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Abstract

Techniques for optimal control to increase system security attract a great deal of
interest from industry. The presence of transversal cracks can considerably modify the
dynamics of a system. In the case of closed-loop systems, i.e. controlled systems, these
faults can cause the destabilization and variation of control performance. Consequently,
such variations can be used to detect transversal cracks. Therefore the present study
proposes an investigation into the possibility of detecting structure modification based
on estimated control performance by using the Rational Fraction Polynomial (RFP)
algorithm. This method is applied numerically to a multi-cracked controlled truss. Both
the optimal control of the cracked structure and the possibility of detecting the presence
of cracks by monitoring the evolution of control performance are studied. The efficiency
of the proposed method is demonstrated through numerical simulations corresponding
to different crack orientations and locations.

1 Introduction

Cracks and thus structural modifications cause robustness problems, particularly reduced
performance, in structures controlled by modal control. One way to detect cracks is to use
modal testing in which changes in modal parameters such as variations in frequencies and
mode shapes are used to detect damage. A review based on the detection of structural
damage through changes in frequencies was discussed by Salawu (1997). Moreover, Dilena
and Morassi (2002) proposed damage identification based on changes in the nodes of mode
shapes. They demonstrated that appropriate use of resonances and antiresonances can be
used to avoid the non-uniqueness of damage location for symmetrical beams. One of the
limitations of the indexes based on the change in the modal properties of changes in cracked
structures is the use of only resonant frequencies and mode shapes for the vibrational descrip-
tion of mechanical structures. This has led to extending damage detection based on the use
of the Frequency Response Function. For example, Faverjon and Sinou (2008, 2009) proposed
a damage assessment technique based on the constitutive relation error updating method for
the non-destructive detection and sizing of single and multiple open cracks in beams. They
demonstrated that it is possible to detect the number of cracks in the beam and estimate
both crack positions and sizes with satisfactory precision, despite the presence of noise levels
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and the use of a limited number of degrees of freedom for the identification procedure. Com-
prehensive surveys can be found in the papers of Doebling et al. (1996), Sohn et al. (2003)
and Sinou (2009) for structural health monitoring and damage detection techniques in the
civil and mechanical engineering communities.
However little effort has been dedicated to discussing the capability of a controlled multi-crack
truss structure to detect cracks by using modal parameters and controlling performance. Vi-
bration control, by using optimally located actuators and sensors (Hac and Liu, 1993), is one
way of controlling structures and limiting vibration damage (Chomette et al. 2010). Sev-
eral active control strategies such as active collocated control (Preumont, 2002) or passive
strategies (Badel et al., 2006) can be used. Active modal control is a solution for target-
ing the control energy only on the vibration modes of interest with a minimum number of
components (Gaudiller and der Hagopian, 1996). In the case of modal control based on a
Luenberger observer (Luenberger, 1971), structural modifications lead to changes in control
performance (Chomette et al., 2008), and such changes can be used to detect cracks. Moreover,
identification algorithms can be used to obtain structure modal parameters (Richardson and
Formenti, 1985) and control variations in performance. Therefore we propose to demonstrate
the efficiency of an optimal control and identification procedure for a complex structure with
multiple cracks. This study focuses not only on crack depth and position but also crack orien-
tation, which can drastically modify the dynamic behavior of damaged mechanical structures.
We will thus show that the evolution of control parameters in relation to other parameters
(such as crack orientation) can be early indicators of the presence of a crack in a mechanical
structure. The paper is organized as follows. Section 2 summarizes the concept underlying
crack modeling and the model of the complete truss structure. The third part deals with
the control and identification procedure. Then, control performance variation will be applied
as a sensitive indicator of structural integrity. The efficiency of the methodology proposed
will be investigated in the last part of the paper through different numerical simulations of a
multi-cracked controlled truss with different cracks configurations.

2 Equation of motion of the system

In this section, the modeling of a transverse crack is proposed first, after which the equation
of motion for the complete system with multi-cracks is presented.

2.1 Crack model

The modeling of a transverse crack that was described extensively in (Sinou, 2007) is briefly
presented here. Mayes and Davies (1984) demonstrated that a transverse crack in a shaft can
be represented by reducing the second moment of area ∆I of the element at the location of
the crack

∆I

I0
=

R
l
(1− ν2)F (µ)

1 + R
l
(1− ν2)F (µ)

(1)

for a circular beam. I0, R , l, and ν are the second moment of the area, the shaft radius,
the length of the section and the Poisson ratio, respectively. µ is the non-dimensional crack
depth and is defined by µ = h

R
. F (µ) is the fractional change in the second moment of the

area measured at the crack face by considering a series of experimental tests for different
transverse cracks. It should be noted that there are two values of F (µ) for a given transverse
crack, one for each of the orthogonal directions in the plane of the crack. The cross section
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of the shaft at the location of the crack has asymmetric area moments of inertia about the
neutral axis of bending due to the presence of the crack.
Then, for each orientation χ of the crack (see Figure 1(a)), the crack model is derived by
assuming that the portion of the chordal crack lying below the neutral axis will be opened
under the influence of self weight bending. As previously proposed by Lees and Friswell (2001),
the compliance functions given in Equation 1 are evaluated in the two orthogonal directions
by assuming equivalence with the chordal crack of equal effective area. This procedure is
sufficient to reflect the main physics of the open and closed portions for a particular crack
depth and orientation by assuming beam self-weight, as previously mentioned by Lees and
Friswell (2001).
So, the cross-section of the beam at the location of the crack has asymmetric area moments
inertia Iη and Iξ about the centroidal axes η and ξ that are defined as

Iη = Ĩη (2)

Iξ = Ĩξ − AX̄2 (3)

The area moments of inertia Ĩη and Ĩξ contain the reduced moment of area ∆I for each
of the orthogonal directions η and ξ, as indicated in Equation 1. The complete expres-
sions are given in (Sinou, 2005 and 2007). X̄ defines the new centroid due to the pres-

ence of the crack (i.e. X̄ = 2

3A
R3 (2µ− µ2)

3

2 ) and A is the sector area of crack (i.e. A =

R2

(
(1− µ)

√
2µ− µ2 + cos−1 (1− µ)

)
).

Using the standard finite element formulation, the stiffness contribution K
η,ξ
crack of an open

crack about the centroidal axes η and ξ for a two nodes Timoshenko beam element of length l
and Young’s modulus E (corresponding to the flexible degree-of-freedom [u1; v1; θ1;ψ1; u2; v2; θ2;ψ2],
see Figure 1(b)) can be defined at the crack location

K
η,ξ
crack =

E

l3




12Iη 0 0 6lIη −12Iη 0 0 6lIη
12Iξ −6lIξ 0 0 −12Iξ −6lIξ 0

4l2Iξ 0 0 6lIξ 2l2Iξ 0
4l2Iη −6lIη 0 0 2l2Iη

12lIη 0 0 −6lIη
12lIξ 6lIξ 0

4l2Iξ 0
4l2Iη




(4)

Finally, the effects of the crack on the axial load terms can be written by superimposing the
axial stiffness terms over the bending stiffness.

2.2 Model of the complete truss structure

After assembling the different beam elements and the stiffness contribution of the multi-cracks,
the equations of motion of the truss structure are given by

Mẍ +Cẋ + (K−Kmulti−cracks)x = Fe (5)

where ẍ, ẋ and x are the acceleration, velocity and displacement of the degrees-of-freedom of
the cracked system. M, C and K are the mass, damping and stiffness matrices respectively.
Fe defines an external force vector (given by Fe = Feiωt where F defines the force amplitude).
Kmulti−cracks is the final stiffness matrix due to the presence of multi-cracks.
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(a) Crack element (b) Description of the Dof in η and ξ-axes

Figure 1: Description of the crack element

3 Optimal control and identification procedure

3.1 Control design

In this paper, an active modal control based on a Linear Quadratic Gaussian algorithm is
applied to the multi-cracked structure in order to demonstrate the multi-cracks detection
possibility in the case of controlled structures. Indeed, modal control is based on a model of
the structure and its performances depends on the model’s precision. To aid understanding,
it should be borne in mind that a slight difference between the model and the structure can
lead to a decrease in performance or instability in the system controlled. In this short section
of the study, this decrease in robustness is investigated to detect cracks caused by a slight
variation of modal parameters.

The linear control need to use a linear model which can be described in the state form by
{
ẋ = Ax+Bu+Gw

y = Cx
(6)

where A is the dynamical system matrix, B and C are the actuator and sensor matrices
respectively and G is the disturbance matrix. x and y are the state and the output vectors
respectively. u is the control and w the disturbance. In the case of one actuator and one
disturbance point, u and w are scalar quantities. The state matrices can be written for n
modes

A =

(
0n,n diag (ωi)

−diag (ωi) −diag (2ξiωi)

)
(7)

B =

(
0n,1

Πa

)
(8)

G =

(
01,n

Πf

)
(9)

C =
(
Πcω−1 01,n

)
(10)

x =

(
ωq

q̇

)
(11)
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where q is the modal displacement vector, ωi and ξi are the natural frequencies and modal
Rayleigh damping respectively. Πa, Πc and Πf are the actuator, sensor and disturbance
vectors respectively in the modal basis, defined as

Πa = φtKa (12)

Πc = φtKc (13)

Πf = φtKf (14)

where Ka , Kc and Kf are the actuator, sensor and disturbance vectors of degrees of freedom,
respectively, and φ is the mode shapes matrix. The control u is solution of the Linear
Quadratique Regulator problem and is calculated by using the state vector x and the control
gain matrix K

u = −Kx. (15)

As modal state vector x cannot be measured, a Luenberger observer (Luenberger 1971) is
used to reconstruct the state vector x̂. The estimated state vector can be written

{
˙̂x = Amx̂+Bmu+ L (y− ŷ)

ŷ = Cmx̂
(16)

where (Am,Bm,Cm) is the state model of the Luenberger observer used to reconstruct the
state vector. L is the observer gain calculated by using the Linear Quadratic Gaussien algo-
rithm.

3.2 Frequency Response Function calculation

The transfer function of the uncontrolled system can be written for one sensor as

HBO (jω) =
y

w
= Cs (jωId−As)

−1
Gs (17)

where (As,Bs,Cs) is the state model that represents the structure in the numerical simula-
tions. The transfer function of the system controlled can be written for one sensor as

HBF (jw) =
y

w
= Cs

(
jωId−

(
As−BsK

(
jωId−

(
Am−BmK−LCm

))−1

LCs

))−1

Gs (18)

The two state models (As,Bs,Cs) and (Am,Bm,Cm) are assumed to be equal in the case of
an uncracked structure. This configuration will be called the nominal configuration. In the
case of a cracked structure, modifications between these two models can lead to modifications
in the dynamics of the closed loop system. In this paper, these modifications are estimated
by using the RFP algorithm in order to detect the crack. Thus the system (As,Bs,Cs) which
represents the structure can be calculated for different crack orientation from χ = 0˚ to
χ = 180˚. For example, the numerical transfer function in open and closed loop can be
written for χ = 180˚

HBO (jω) =
y

w
= C180˚ (jωId−A180˚)

−1
G180˚ (19)

HBF (jω) =
y

w
= C180˚

(
jωId−

(
A180˚−B180˚K

(
jωId−

(
Am−BmK−LCm

))−1

LC180˚

))−1

G180˚

(20)
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where (A180˚,B180˚,C180˚) is the system which represents the cracked truss with a transversal
crack for χ = 180˚. The mode shapes variation is taken into account in the modal matrices
B180˚, C180˚ and G180˚ based on actuator, sensor and disturbance vectors. Indeed actuator,
sensor and disturbance vectors are calculated using the cracked mode shapes matrix φ180˚

Πa
180˚ = φ180˚

tKa (21)

Πc
180˚

= φ180˚
tKc (22)

Π
f
180˚

= φ180˚
tKf (23)

3.3 Optimal placement

In the case of complex structures, like truss structures, the actuators and sensors must be lo-
cated optimally in order to control the system. The location of the optimal control component
is calculated by using controllability and observability gramians theory. The controllability or
observability problem can be linked to the crack detection problem. The best point to detect
a crack is a point where all the modes affected by the crack are observable. Consequently,
it corresponds to the best point for controlling the structure. The optimal node is obtained
from the Hac and Liu (1993) criterion

PI =
2m∑

i=1

λi
2m

√√√√
2m∏

i=1

λi (24)

where m is the mode number used in the computation and λi are the eigenvalues of the
Gramian matrix Wc defined as

Wc =

∫
∞

O

eAτBBteA
tτdτ (25)

3.4 Identification procedure

The aim of the identification procedure is to estimate the variation of the modal parameters.
The variation of the modal parameters (i.e. frequency, damping and modal amplitude con-
stant variation), and the control performance variation are estimated by using the Rational
Fraction Polynomial (RFP) algorithm (Richardson and Formenti, 1985) applied on the com-
plex Frequency Response Function (FRF) obtained by using the truss model. The estimated
FRF can be written as

H (ω) =

n∑

k=1

ak

ω2

k − ω2 + 2ξkωkω
(26)

where n in the mode number, ωk and ξk are respectively the frequencies and modal damping,
ak is the modal amplitude constant of the FRF.

4 Numerical application

4.1 The multi-cracked truss studied

The procedure explained in the previous section is applied numerically to the model of the
cracked truss presented in figure 2. The truss is composed of 170 elements and 123 nodes and
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is clamped on nodes 122 and 123. The disturbance is applied on node 111. The Hac and Liu
criterion calculated on the truss to optimally locate the controller is shown in figure 3(a) for
nodes 1 to 120. The optimal location for the control is located on node 114. This location
does not depend on the disturbance point. It means that nodes 111 to 121 (zoom in figure
3(b)) are the most sensitive to the behavior of the full truss. This node is chosen to apply
the collocated control and to get observation of the vibration. The displacement used by the
Luenberger observer to reconstruct the state vector is measured on this node. The control
calculated by the LQ controller is then applied on this node. The truss model includes 20
modes and the control is performed by focusing on the first six modes.
In the following study, we focus our attention on modes 1 to 6 of the truss. Identification
of the modal parameters (frequency, damping and amplitude) is performed with only one
collocated actuator-sensor.
Two cases are studied in order to demonstrate the efficiency method in different configurations.
First, one transversal crack is located on element 52 and two straight cracks are located on
elements 15 and 39 respectively (with depth µ = 1). Secondly, one transversal crack is located
on element 12 and two straight cracks are located on elements 46 and 29 respectively (with
depth µ = 1). The transversal crack orientation can change from χ = 0˚ to χ = 180˚. When
χ = 0˚, the crack is fully open and when χ = 180˚, the crack is totally closed.
As previously explained, it is assumed that the static deflection is much greater that the
dynamic response of the cracked system. So, for each orientation of the crack, the crack
model is derived by assuming that the portion of the chordal crack lying below the neutral
axis will be opened under the influence of self weight bending (Lees and Fiswell, 2001; Sinou,
2005 and 2007).
The identified modal parameters and the mode shapes for the uncracked structure are shown
in table 1 and figure 4. For the interested reader, it may be noted that variation of mode
shapes are not used in the following sections to detect the presence of cracks.

Frequency [Hz] Modal damping Modal amplitude [dB]
141,8 9,97×10−4 -55,78
433,0 9,93×10−4 -64,67
857,0 1,57×10−3 -79,09
1238,1 2,28×10−3 -81,48
1414,1 2.53×10−3 -78,74
1499,8 3,20×10−3 -97,99

Table 1: Modal parameters of the uncracked system

4.2 Multi-cracked uncontrolled truss

Firstly, we consider the evolution of the cracked orientation from χ = 0˚ to χ = 180˚ for
the transversal crack and the two straight cracks. The effects on the modal parameters are
illustrated in figures 5 and 6 for the two cases. The estimation is carried out in the frequency
range 0-2500 Hz with 10 modes. The crack orientation from χ = 0˚ to χ = 180˚ causes a
frequency variation (-8.8% for the first mode, -3.1% for the second mode, -6.7% for the third
mode, -1.9% for the fourth mode, -4.5% for the fifth mode and -3.0% for the sixth mode in
the case 1; -8.8% for the first mode, -3.1% for the second mode, -6.4% for the third mode,
-2.6% for the fourth mode, -4.5% for the fifth mode and -3.1% for the sixth mode in the case
2). Consequently, one of the classical results previously reported by certain researchers is
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Figure 2: The control loop using the Luenberger observer applied to the multi-cracked truss
structure and the FRF measurement points in two cracks cases (—: control loop, -.-: FRF
measurements between disturbance and sensor points)
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3
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P
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(a) Hac and Liu criterion calculated on the truss

110 115 120
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2.1

2.2

2.3

2.4

x 10
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Node

P
I

(b) Zoom on nodes 111 to 121

Figure 3: Optimal placement for the control of the truss

observed: frequency increases with crack closure (Sinou 2007).
Moreover, the orientation of the crack causes a damping variation (-0.4% and -0.5% for the
first mode, -0.3% and -1.5% for the second mode, -6.7% and -7.3% for the third mode, 5.1%
and 5.1% for the fourth mode, 0.5% and 0.5% for the fifth mode and 0.3% and 0.3% for the
sixth mode in the cases 1 and 2 respectively). Consequently, damping increases or decreases
with crack closure depends on the mode. Finally, the crack orientation causes a variation of
modal amplitude (-1.2% and -1.2% for the first mode, -0.3% and -0.3% for the second mode,
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Mode 1 Mode 2 Mode 3

Mode 4 Mode 5 Mode 6

Figure 4: Mode shapes of the uncracked truss

-0.6% and -0.6% for the third mode, -0.2% and -0.1% for the fourth mode, -0.7% and -0.6%
for the fifth mode and -4.1% and -2.1% for the sixth mode in the cases 1 and 2 respectively).
Consequently, modal amplitude decreases with crack closure. These first results indicated
that a crack can be detected by estimating modal parameters.

4.3 Multi-cracked controlled truss

Due to the effects of cracks that have been observed in the previous section, impacts of the
variations on a multi-cracked controlled truss are undertaken. Indeed, in the case of controlled
structure, the damping and amplitude variation can modify the controller efficiency. That is
why these variations have to be identified.
First of all, estimated modal parameters of the nominal uncracked controlled truss are de-
tailed in table 2. Then, the incidence of crack orientation on the controlled structure is shown
in figure 7(a) to figure 7(f) in the first case and in figure 8(a) to figure 8(f) in the second
case for each mode. The references, i.e. the uncontrolled and controlled FRF of the un-
cracked truss corresponding to the nominal configuration, are shown in solid and dotted black
lines respectively. The LQ gain K and the LQG gain L are obtained by using the model
(Am,Bm,Cm) of the uncracked truss and are not modified when the crack orientation χ is
changed. Consequently, for each crack orientation, there are some differences between the
real structure represented by the system (Aχ,Bχ,Cχ) and the observer model (Am,Bm,Cm).
These differences cause variations in control performance and underline variation of crack
orientations in the case where estimating the variation modal parameters is difficult.
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Figure 5: Estimated modal parameters (frequency, damping and amplitude) for χ = 0˚ to
χ = 180˚ in the case 1 and uncracked modal parameters (ref.)

For example, we consider the evolution of the cracked orientation from χ = 0˚ to χ = 180˚
for the transversal crack and the two straight cracks on the controlled truss. The effects on the
modal parameters are illustrated in figures 9 and 10 for the two cases. The crack orientation
from χ = 0˚ to χ = 180˚ causes a frequency variation (-11,2% for the first mode, -4,0% for
the second mode, -7,4% for the third mode, -2,0% for the fourth mode, -5,3% for the fifth
mode and -6,9% for the sixth mode in the case 1; -11,1% for the first mode, -4,1% for the
second mode, -7,1% for the third mode, -2,6% for the fourth mode, -5,2% for the fifth mode
and -3,8% for the sixth mode in the case 2). Consequently, controlled system frequencies
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Figure 6: Estimated modal parameters (frequency, damping and amplitude) for χ = 0˚ to
χ = 180˚ in the case 2 and uncracked modal parameters (ref.)

Frequency [Hz] Modal damping Modal amplitude [dB]
141,1 0,136 -76,28
431,8 0,029 -78,55
850,8 0,011 -86,18
1235,2 0,003 -83,09
1407,5 0,012 -84,35
1496,5 0,029 -99,60

Table 2: Modal parameters of the uncracked controlled truss

increase with crack closure. Due to the control performances modification, the orientation of
the crack causes a very large damping variation on the controlled truss (9,7% and 9,9% for
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(d) Fourth mode
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(f) Sixth mode

Figure 7: Influence of a transversal crack on a multi-cracked controlled truss for χ = 0˚ to
χ = 180˚ in the case 1 and uncracked reference in black line (-.-: uncontrolled truss, —:
controlled truss)

the first mode, -0,6% and 1,0% for the second mode, -807,9% and -620,9% for the third mode,
-141,8% and -154,9% for the fourth mode, -91,8% and -112,9% for the fifth mode and -48,4%
and -217,5% for the sixth mode in the case 1 and 2 respectively). Finally, the crack orientation
causes a variation of modal amplitude (-0,47% and -0,5% for the first mode, -0,12% and -0,1%
for the second mode, -12,4% and -11,2% for the third mode, -2,9% and -2,8% for the fourth
mode, -3,8% and -4,0% for the fifth mode and -3,6% and -4,0% for the sixth mode in the case

12
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Figure 8: Influence of a transversal crack on a multi-cracked controlled truss for χ = 0˚ to
χ = 180˚ in the case 2 and uncracked reference in black line (-.-: uncontrolled truss, —:
controlled truss)

1 and 2 respectively).
For the reader comprehension, in the case of controlled truss, the variations due to the crack
orientation in the frequency response function result from structural truss modification and
from changes in the controller dynamics. Indeed the variation of frequencies and mode shapes
induce some differences between the modal matrices Am and Bm of the uncracked truss used
in the Luenberger observer, and the modal matrices As and Bs of the cracked truss. These
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differences modify the controller dynamics and cause a large variation of the active damping
induced by the control. Also a large variation of magnitude on the controlled frequency
response function can be observed, particularly for the third and fifth modes. In the case
of uncontrolled truss, the variations due to the crack orientation in the frequency response
function result only of structural truss modifications.
These results demonstrate that crack orientation causes large changes in control performance
depends on the mode, that can be positive or negative. These variations could be used as
an indicator of crack orientation variation by undertaking links between the crack orientation
and control reduction variation in future works.
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Figure 9: Estimated modal parameters (frequency, damping and amplitude) for the controlled
truss for χ = 0˚ to χ = 180˚ in the case 1 and uncracked modal parameters (ref.)
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Figure 10: Estimated modal parameters (frequency, damping and amplitude) for the con-
trolled truss for χ = 0˚ to χ = 180˚ in the case 2 and uncracked modal parameters (ref.)

5 Conclusion

This study proposes an investigation into the efficiency of an optimal control and identification
procedure for a complex structure with multiple cracks. This method is applied numerically to
a multi-cracked controlled truss by considering not only evolutions of crack depth and position
but also crack orientation, which can drastically modify the dynamic behavior of damaged
mechanical structures. Both the optimal control of the cracked structure and the possibility
of detecting the presence of cracks by monitoring the evolution of control performance are
studied. It is shown that the evolution of control parameters and modal parameters (particu-
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larly modal damping) of the controlled system in relation to other parameters (such as crack
orientation) can be indicators of the presence of a crack in a mechanical structure. Especially,
it is observed that the reduction in decibels obtained with the control of the multi-cracked
system can be a way to predict the appearance of crack. Finally, this approach could be the
first step of a health monitoring strategy in order to reduce vibration in a cracked structure.
Future works should be linked between the crack orientation and control reduction variation.
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