off andY be a spanning
forest relative toX. If v = {z,y} € E(Y) \ E(X), then there

such thatY (A, B) # Tr(A’, B"), whereA’ and B’ are the two
components of such thatd C A’ andB C B’. Sincell(A, B) C
(A, B"), Tr(A,B) > Trp(A',B). Let m = (zp,...,z4) be a
path from A’ to B’ such thatYr(n) = Tr(A’, B") and such
that z;, (resp. z,) is the only vertex ofA’ (resp. B’) in .
Notice that {zj,zr+1} and {zy_;,2z,} are not edges of’.
Let 74 = (z0,...,x;) (resp.7wg = (x¢,...,om)) be a simple

exists a unique component of \ » which does not contain a path in A’ (resp.B’), such thatz, (resp.z:) is the only point

component ofX. Furthermore, either: or y is a vertex of this
component.

Lemma 33:Let X be a subgraph of7, let Y be an MSF
relative to X, and letZ C Y be a forest relative toX such

of 74 (resp.7g) which is a point ofA (resp. B). Sincer’ =
(xg,...,om) is a path fromA to B, Upsilong(n') > Tr(A, B).
Remark thatYp(7) < Tr(A,B) since Yp(r) = Yp(A',B)
andTr(A’, B") < Tr(A, B). Thus, we have eithel p(m4) >

that Z # Y. Let u be an edge of minimal altitude among all thel (A, B) or Tr(75) > Tr(A, B). Without loss of generality,

edges ofY” outgoing fromZ. Then, the altitude of any edge 6f
outgoing fromZ is greater than or equal tB(u).

Proof: [of Lem. 16] (i) = (4i): Let H be an.7-kernel
of F and letX = M (H). By Prop. 15,H is a#-thinning of F'. By
Lem. 31,V is the vertex set o/ (H) and, again from Lem. 31,
we deduce thatf is an.#-kernel of F'.

(1) = (i4i): Let H be an.#-kernel of " and letX = M (H).
Trivially H is a #-thinning of F. By Lem. 31,V is the vertex
set of M(H). Thus, by Lem. 30H is a #-kernel of F.

(4it) = (4v): Prop. 10.

(tv) = (i): Let X be an MSF relative ta\/(F) and let us
consider a sequence of graphs, ..., X such that:

- Xo = M(F);

-forany: € [1, k], X; = X;_1Uu; whereu; is an edge of minimal
altitude (for F') among all the edges of outgoing fromX;_+;
and

- V is the vertex set of(}.

assume thatltp(r4) > YTr(A4, B). Let u be any edge oOfr4
such thatl g (u) = Tp(ra). SinceYp(r) < Yr(ma), Tr(u) >
Yr({zg, vri1}). Sincer, is a simple path inA’, sincex is
the only point ofr4 which is in A, and since{xzy, 11} is not
in Y, it may be seen thatY” \ u) U {zy,zxy1} iS @ spanning
forest relative toX. SinceY p(u) > YTr({zk, zrr1}), (Y \uw)U
{zk,zr41} has a cost strictly less than. Thus,Y is not an MSF
relative to X, a contradiction. [ |

Proofs of Section IV

Proof: [of Th. 21] Suppose that” is an MSF relative taX
which is not anY-shortest-path spanning forest relative Xo
There existstg € V(Y) such that for any pathk in Y from zg
to X, we haveYp(n) > YTp(zo,X). Let © = (zo,...,xy) be
any such path and suppose, without loss of generality,sthata
simple path. Let € [0,¢—1] be such thaF ({z;, z;41}) = T ()
and letu = {x;, z;+1}. We denote by’ the connected component

It may be seen that such a sequence always exists. Consster af Y \ « such thatzy € V(C). Sincer is a simple path, from

the associated sequence of maps. . . F}, such thatFy = F and
for any: € [1, k], F; is the lowering ofF;_; at u;.

We will proceed by induction to establish, for ang [1, k], the
following proposition:

(P;): F; is an.#-thinning of F' such thatX; = M (F;).

Lem. 32, we deduce that is the uniqgue connected component
of Y \ u which does not contain a connected componenof
Let ©’ = {yo = x0,...,ym} be a path inG from z, to X such
that Yz (7') = Y p (20, X). Let j € [0,m — 1] be such thay; €
V(C)whereagy; 1 ¢ V(C). Letv = {y;,y;41}. Thus,(Y \u)Uv

Leti € [1, k] and suppose thdP;_1) holds true. By Prop. 15 and is a spanning forest relative t&. Necessarily,F(v) < Tp (7).

Lem. 27,(P;_1) implies thatX,_; is a forest relative ta\/ (F).
Therefore, it follows from Lem. 33, that the altitude (fB) of any
edge ofG outgoing fromX;_; is greater than or equal t(u;).
By construction ofF;_;, we haveF(v) = F;_1(v) for any edge

v outgoing fromX;_1. Thus,u; is an edge with minimal altitude

(for F;_1) among all the edges outgoing froky_ ;. Furthermore,
thanks to(P;_1), X;—1 = M(F;—1). Hence,u; is an immersion

Hence, sinceY r(7') = Tr(zo, X) and Tr(r) > YTr(zo, X),
F(v) < Tp(r) and F(v) < F({z;,z;+1}). Thus, from the two
previous observations, we deduce thais not an MSF relative
to X, a contradiction. [ |

Sinced is a finite graph, for any € V there exists a path
with steepest descent far from = to M(F'). Then, it may be
seen thatl' p(7) = F(z) = Y p(z, M(F)).
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Proof: [of Prop. 22] (i) Suppose thak is a spanning forest destructible forF and the map obtained by lowering the value
relative to M (F) which is not an MSF relative td/(F'). From of u by one is a W-thinning of". By iterating the same arguments,
Lem. 26, there exists a vertaxe V such that none of the pathsit may be seen that can be lowered down t&< (y). In other
in X from z to M (F) is with steepest descent fét. Let P be the words, the lowering oft" at u is a W-thinning ofF. [ ]
set of all points that can be reached franby a path inX with
steepest descent far. Let yo be the vertex ofP with minimal
altitude. By hypothesisyg is not a vertex ofM(F). Let 7 =
(yo,---,ye) be the uniqgueM-path, in X, from yy to M(F).
Leti € [0, ¢— 1] be the lowest index such that € P andy;; €
V\P.If F({ys,yi11}) = F©(y;), then there existg € [0,i — 1]
such thatF'® (y;) < F({y;,y;+1}) (otherwisey; 1 would belong
to P) and thus, F({yj,yj+1}) > F®(yo) (since FO(y;) >
F(yo) by definition ofyo,i and 7). If F({ys,yir1}) > F©(va),
then F©(yo) < F({yi,yi+1}) since F=(yo) < F(y;). In both
casesY p(m) > F©(yo). From the remark stated above this proof,
we haveY p(7) > Y r(yo, M(F)), hence X is not anY-shortest-
path forest relative ta/ (F).

(i¢) a direct consequence of Th. 21. [ |

Before proving Th. 25, let us introduce a minimal set of
definitions to handle the framework of vertex-weighted gmap
in which topological watersheds are defined.

Let P C V. Thesubgraph ofG induced byP, denoted byGp,
is the graph whose vertex setiisand whose edge set is made of
all edges ofG linking two points inP, i.e, Gp = (P, {{z,y} €
E |z e Pyec P}). LetI be a map fromV to Z, and letk € Z.
We denote byr[k] the subgraph ofZ induced by the set of all
pointsx € V such thatl(x) < k; T[k] is called a(level k) lower-
sectionof I.

Definition 34: Let I be a map fronV to Z. Letx in V andk =
I(z). If = is adjacent to exactly one componentdk], we say
that z is W-destructible forr.

Let J be a map froml” to Z. We say that/ is a W-thinning of 7
(in G) if J =1 orif J may be derived from I by iteratively
lowering the values of W-destructible points by one.

We say that/ is atopological watershed of if J is a W-thinning
of I and if there is no W-destructible point for.

Let us consider the mapdepicted in Fig. 8d (main text). The
points at altitude 2 are both W-destructible whereas thetpoi
at altitude 5 is not. The map$ and K depicted, respectively,
in (e) and (f) are W-thinnings off’. The reader can verify that
there exists a sequence of maps to obtaifresp. K) from I by
iteratively lowering by one the values of W-destructibleirgs.
Notice thatJ is a topological watershed d@f since there is no W-
destructible point for/ and thatK is not a topological watershed
of I since the points at altitude 10, 6 and 4 are W-destructible.

Important remark. To be consistent with the definition of
a topological watershed, in the following, we suppose that
maps £ to Z. Nevertheless, the topological watershed can be
extended to maps front to R and Th. 25 can be generalized
to any mapF € F.

Proof: [of Th. 25] Let v = {z,y} € E be a border
edge for F such thatF(v) = F®(z) = k . We will prove
that the lowering of " at v is a W-thinning of F, hence, by
induction, this will establish Th. 25. From the definition af
border edgeF© (y) < k. Thus, there exists a set of edges E,
such thatS = {v; = {y,yi} € E | yi # z andF(v;) < k}.
Since any element irt containsy, all the edges inS are in
the same component af[k]. Since F°(z) = k, none of the
edgesv; = {z,z;} € E with z; # y, is in F[k]. Thus, u
is adjacent to exactly one component Bfk]. Hence,u is W-



