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We investigate theoretically and numerically the thermodynamics of gold nanoparticles immersed
in water and illuminated by a femtosecond-pulsed laser at their plasmonic resonance. The spatio-
temporal evolution of the temperature profile inside and outside is computed using a numerical
framework based on a Runge-Kutta algorithm of the fourth order. The aim is to provide a com-
prehensive description of the physics of heat release of plasmonic nanoparticles under pulsed illu-
mination, along with a simple and powerful numerical algorithm. In particular, we investigate the
amplitude of the initial instantaneous temperature increase, the physical differences between pulsed
and cw illuminations, the time scales governing the heat release into the surroundings, the spatial
extension of the temperature distribution in the surrounding medium, the influence of a finite ther-
mal conductivity of the gold/water interface, the influence of the pulse repetition rate of the laser,
the validity of the uniform temperature approximation in the metal nanoparticle, and the optimum
nanoparticle size (around 40nm) to achieve maximum temperature increase.

I. INTRODUCTION

Gold nanoparticles (NPs) can act as efficient nano-
sources of heat under visible or infrared illumination
at the plasmonic resonance due to enhanced light
absorption.1 The ability to locally heat at the nanoscale
opens the path for new promising achievements in
Nanotechnology and especially for nanoscale control of
temperature distribution,2 chemical reactions,3 phase
transition,4 material growth,5 photothermal cancer
therapy6–8 and drug release.9,10

The use of femtosecond-pulsed illumination on gold
NPs expands the range of applications compared to con-
tinuous (cw) illumination. First, it can lead to non-
linear optical processes like two-photon luminescence or
second harmonic generation with applications mainly in
bio-imaging.11,12 Then, it can trigger a sudden tempera-
ture increase at the sub-nanosecond scale and subsequent
effects such as acoustic waves used for opto-acoustic
imaging13,14 or bubble formation for nanosurgery.15 A
sharp and brief temperature increase of a NP generated
by a femtosecond laser can also contribute to confine the
temperature increase at the close vicinity of the NP to
avoid extended heating of the whole medium when not
desired.16

Several experimental and numerical approaches aimed
at studying the internal processes of heat genera-
tion under pulsed illumination and the subsequent ef-
fects observed in the surrounding medium, e.g. tem-
perature and pressure variations,17–19 acoustic wave
generation,18 vibration modes,20–22, cell apoptosis,11

drug release9,23 nanosurgery,15,24 bubble formation,25–28

NP shape modification29 and melting,29–31 nanosecond-
pulses for biomedical applications,32,33 extreme thermo-
dynamics conditions.33–37

In this paper, we present and use a versatile numer-
ical framework to investigate theoretically and numeri-
cally the evolution of the temperature distribution of a
gold nanoparticle immersed in water when shined by a
femtosecond-pulsed laser. Various degrees of complexity
exist to describe theoretically such a problem. We chose
a progressive approach consisting in going from simple
to more sophisticated: We shall start with the more ba-

sic description of the problem, a point-like source of heat
to model the NP, and then refine the description of the
system by taking into account successive refinements,
namely a finite-size structure, an gold/water interface
conductivity and a non-uniform NP inner temperature.
In each case, the physics and the associated constitutive
equations are detailed and the approximations discussed.
The aim is to answer all the questions related to charac-
teristic time, space and temperature increase in fs-pulsed
optical heating of gold NP.
Details regarding the numerical algorithm we devel-

oped are given in appendix.

II. RESULTS AND DISCUSSION

A. Physical system

We consider a system with spherical symmetry con-
sisting of a gold nano-sphere of radius R immersed in
water (Fig. 1). This nanoparticle is uniformly illumi-
nated by a laser light at its plasmonic resonance angular
frequency ω = 2π c/λ0 = k c/nw, c is the speed of light

water

gold

fs-pulse

FIG. 1. Nature of the system investigated: A spherical gold
nanoparticle immersed in water shined by a femtosecond-
pulsed laser.
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and nw the optical index of water. No mass transfer like
fluid convection or bubble formation is considered. We
shall focus on moderate temperature increase (typically
a few tens of degrees) and not consider extreme thermo-
dynamic conditions. For this reason, all the parameters
describing the materials (water and gold) are assumed
to remain constant within the temperature range inves-
tigated. Whenever a femtosecond pulse is mentioned, it
has to be understood as a pulse, the duration of which is
smaller than the characteristic time of electron–phonon
scattering τe−ph ∼ 1.7 ps. For instance, this can corre-
spond to the use of a Ti:Sapphire laser, which usually
provides a pulse duration around 100 fs.
In the following, any mentioned temperature T will

have to be understood as a temperature increase above
this initial ambient temperature.
Anywhere in the system, we can define the ther-

mal energy density and thermal current density that
read respectively uth(r, t) = ρ c T (r, t) and jth(r, t) =
−κ∇T (r, t) where ρ is the mass density, c the specific
heat capacity at constant pressure and κ the thermal
conductivity of the system at the position r. From the
energy conservation equation ∂tuth(r, t) +∇ · jth(r, t) =
p(r, t), on obtain the heat diffusion equation:

ρ c ∂tT (r, t) = κ∇2T (r, t) + p(r, t) (1)

where p(r, t) is the heat power density (nonzero only in-
side the NP (r < R), where the light is absorbed),
For the system under consideration in this work, this

yields a set of two differential equations, one for each
medium (gold and water), along with two boundary con-
ditions at the gold/water interface:



































Diffusion equations:

ρAu cAu ∂tT (r, t) = κAu∇2T (r, t) + p(r, t) for r < R

ρw cw ∂tT (r, t) = κw∇2T (r, t) for r > R

Boundary conditions at r = R:

κw∂rT (R
+, t) = κAu∂rT (R

−, t)

T (R+, t) = T (R−, t)

(2)

Au and w subscripts refer to gold and water. The first
boundary condition ensures heat flux conservation at the
NP interface.
It has been demonstrated experimentally that an in-

terface resistivity at the gold/water interface exists and
can play a significant role in the heat release.38–41 The in-
terface resistivity can reach appreciable values when the
liquid does not wet the solid. The wetting depends on
the nature of the interface, and in particular a possible
molecular coating. Namely, hydrophobic coatings are
associated to poor thermal conductivities. The direct
consequence of a finite interface conductivity g (or re-
sistivity 1/g) is a temperature drop/jump/discontinuity
∆T at the NP interface such as:

P(t) = 4πR2 g∆T (t) (3)

where ∆T is defined such as:

∆T (t) ≡ T (R−, t)− T (R+, t) (4)

(in this work, the symbol ≡ symbolizes a definition).
The released heat power P(t) is also related to the tem-
perature gradient on the NP surface through the energy

conservation equation:

P(t) = −4πR2 κw ∂rT (R, t). (5)

Equations (3) and (5) yield a modification of the second
boundary condition of system (2) at the nanoparticle
interface r = R:

−∂r T (R+, t) =
1

lK
∆T (t) (6)

where lK = κw/g is named the Kapitza length and 1/g
is the associated Kapitza resistivity.

Let us define from now two dimensionless constants
that we shall often use in the following,

β ≡ ρwcw
ρAucAu

≈ 1.680 (7)

γ ≡ κAu
κw

≈ 512 (8)

and one dimensionless parameter:

λK ≡ κw
g R

=
lK
R

(9)

that is the Kaptiza length normalized by the NP radius
R. We also introduce dimensionless space ρ and time τ
variables defined such as:

ρ ≡ r/R (10)

τ ≡ awt/R
2 (11)

where a = κ/ρc is called the thermal diffusivity. R and
R2/aw are indeed the natural space and time units asso-
ciated to the system. Within this work, we will make an
extensive use of dimensionless variables and constants,
first because it yields simpler, more natural formulae and
more general results, and then because it shows how the
algorithm can be properly written, i.e. working with
numbers close to one and not unnecessary powers of ten.
However, for the sake of simplicity, even when using nor-
malized variables, we shall keep the same function names
– e.g. T (r, t) and T (ρ, τ). But this mathematical digres-
sion should not cause any clarity issue.
Using these dimensionless variables, parameters and

constants, the set of equations (2) along with the addi-
tional boundary condition (6) read then:











































Diffusion equations:

∂τT (ρ, τ) =
γ β

ρ2
∂ρ

(

ρ2∂ρT (ρ, τ)
)

+ p(ρ, τ) for ρ < 1

∂τT (ρ, τ) =
1

ρ2
∂ρ

(

ρ2∂ρT (ρ, τ)
)

for ρ > 1

Boundary conditions at ρ = 1:

∂ρT (1
+, τ) = γ ∂ρT (1

−, τ) = − 1

λK
∆T (τ)

(12)

where the Laplacian operator ∇2 has been reformulated
using spherical coordinates.
From now on, the use of dimensionless formalism will

not be systematic, but preferred when it simplifies the
notations and make the results more general.
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TABLE I. Physical constants used in this work associated to
gold and water.a.

Name Gold Water Unit
Thermal conductivity κ 317 0.60 W/m/K
Specific heat capacityb c 129 4187 J/kg/K
Mass density ρ 19.32 1.00 ×103 kg/m3

Thermal diffusivity a 127 0.143 ×10−6 m2/s

a Values at approx. 25◦C taken from ref. [42]
b at constant pressure

B. Numerical method

The set of equations (12) has no simple analytical solu-
tion. We chose to solve it numerically by developing a fi-
nite difference method (FDM) and a Runge-Kutta (RK)
algorithm.43 Basically, it is based on a spatio-temporal
discretization of the system of equations (12) according
to:

ρi ≡ i× δρ i ∈ [0, N ]

τj ≡ j × δτ j ∈ [0,M ]

Ti,j ≡ T (ρi, τj)

∂ρT (ρ, τ) →
Ti+1,j − Ti,j

δρ

∂τT (ρ, τ) →
Ti,j+1 − Ti,j

δτ
.

(13)

This discretization procedure is associated with a RK al-
gorithm of the fourth order (RK4) that ensures a higher
accuracy – compared to regular Euler algorithms of the
first order – in the estimation of Ti,j at each spatio-
temporal step.
Further details regarding the numerical algorithm are

given in the appendix.

C. cw illumination

Before studying what occurs under femtosecond (fs)
pulsed illumination, it is worth describing first what hap-
pens under continuous (cw) illumination. We consider in
this paragraph a uniform cw illumination of irradiance I
and wavelength λ0.
Under cw illumination, the establishment of the steady

state temperature profile will be preceded by a transient
evolution. By dimensional analysis of the two diffusion
equations of system (2), one find that two time scales
come into play:

τwd =
ρw cw
κw

R2 =
R2

aw
, (14)

τAud =
ρAu cAu
κAu

R2 =
R2

aAu
. (15)

τwd is the characteristic time associated to the evolution
of the temperature profile in the surrounding water while
τAud characterizes the temperature evolution inside the
gold NP. Since aAu ≫ aw, the thermalization inside the
NP occurs much faster. Consequently, one can consider

that the global establishment of the temperature pro-
file of the overall system is governed by the time scale τwd .

We consider now the final steady state regime. The
set of equations reads now:



















κAu∇2T (r) = −p(r) for r < R

κw∇2T (r) = 0 for r > R

κw∂rT (R
+) = κAu∂rT (R

−)

= −g∆T

(16)

where ∆T ≡ T (R−)−T (R+). If one consider an average
power density p0 = P0/V , the solution has a simple form
and reads:

T cw(r) =
P0

4π κw r
for r > R (17)

T cw(r) =
P0

4π κwR

[

1 +
1

2γ

(

1− r2

R2

)

+ λK

]

for r < R

(18)

where P0 is the heat power dissipated in the NP. Note
that the temperature profile outside the NP does not
depend on the NP surface conductivity.44 Since γ ≫ 1,
one can usually consider – whatever the NP size – that
the inner temperature of the NP is uniform and equals:

T cw
NP =

P0

4π κwR
(1 + λK) =

σabs I

4π κwR
(1 + λK) (19)

where σabs is the optical absorption cross section of the
NP.2,45 For spherical nanoparticle smaller than 2R ∼ 30
nm, a good approximation can be used:46

σabs = k Im(α) − k4

6π
|α|2 (20)

where α =
α0

1− (2/3)ik3α0
(21)

and α0 = 4π R3 εAu − εw
εAu + 2 εw

(22)

with εAu the gold permittivity and εw the water permit-
tivity.
From equation (19), we obtain thus a simple and very

useful formula that gives the steady-state temperature of
small spherical NP (R < 15 nm) under cw illumination:

T cw
NP =

k I R2

κw
Im

(

εAu − εw
εAu + 2 εw

)

, (23)

T cw
NP ≈ 2.00× k I R2

κw
. (24)

The latter formula applies for λ0 = 520 nm. No interface
resistivity is assumed in this formula (λK = 0). If the
NP is not necessarily smaller than 2R = 30 nm, the
previous formalism becomes inappropriate and the more
sophisticated and general Mie theory has to be used.46

Within this model, the absorption cross section reads:

σabs =
2π

k2

∞
∑

j=1

(2j + 1) (|aj |2 + |bj |2)

where

aj =
mψj(v)ψ

′

j(u) − ψj(u)ψ
′

j(v)

mψj(v) ξ′j(u) − ξj(u)ψ′

j(v)
,

bj =
ψj(v)ψ

′

j(u) − mψj(u)ψ
′

j(v)

ψj(v) ξ′j(u) − mξj(u)ψ′

j(v)
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and m2 = εAu/εw, u = kR and v = mu. The primes
indicates differentiation with respect to the argument
in parenthesis. ψj and ξj are Ricatti–Bessel functions
defined such as:

ψj(x) =

√

π x

2
Jj+ 1

2

(x),

ξj(x) =

√

π x

2

[

Jj+ 1

2

(x) + i Yj+ 1

2

(x)
]

.

Jν and Yν are the Bessel functions of first and second
order respectively. The derivatives can be expressed as
follows:

ψ′

j(x) = ψj−1(x) −
j

x
ψj(x),

ξ′j(x) = ξj−1(x) −
j

x
ξj(x).

In the following, the Mie theory will be used whenever a
calculation of the absorption cross section is required.

D. Pulsed illumination & initial temperature

increase

We consider now a fs-pulsed illumination of average
irradiance 〈I〉, pulsation rate f and wavelength λ0.
The absorption of a fs-pulse by a metal nanoparti-

cle can be described as a three-step process47,48 that in-
volves different time scales:
Electronic absorption. During the interaction with

the fs-pulse, part of the incident pulse energy is absorbed
by the gas of free electrons of the NP, much lighter and
reactive than the ions of the lattice. The electronic gas
thermalizes very fast to a Fermi-Dirac distribution over
a time scale τe ∼100 fs.48 This leads to a state of non-
equilibrium within the NP: the electronic temperature
Te of the electronic gas has increased while the tempera-
ture of the lattice (phonons) Tp remains unchanged. The
absorbed energy E0 reads:

E0 = σabs〈I〉/f = P0/f. (25)

Electrons-phonons thermalization. Subsequently
this hot electronic gas relaxes (cools down), through
internal electron-phonon interaction characterized by a
time scale τe−ph to thermalize with the ions of the gold
lattice. This time scale is not dependent on the size of
the NP except for NP smaller than 5 nm due to confine-
ment effects.49 Above this size and for moderate pulse
energy, the time scale is constant and equals τe−ph ∼ 1.7
ps.50–52 At this point, the NP is in internal equilibrium
at a uniform temperature (Te = Tp), but is not in equi-
librium with the surrounding medium that is still at the
initial ambient temperature.
External heat diffusion. The energy diffusion to

the surroundings usually occurs at higher characteristic
time scale τd, which leads to a cooling of the NP and
a heating of the surrounding liquid. The time scale of
this process depends on the size of the NP and ranges
from 100 ps to a few ns. For small NP (< 20 nm), this
third step can overlap in time with the electron-phonon
thermalization19 (as discussed hereafter).

If one consider that the electron-phonon thermaliza-
tion (step 2) occurs much faster than the external heat
diffusion (step 3), the NP temperature reaches an ini-
tial maximum temperature T 0

NP that is straightforward
to estimate by energy consideration. It is related to the
absorbed energy through the relation:

E0 = V ρAucAuT
0
NP (26)

where V is the volume of the NP and V ρAucAu its heat
capacity. Using equation (25), we find that the maxi-
mum initial NP temperature is:

T 0
NP =

σabs〈I〉
V ρAu cAu f

. (27)

This formula is not restricted to spherical nanoparticles.
As an example, for a gold nanorod, 50 nm long and 12
nm in diameter, at the plasmonic resonance (λ0 =800
nm), considering a random orientation, f = 86 MHz
and 〈I〉=1.0 mW/µm2, we obtain T 0

NP ≈ 30◦C. Note
that for a given laser power, the temperature increase
does not depend on the pulse duration, but only on the
pulse energy 〈I〉/f .
It is worth comparing the instantaneous temperature

increase T 0
NP after a single fs-pulse and the steady-state

temperature T cw
NP achieved under cw illumination. From

Eqs. (19) and (27), we obtain a dimensionless number
η0 that quantifies the gain obtained when using pulsed
illumination:

η0 ≡ T 0
NP

T cw
NP

=
3 β aw

f R2 (1 + λK)
. (28)

Figure 2 illustrates what η0, T
0
NP and T cw

NP represent on
an particular example. This useful formula is only valid
for large values of η0. When R or f tends to be high,
successive pulses may overlap (as explained later in sec-
tion IIH), which makes the assumption of a single pulse
illumination wrong. Furthermore, for very small parti-
cles, a temperature damping effect occurs (by a typical
factor 2) and T 0

NP is not the initial temperature, as ex-
plained hereafter. Consequently, this formula is a good
approximation of the temperature gain achieved under
fs-pulsed illumination compared to cw illumination as
far as η0 remains large and the NP radius not too small
(R > 10 nm). The true values of η0 – i.e. whatever the
NP radius R and surface conductivity g and without ap-
proximations – is numerically computed and discussed
in section IIG.

E. Subsequent evolution of the temperature profile

We discuss now the subsequent evolution of the tem-
perature field T (r, t) after a single-pulse illumination, i.e.
after an initial temperature increase T 0

NP.
In the ideal case consisting of a point-like NP (R →

0), the heat power density can be described by a Dirac
distribution:

ρw cw ∂tT (r, t) = κw∇2T (r, t) + E0δ(r)δ(t). (29)

This ideal problem has a simple analytical solution that
reads:

T (r, t) =
E0
cw ρw

1

(4πaw t)3/2
exp

(

− r2

4πaw t

)

. (30)
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FIG. 2. Evolution of the temperature of a NP a radius R = 50
nm under cw illumination (dashed line) and after a single-
pulse illumination (solid line) for a given irradiance 〈I〉 = 0.1
mW/µm2. This figure aims at defining visually the initial
temperature increase T 0

NP under pulsed illumination and the
steady state temperature T cw

NP under cw illumination. For this
particular case, T 0

NP = 31◦C while T cw
NP = 9.2◦C.

Then, the envelope Tmax(r) ≡ maxt(T (r, t)) of the tem-
perature profile over time can be easily obtained by us-
ing formula (30) and calculating the time t for which
∂tT (r, t) = 0 for any position r. It yields a temperature
envelope:

Tmax(r) =
1

3
√
3

E0
cw ρw

1

r3
.

Interestingly, the temperature profile under pulsed il-
lumination follows thus a 1/r3 spatial decrease, which
makes a real difference compared to continuous illumi-
nation characterized by a steady state profile in 1/r (see
Eq. (17)). This is a first clue that pulsed illumination
achieves a much higher temperature confinement around
the NP.

We consider now the more general and realistic case of
a spherical NP defined by a finite radius R 6= 0. In this
case, no simple analytical solution exists but some ap-
proximations can be done to simplify the problem. First,
the initial temperature profile T (r, 0) can be considered
as uniform (equals T 0

NP) inside the NP since the electron-
phonon thermalization usually occurs much faster than
the external heat diffusion. Then, one can also suppose
that the NP temperature remains uniform during the
evolution of the system since κAu ≫ κw. Hence,

∀t, T (r, t) = TNP(t) for r < R. (31)

The validity of these two approximations will be investi-
gated and discussed in more details in section IIG. Un-
der these hypotheses, the system of equations (2) can be

simplified:



































Diffusion equation:

ρwcw∂tT (r, t) = κw
1

r2
∂r

(

r2∂rT (r, t)
)

for r > R

Boundary conditions:

V ρAucAu
dTNP(t)

dt
= κw4πR

2∂rT (R, t)

= −g 4πR2∆T (t)

(32)

The first equation is the heat diffusion equation outside
the NP. The two other equations come from considera-
tions of energy conservation and will control the bound-
ary condition at the NP interface (r = R).
Interestingly, two new characteristic times arise from

the boundary equations. They read:

τNP
d = R2 ρAucAu

3 κw
, (33)

τ sd =
RρAucAu

3 g
. (34)

These characteristic times are associated to the evolution
of the nanoparticle average temperature – i.e. the heat
energy stored in the NP. When the surface resistivity
1/g is high (resp. small),the evolution is governed by τ sd
(resp. τNP

d ). These new time scales differ from τAud and
τwd that were respectively the characteristic times asso-
ciated to the establishment of the internal temperature
equilibrium inside the NP and temperature diffusion out-
side the NP. If the surface conductivity g is small enough,
the evolution of the NP temperature is governed by τ sd.
If the surface resistivity is negligible, the evolution is
governed by τNP

d . The temperature evolution inside and
outside the NP is thus governed by a subtile interplay
between four time scales. Three of them are linked by
the relation:

τwd = γ β τAud = 3 β τNP
d , (35)

which yields:

τwd ≈ τNP
d ≫ β τAud . (36)

Regarding the fourth time scale τ sd, it can be dominant
or negligible depending on the values of R and g.
Using dimensionless time τ and space ρ variables, the

system of equations (32) can be recast into this simpler
form:































Diffusion equation:

∂τT (ρ, τ) =
1

ρ2
∂ρ

(

ρ2∂ρT (ρ, τ)
)

for ρ > 1

Boundary conditions:
dTNP(τ)

dτ
= 3 β ∂ρT (1, τ) = −3 β

λK
∆T (τ)

(37)

where ∆T (τ) = TNP(τ)− T (1, τ).
Using the RK4 algorithm, system (37) was re-

solved numerically. The discretization parameters are
(δρ, δτ,N,M) = (15 × 10−3, 4 × 10−6, 400, 106). The in-
terface resistivity 1/g was set to zero (non-zero values are
discussed in the next section). The result is presented in
Fig. 3 that displays the universal normalized evolution
of the temperature of a NP. This profile applies for any
particle size since it uses the normalized variables (ρ, τ):
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FIG. 3. Result of a numerical simulation showing the univer-
sal evolution of the temperature profile for a NP of radius R
at different normalized time τ = awt/R

2. No interface resis-
tivity is considered (1/g = 0). The inset shows the evolution
of the NP inner temperature as function of time.

For a given particle size R, the normalized coordinate ρ
has to be multiplied by R and the normalized time τ by
R2/aw to recover the actual coordinate r and time t. Hu
and Hartland19 have shown experimentally that the NP
temperature can be conveniently fitted using a stretched
exponential function:

F (τ) = e−(τ/τ0)
n

. (38)

We used this function to fit the evolution of the NP tem-
perature as represented in the inset of Fig. 3 (dashed
line). The optimized fit parameters are n = 0.39 and
τ0 = 0.041. This yields a useful formula giving the nor-
malized NP inner temperature evolution for any particle
radius R:

FR(t) = exp

[

−
(

aw t

0.041R2

)0.39
]

. (39)

Note that this useful formula assumes a zero interface
resistivity 1/g. For a finite value of g, the values of
the fit parameters τ0 and n are different and have to be
recalculated using the FDM.
Figure 4 aims at comparing the temperature profiles

under pulsed and cw illuminations. It replots the series
of temperature profiles of Fig. 3 along with the temper-
ature envelope and the temperature profile of the steady
state (cw illumination) given by Eq. (17). As derived
in the previous section, when considering a point-like
(R → 0) source of heat, the envelope of the tempera-
ture profile follows a 1/r3 profile outside the NP. When
considering now a finite-size NP, it appears that such a
simple law does not exist. Instead, a stretched expo-
nential function can also be conveniently used to fit the
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FIG. 4. a) Comparison between the steady state tempera-
ture profile under cw illumination and the envelope of the
temperature evolution under pulsed illumination. The inset
shows the fit of the NP temperature profile in the case of a
pulsed illumination. b) Temperature profile around the NP
under cw illumination. c) Envelope of the temperature pro-
file over time around the NP during subsequent to a fs-pulse
illumination.

envelope of the spatial temperature profile in the sur-
rounding water:

F (ρ) = exp

[

−
(

ρ− 1

ρ0

)n]

. (40)

The fit parameters are n = 0.45 and ρ0 = 0.060. This
results illustrate to what extent pulsed illumination
achieves a much higher degree of temperature confine-
ment compared to cw illumination.

Note that the evolution of the system is characterized
by an energy conservation law. At any time t, the energy
of the system is constant and reads:

E0 =
4

3
πR3 ρAucAu TNP(t) +

∫

∞

R

ρwcw 4πr2 T (r, t)dr,

(41)

or using the normalized variables and constants defined
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above, the normalized energy reads:

ǫ0 =
TNP(τ)

T 0
NP

+

∫

∞

1

3 β ρ2
T (ρ, τ)

T 0
NP

dρ = 1.

(42)

This conservation law can be conveniently used in nu-
merical simulations as a verification of the consistency
of the result. For example, in the simulations shown in
figure 3, it varied by less than 0.2%.

F. Finite conductivity of the gold–water interface

In this section, we shall go one step further into the
refinement of the analytical description of the problem.
We still consider the NP temperature as uniform, but we
take into account a finite interface conductivity g. The
set of equations describing the system is given by (37).
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FIG. 5. a, b, c) Temperature envelope of the temperature
evolution for three different values of normalized Kapitza
length λK. Temperature profiles are also represented at differ-
ent times (in gray). d) Evolution of the NP inner temperature
corresponding to the three previous situations.

Fig. 5 displays the evolution of the temperature pro-
files for a set of different normalized Kapitza length
(i.e. gold/water interface conductivity). Usual val-
ues of the interface conductivity g range from 50 to ∞
MW/(m2K).38,41 As an example, gold nanorods coated
with CTAB molecules are endowed with a typical surface

conductivity of 130 MW/(m2K).38 For NP radii ranging
from 5 to 50 nm, typical normalized Kaptiza length λK
are thus ranging from approximatively 0 to 2.
For large Kapitza length (high interface resistivity),

the heating of the surrounding fluid can be highly in-
efficient as observed in Fig. 5a. This is due to the fact
that the high resistivity of the NP interface tends to slow
down the heat release, which yield a weaker maximum
temperature in water. The same amount of energy is
released in the surroundings but more softly.

G. Beyond the approximation of instantaneous

temperature increase

In the previous section, we used two approximations
regarding the NP temperature to simplify the problem.
First, we have considered that the NP temperature

increase T 0
NP subsequent to the pulse of light was in-

stantaneous and uniform inside the NP. This was be-
cause the characteristic time of electron–phonon scatter-
ing (τe−ph ∼ 1.7 ps) is usually smaller than the diffusion
time into the surrounding (see Eq. (33)), but this may
become non-valid for small NP.
Second, we assumed that the NP temperature re-

mained uniform inside the NP during the overall evo-
lution. That was because the thermal conductivity of
gold is much larger than the one of water.
Yet, the validity of these two approximations may

depend a priori on the size R and the interface conduc-
tivity g of the NP. The numerical algorithm used in this
work allows one to consider the inner temperature of
the NP as not necessarily uniform and to investigate the
step where the temperature increases while the NP is
being illuminated by the pulse. We can thus investigate
the validity of the two approximations mentioned above
by simulating the evolution of the inner temperature
profile, both during the electron-phonon thermaliza-
tion and during the subsequent heat diffusion in the
surrounding medium. This is the purpose of this section.

During the electron-phonon thermalization, one can
assume that the heat power density p(r, t) is uniform all
over the NP.

p(r, t) = p0(t) =
E0

V τe−ph

exp(−t/τe−ph). (43)

Indeed, we have seen in section IID that the electronic
thermalization (step 1) occurs much faster than the en-
ergy transfer from the electrons to the lattice (step2).
The heating of the lattice is thus performed by a uni-
formly hot electronic gas. The dimensionless form reads:

p0(τ) = T 0
NP

τwp
τe−ph

exp(−ττwp /τe−ph).

Note that under cw illumination, the heat generation
density is on the contrary highly non-uniform within the
NP.53

Within this new approach characterized by an initial
zero temperature profile and a heat power density in
the NP, the energy conservation law reads now, at any
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FIG. 6. Temperature rise subsequent to a femtosecond-pulsed
illumination for a NP 100 nm in diameter (a) and 10 nm
in diameter (b) (interface resistivity 1/g = 0). The ideal
temperature profile that the NP would achieve if there were
no heat release in the surrounding is represented by a dashed
line. c) Evolution of the temperature T (r = 0, t) for the two
above-mentioned cases along with the normalized heat power
p0(t) (dark line) delivered by the excited electronic gas to the
phonons. The normalized temperature does not reach 1 due
to heat release during the NP heating.

normalized time τ , under cw illumination:

3β T cw
NP τ =

∫ 1

0

3ρ2 T (ρ, τ)dρ +

∫

∞

1

3ρ2 β T (ρ, τ)dρ

(44)

and under pulsed illumination:

T 0
NP

[

1− exp

(−τ τwd
τe−ph

)]

=

∫ 1

0

3ρ2 T (ρ, τ)dρ

+

∫

∞

1

3ρ2 β T (ρ, τ)dρ.

(45)

Figure 6 presents the results of the numerical simula-
tions for two NP sizes R = 5 and R = 50 nm, and for
1/g = 0. It shows the temperature evolution during the

heating phase from the initial zero uniform temperature
up to the time when the NP temperature reaches its max-

imum value. We can see that when considering a possible
heat leak into the surrounding during the pulse illumina-
tion, the NP temperature does not reach necessarily T 0

NP.
For large NP, the inner temperature profile suffers from
some distortion when the temperature reaches its high-
est value (Fig. 6a). However, the maximum temperature
reaches practically the ideal maximum temperature T 0

NP.
Indeed, one can see that the heat diffusion into the sur-
roundings is almost absent. For small NP (Fig. 6b), the
temperature diffusion into the surrounding medium dur-
ing this initial step is much more visible. The direct
consequence is that the NP temperature does not reach
its maximum ideal value T 0

NP represented by dashed line
in Fig. 6b. The evolution of the NP inner temperature
(T (r = 0, t)) for the two above mentioned cases (R = 5
and R = 50 nm) is plotted in Fig. 6c. The temperature
profiles are displayed along with the evolution of the heat
power p0(t) provided by the free electron gas. For small
particles, it is clear that the time scale τe−ph becomes
of the same magnitude as the characteristic time of the
heat diffusion in the surrounding. This explains why the
NP temperature cannot reach the maximum ideal tem-
perature T 0

NP. Note that the temperature T 0
NP used to

normalized the curves in Fig. 6 depends on R (cf. Eq.
(27)) and is thus not the same for the two cases.
In any case, the temperature remains quasi-uniform

inside the NP, which validate the usual assumption (31).
The maximum temperature achieved in the system is

discussed in more details in Fig. 7. Temperatures are
plotted as function of NP size R and interface conduc-
tivity g. Figs. 7a-b represent the maximum temperature
inside and outside the NP:

Tmax
NP = maxt [T (r = 0, t) ] , (46)

Tmax(R+) = maxt
[

T (r = R+, t)
]

(47)

normalized by the ideal temperature increase T 0
NP (Eq.

(27) and Fig. 7g). When Tmax
NP /T 0

NP ≪ 1, it means that
the heat release outside the NP is too fast. The charac-
teristic time τwd (Eq. (14)) becomes close to the charac-
teristic time of the inner thermalization and step 2 and
3 occur almost simultaneously. This happens when the
particle is too small and when the surface conductivity
is not weak. When Tmax

w /T 0
NP ≪ 1, it means that the wa-

ter temperature increase is not optimum. This happens
when the NP is too small, or when g is too small, giving
rise to a large temperature drop at the NP interface.
Figures 7c-d represent the maximum temperature in-

side and outside the NP for a given irradiance I = 0.1
mW/µm2. Interestingly, we evidence an optimal NP
size. NPs around 2R = 40 nm turn out to be the most
efficient nano-source of heat for a given laser irradiance.
Below this size, the cooling of the NP is too fast and
the temperature has no time to reach T 0

NP, as explained
above. Above this size, the absorption cross section is no
longer proportional to the volume of the nanoparticle, as
seen in Fig. 7f and in Eq. (20), which tends to damp
the temperature increase. This trend is also observed in
Fig. 7d that plots the associated temperature increase
at the vicinity of the NP under the same illumination
conditions. Moreover, we can see that to achieve a high
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FIG. 7. a) Numerical calculations of the temperature maximum of the NP normalized by the ideal temperature increase T 0

NP

for a set of different NP radii and surface conductivities. b)Numerical calculations of the temperature maximum achieved in
the surrounding medium normalized by the ideal temperature increase T 0

NP. c) NP maximum temperature when illuminated
by a pulsed laser, at a pulsation rate f = 86 MHz and an irradiance I = 0.1 mW/µm2. d) Maximum temperature of the
surrounding medium under the same illumination conditions. e) Ratio between the maximum temperature on the NP surface
achieved under pulsed illumination and the temperature on the NP surface under cw illumination (Eq. (17)). f) Absorption
cross section of a spherical gold NP as function of radius obtained from Mie theory (Eq. (25)) (solid line). The deviation from
the R3 law is represented by a dashed line. g) Ideal temperature increase T 0

NP as function of NP radius. h) Temperature on
the NP surface under cw illumination (calculated from Eq. (17)). The deviation from the R2 law (see Eq. (24)) is represented
by a dashed line.

temperature increase inside (resp. outside) the NP, a
low (resp. high) surface conductivity g is preferred.
Figure 7e aims at comparing the efficiency of pulsed

versus cw illumination. In Eq. (2), we defined the gain
η0 with the approximation of an instantaneous temper-
ature increase and no interface resistivity. Now, we can
define the exact gain η that takes into account the initial
temperature damping and a finite interface conductivity:

η = Tmax(R+)/T cw(R+). (48)

We observe that for small NP and high surface conduc-
tivity (upper left corner of Fig. 7e), a fs-pulsed illumina-
tion achieves a temperature rise two orders of magnitude
higher than cw illumination of the same average irradi-
ance. However, depending on the NP size and surface
conductivity, a pulsed illumination does not necessar-
ily achieve a more pronounced temperature increase in
the surrounding medium. Namely, for big NP around
2R = 100 nm in diameter, it appears that the use of

pulsed illumination becomes inefficient since the gain in
temperature reach a maximum value of around 3. For
low surface resistivity, the surrounding maximum tem-
perature can even be higher when using cw illumination
(lower right corner of Fig. 7e). Consequently, the use of
a fs-pulsed laser is not necessarily efficient if one want to
achieve the highest temperature possible for a given laser
power. This result questions the utility of fs-pulse illu-
mination on lithographic structure, since usually bigger
than 100 nm.

H. Influence of the pulse repetition rate

When the relaxation time of the system is sufficiently
long, the temperature of the NP has no time to return to
zero between two successive pulses. This effect has not
been considered so far and is the purpose of this section.
The parameter that controls the appearance of such a
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regime is:

ξ ≡ f τd = f(τNP
d + τ sd) = f R2 ρAu cAu

κw
(1 + λK). (49)

Let GR,g(t) be the NP temperature evolution after a
single-pulse illumination for a NP of radius R and inter-
face conductivity g. Note that a fit formula of GR,∞(t)
for g → ∞, assuming a square initial temperature pro-
file, is given by Eq. (39). Due to the linearity of all the
equations governing the heat release and diffusion in the
system, the NP temperature at any time t after a series
of N pulses at the repetition rate f is:

TNP(t) =
N−1
∑

j=0

GR,g(t− j/f). (50)

Figure 8 plots the results of numerical simulations for
two cases corresponding to two different NP radii. The
interface resistivity 1/g is assumed to equal zero. For
a radius of R = 50 nm (Fig. 8a), ξ is close to unity,
which yields a temperature offset: the NP temperature
has no time to return to zero between two successive
pulses. For even larger NP, the temperature evolution
would be even more smoothered and would tend to T cw

NP.
For weaker values of ξ, as shown in Fig. 8b, the successive
temperature pulses do not overlap and a regime of time

localization can be achieved.

I. Extension to non-spherical nanoparticles

The numerical technique we have developed could be
extended to 2D systems modeling a NP with axial sym-
metry, like nanorods. It would require a 2D mesh and

longer computation times. However, most of the results
presented in this work can be easily extended to non-
spherical NP without carrying out more sophisticated
calculations: While the optical properties of NP parti-
cles depend very sensitively on the NP geometry – in
particular the resonance frequency–, thermal processes
of NP are only slightly dependent on the geometry.2 For
non-spherical NP, we can define an effective radius Reff

such that the NP volume equals:

V =
4

3
πR3

eff . (51)

Most of the reasonings we have done are also valid when
replacing R by this effective radius Reff .

2 In particular,
the equation (27) giving the ideal temperature increase
T 0
NP remains exact whatever the shape of the NP us-

ing Reff . For gold nanorods, large aspect ratios would
tend to make the cooling of the NP slightly faster by
increasing the surface to volume ratio. However, all the
orders of magnitude of time and space will remain iden-
tical as long as the aspect ratio remains moderate (less
than ∼ 4).

III. SUMMARY AND CONCLUSION

To summarize, we have developed a versatile and yet
simple numerical framework to investigate femtosecond-
pulsed optical heating of spherical gold nanoparticles
(NPs). This approach enabled us to address differ-
ent models, from simple to more sophisticated, and to
discuss the validity of their approximations. Most of
the reasonings and calculations are made using dimen-
sionless variables, parameters and constants, which en-
abled us to compute universal behaviors. The consti-
tutive equations governing the system are derived and
explained. We show how such a physical system turns
out to be governed by a subtile interplay between four
characteristic time scales.
We investigated the influence of the size of the NP:

For small NP (diameter < 30 nm), the temperature rise
is not as high as expected due to fast heat release. For
bigger NP, the temperature rise is damped because large
NP are not efficient absorbers. This leads to a particle
size compromise around 40 nm that optimizes the tem-
perature increase (for a given laser irradiance).
The role of a possible molecular coating is also in-

vestigated in details based on considerations on inter-
face thermal resistivity. For high interface resistivity, a
temperature damping is observed outside the NP while
an enhanced temperature increase is observed inside. A
high interface resistivity tends in parallel to slow down
the heat release in the surrounding medium making the
heating of the surroundings less efficient.
A detailed comparison between cw and pulsed illu-

mination was drawn and two main results came out:
i) While a temperature profile in 1/r in the surround-
ing medium is observed under cw illumination, a much
more confined temperature envelope in 1/r3 character-
izes a pulsed illumination. A refined model even fur-
ther demonstrates a higher degree of confinement with
a spatial profile following a stretched exponential. ii)
Unexpectedly, pulsed illumination does not necessarily
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achieve much higher temperature increase in the sur-
roundings compared to cw, especially for nanoparticles
bigger than 100 nm (typically lithographic plasmonic
structures). It can even be worse when the gold parti-
cle is endowed with a poor thermal surface conductivity
(due to an hydrophobic molecular coating for example).
Finally, the influence of the repetition rate is discussed

and two regimes are identified depending on the NP ra-
dius R and the pulsation rate f : One time-localization
regime, where the temperature increase is confined spa-
tially and temporally and one regime that tends to re-
semble to the regime observed under cw illumination.
Within this work, we restricted ourselves to gold

nanoparticles with spherical geometry (radius R), but
most of the results obtained herein are also valid for non-

spherical particles when considered as particles of char-
acteristic size R. The numerical techniques we developed
could also be refined to address problems with 2D sym-
metries requiring a longer computation time. This ver-
satile numerical technique could also take into account
other materials than gold and water and various pulse
durations, from femto- to nanosecond-scales.
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Appendix A: Numerical algorithm

In this section, we explain and detail how the physi-
cal system was modeled using a finite difference method
(FDM) and in particular what the RK4 algorithm con-
sists in.

We shall specifically use in this section the equations
and the formalism based on dimensionless space and
time variables (ρ and τ) and dimensionless constants and
parameters (β, γ and λK).

1. Model assuming a uniform NP temperature

We consider in this part a spherical NP endowed with
a surface conductivity g and characterized by a uniform
inner temperature TNP(τ). This problem is described by
the set of equations (37). Since the NP temperature is as-
sumed to be uniform, only the surrounding medium has
to be meshed (see Fig. 9). The spatio-temporal meshing
of the system is such as:

ρi ≡ 1 + i× δρ i ∈ [0, N ]

τj ≡ j × δτ j ∈ [0,M ]

Ti,j ≡ T (ρi, τj)

To simplify the notations and the explanations, we
consider here a regular spatio-temperal mesh. However
it would be wise to use for instance a refined mesh close
the NP interface and a rougher mesh further.

The boundary condition (37) at the NP interface
reads:

− T2,j − T1,j
δρ

=
T0,j − T1,j

λK
. (A1)

The temperature drop ∆T occurs between the coordi-
nates ρ0 and ρ1. The temperature gradient on the NP
surface is calculated between the coordinates ρ1 and ρ2
(see Fig. 9).

τ = τ
j

ρ
0

T

ρ

gold water

ρ
1

ρ
N

interface

T
1,j

TNP(τ
j
)

ρ
2

∆T

FIG. 9. Schematic of the temperature profile at time τj
around a spherical gold nanoparticle as modeled in the FDM-
RK4 algorithm. In this first model, the NP temperature
TNP(τj) is assumed to be uniform and a temperature discon-
tinuity ∆T occurs at the nanoparticle interface to take into
account a finite interface conductivity.

The initial temperature profile is set to:

T0,0 = T 0
NP (A2)

T1,0 =
T 0
NP

1 + δρ/λK
(A3)

Ti,0 = 0 for i > 1 (A4)

This initial temperature profile corresponds to a zero
temperature outside the NP and fulfills the boundary
condition (A1).
The numerical algorithm consists in a spatial loop over

the position i inside a temporal loop over the time j. At
each time j + 1, here is the procedure.
First, the NP temperature T0,j+1 is calculated from

the second equation of system (37):

T0,j+1 = T0,j + 3 β δτ
T2,j − T1,j

δρ
. (A5)

Then, using Eq. (A1), one can compute the tempera-
ture on the NP surface (i = 1):

T1,j+1 =
lK T2,j + δρ T0,j+1

λK + δρ
. (A6)

Finally, the computation of the temperature profile in
the surrounding medium (i > 2) is performed according
to the RK4 procedure:43

Ti,j+1 = Ti,j +
k1 + 2 k2 + 2 k3 + k4

6
(A7)

where

k1 = δtK(Ti,j)

k2 = δtK(Ti,j + k1/2)

k3 = δtK(Ti,j + k2/2)

k4 = δtK(Ti,j + k3)

and

K(Ti,j) =
2

ρ

Ti+1,j − Ti,j
δρ

+
Ti+1,j − 2Ti,j + Ti−1,j

δρ2
.

(A8)
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FIG. 10. Schematic of the temperature profile at time τj
around a spherical gold nanoparticle as modeled in the FDM-
RK4 algorithm. In this second model, the temperature inside
the NP is also meshed.

Note that the increments δρ and δτ cannot be chosen
arbitrarily and independently. To ensure a proper con-
vergence, δρ and δτ have to be chosen much smaller than
unity and respecting as well the convergence criteria:

δρ2/δτ ≫ 1. (A9)

This ensures that the right hand member of equation
(A7) – the variation of the NP temperature – is small
compared to the NP temperature Ti,j.
It is worth estimating the total energy of the system

and its conservation at each time step to check the con-
sistency of the calculations. The normalized energy at
time τj expressed from equation (41) reads:

ǫj =
T0,j
T0,0

+ 3 β δρ
N
∑

i=1

ρ2i
Ti,j
T0,0

(A10)

and should remain close to unity at any step j of the
numerical procedure.

2. Model including a non-uniform NP temperature

We assume in this section that the inner temperature
of the NP is not necessarily uniform. We shall also ex-
plain how both the heating and cooling of the NP can
be investigated numerically.
In this context, the normalized coordinate reads now:

ρi ≡ i× δρ i ∈ [0, N1+N2 − 1]

and in particular ρN1
= N1 × δρ = 1. N1 is the number

of mesh points in the NP and N2 in the surrounding
medium (see Fig. 10).
To simplify the notations and the explanations, we

consider here a regular mesh. However it would make
sense to use for instance a rough mesh inside the NP
and a refined mesh in the surrounding medium, close to
the NP interface.
The discretized boundary conditions of system (12)

yields this time:

TN1+2,j − TN1+1,j

δρ
= −TN1,j − TN1+1,j

λK
= γ

TN1,j − TN1−1,j

δρ

(A11)

At time τ0, the initial temperature profile is set to
zero:

∀i, Ti,0 = 0.

At time τj+1, the calculation of the temperature pro-
file inside the NP (i < N1) is performed using the RK
procedure (Eq. (A7)) and replacing the RK function
K(Ti,j) with

KAu(Ti,j) = β γ K(Ti,j) + p0(τj).

This source term p0(τj) has to be added when one wants
to take into account a heat generation in the NP. For a
pulsed illumination, it reads:

p0(τj) = T 0
NP

τp
τe−ph

exp(−τjτp/τe−ph).

And for a cw illumination:

p0 = 3β T cw
NP.

The convergence criteria is now:

δρ2/δτ ≫ β γ ≈ 860. (A12)

This means that while investigating the dynamics of the
NP temperature, the convergence criteria is more dras-
tic. However, this is expected and not an issue since the
associated time scale of the temperature diffusion inside
the NP is much faster. Consequently, δτ can be chosen
much smaller.

Then the temperatures at the nanoparticle interface
TN1,j and TN1+1,j have to be calculated using the bound-
ary conditions (A11). It yields:

TN1,j+1 =
γ (δρ+ λK)TN1−1,j + δρTN1+2,j

γ λK + δρ+ γ δρ
,

TN1+1,j+1 = TN1+2,j + γ (TN1−1,j − TN1,j+1).

Finally the temperature profile within the surrounding
medium (i > N1 + 1) is computed using the RK4
procedure (Eq. (A7)) and the regular RK function
K(Ti,j) (Eq. (A8)).

When considering an initial zero temperature profile,
the new energy conservation laws (44) and (45) reads for
cw illumination:

3β Twc
NP j δτ =

N1
∑

i=0

3ρ2i Ti,jδρ +

N1+N2
∑

i=N1+1

3β ρ2i Ti,jδρ

And with pulsed illumination:

T 0
NP

[

1− exp

(−τj τwd
τe−ph

)]

=

N1
∑

i=0

3ρ2i Ti,jδρ

+

N1+N2
∑

i=N1+1

3β ρ2i Ti,jδρ.


