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Abstract

We introduce an optical microscopy technique aiming at characterizing the heat generation arising

from nanostructures, in a comprehensive and quantitative manner. Namely, it permits to i) map the tem-

perature distribution around the source of heat, ii) map theheat power density delivered by the source

and iii) retrieve the absolute absorption cross section of light-absorbing structures. The technique is

based on the measure of the thermal-induced refractive index variation of the medium surrounding the

source of heat. The measurement is achieved using an association of a regular CCD camera along with

a modified Hartmann diffraction grating. Such a simple association makes this technique straightfor-

ward to implement on any conventional microscope with its native broadband illumination conditions.

We illustrate this technique on gold nanoparticles illuminated at their plasmonic resonance. The spatial

resolution of this technique is diffraction limited and temperature variations weaker than 1 K can be
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detected.
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Probing temperature at the nanoscale is fundamentally a complicated task mainly because heat has

a non-propagative nature, unlike light. Yet, the ability toinvestigate thermal-induced phenomena on the

nanoscale would help developing unprecedented applications in many active current areas of research,1

namely photothermal cancer therapy,2,3 drug release,4 nano-surgery,5 opto-acoustic imaging,6,7 nano-

chemistry,8,9 micro-fluidics,10 magnetic recording11 and thermonics.12 Twenty years ago, as a tempera-

ture microscopy technique, the use a sharp hybrid tip as a nano-thermocouple was proposed.13,14 Even

though such an approach achieved a spatial resolution of 50 nm, it appeared to be very invasive due to

the proximity of the tip to sample. More recently, several thermal microscopy technique have been de-

veloped that are much less invasive since they are based on far-field optical measurements. These optical

techniques rely either on fluorescence intensity,15,16 fluorescence polarization anisotropy,17,18 fluores-

cence spectroscopy,19–21 Raman spectroscopy,22 infrared spectroscopy23 or X-ray spectroscopy24 mea-

surements. However, all these techniques suffer from drawbacks that make them suited only for particular

cases. Namely, they suffer from a slow read-out rate,19–22 a low resolution,23 a lack of reliability,15,16 a

poor temperature sensitivity22 or the necessity to modify (tag) the medium with fluorescent molecules or

nanocrystals.15–21

In this paper, we propose a thermal microscopy technique sensitive to the thermal-induced variation

of the refractive index of the medium of interest. This optical technique circumvents the limitations of all

the previous techniques mentioned above and is straightforward to implement on any conventional opti-

cal microscope. We explain how it leads to a quantitative real-time retrieval of the distributions of both

the temperature and the source of heat with a sub-micrometric resolution. The theory and the retrieval

algorithms are detailed. We chose to illustrate the capabilities of this technique on gold nanoparticles

(NPs), which act as ideal nanosources of heat when illuminated at their plasmonic resonance frequency.

Moreover, we show how a quantitative measurement of the actual absorption cross section can be achieved

whatever the nature of the absorbing structure. We chose to name this technique TIQSI for Thermal Imag-

ing using Quadriwave Shearing Interferometry.



Results and discussion

We consider in this work a two-dimensional distribution of absorbers (gold nanoparticles) distributed

at the interface between a solid (glass substrate) and a liquid environment (like water). When the absorbers

are illuminated, heat is generated and a temperature steadystate profile appears over a time scale that de-

pends on the spatial extension of the source of heat (typically below 10 µs for structures smaller than 1 µm,

in water25). This temperature increase is responsible for a variationof the refractive index of the surround-

ing liquid over a typical length much larger than the size of the particle itself. This effect has been recently

exploited independently by the groups of Lounis and Orrit asa localization technique of NPs or single

molecules.26–29NPs and molecules of interest in these works were non-luminescent and far too small to

scatter any incident light, making them invisible using anyconventional optical technique. To circumvent

this limitation, the idea developed in these groups was to exploit the light absorption capabilities of the

nano-objects to thermally induce an extended variation of the refractive index of the surroundings, much

easier to detect than the nano-objects themselves. However, this localization technique is based on the

modulation of the heating laser to achieve an heterodyne detection. For this reason, it cannot be used to

measure anysteady-statetemperature distribution. Moreover, this technique remains slow and requires a

complex experimental configuration comprising an acousto-optical modulator and a heterodyne detection.

Recently, our group has developed an optical phase microscopy technique capable of mapping quanti-

tatively the optical path difference (OPD) through a refractive object in real time with a sensitivity of∼ 1

nm.30 This technique was illustrated by imaging microscopic dielectric beads and living organisms. The

experimental approach is based on the use of a quadriwave lateral shearing interferometer as a wave front

analyzer (WFA) (see Supplementary Information for more details). Basically, it consists of a modified

Hartmann grating (MHG) associated with a regular CCD camera. The device, namedSid4Bio®, was pur-

chased from Phasics SA.31 The interferogram produced by the MHG and recorded by the CCDcamera

can be processed in real time to retrieve the OPD. Interestingly, this interferometric technique is achro-

matic and can be mounted on any conventional white-light transmission microscope. In the present work,

we demonstrate how this experimental approach can be the basis of an efficient and easy-to-implement

thermal imaging technique. The experimental setup is detailed in Figure 1. All the samples we used con-

sist of a sandwich structure where a liquid layer of thickness h is limited by two glass coverslips in thez

direction. The gold nanoparticles acting as nanosources ofheat are lying on the bottom coverslip.

When experiencing a temperature variationδT(r) = T(r)−T∞, a given medium undergoes a variation
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Figure 1: Schematic of the experimental setup. The sample isilluminated using a Köhler configuration
with a reduced numerical aperture (D2) to increase the spatial coherence of the light. A laser is used to
excite the gold structures at their plasmonic resonance andheat them (either at 532 or 808 nm, depending
of the sample). It is focused at the objective entrance pupilby L1 to perform a wide field illumination. A
diaphragm D3 is used to control the beam diameter and to achieve a uniform illumination at the sample
location. This diaphragm is optically conjugated with the sample by the objective/L1 association The
sample is imaged onto a CCD camera by L2 through a modified Hartmann grating. This creates an
interferogram on the CCD that is processed to retrieve the optical path difference generated by the thermal-
induced refractive index variation.

δn(r) of its refractive index. This variation is usually described by a Taylor development of theNth

order:32

δn =
N

∑
j=1

β j δT j . (1)

whereβ j are empirical parameters (see Supplementary information or Ref.32 for values). For the sake

of simplicity, we shall consider in this theoretical part only the first (linear) term of this Taylor series:

δn = β1δT. In water, this assumption is valid if the temperature increase over the ambient temperature

does not exceed∼ 20◦C.32 It makes the equations linear and simplifies the algorithm used to retrieve

the temperature profile. When higher temperature increasesare considered, a non-linear iterative numer-

ical procedure is required. The approach is more complex butstill simple to implement as detailed in

supplementary information.

To begin with, let us consider apoint-like source of heat located at the solid–liquid planar interface



at (x,y,z) = (0,0,0). In the surrounding liquid, the temperature distribution is governed by the Poisson

equation:

κ ∇ 2T(r) = P0δ(r) (2)

whereκ is the thermal conductivity of the surrounding liquid (0.6 W/m/K for water),T(r) the temperature

andP0 the power absorbed (i.e. delivered) by the point-like source of heat. In spherical coordinates, the

solution reads:

T(r) = T∞ +
P0

4π κ r
= T∞ +

P̄0

r
, (3)

T(r) = T∞ + P̄0GT(r) (4)

whereT∞ is the ambient temperature,̄P0 = P0/4πκ is the normalized power andGT(r) = 1/r the standard

Green’s function associated to the Poisson equation.

Experimentally, we use the WFA to measure two phase images ofa given area: One reference image

acquired (once far all) without heating and one image under heating. The subtraction of these two images

provides a measure of the spatial distribution of the optical path differenceδℓ(x,y) through the liquid

layer specifically due to thermal-induced variation of the refractive index distributionδn(x,y,z). It can be

written as:

δℓ(x,y) =

∫ h

0
δn(r)dz =

∫ h

0
β1δT(r)dz. (5)

According to Eq. (3), the profile of the temperature variation δT reads in radial coordinates(ρ,z):

δT(ρ,z) =
P̄0

√

ρ2+z2
. (6)

Using Eqs. (5) and (6) and after integration, the OPD reads:

δℓ(ρ) = P̄0β1 ln

(

h/ρ +
√

1+(h/ρ)2

)

, (7)

δℓ(ρ) = P̄0β1 sinh−1(h/ρ) = P̄0Gℓ(ρ), (8)

whereGℓ(ρ) = β1 sinh−1(h/ρ) stands for the Green’s function for the phase distribution,since the source



of heat is a Dirac distribution. By eliminating the radial coordinateρ in Eqs. (6) and (7), one ends up with

a bijective relation between the optical phase difference and the temperature increase atz= 0:

δT(ρ,0) =
P̄0

h
sinh

(

δℓ(ρ)
P̄0β1

)

. (9)

Note that this formula is only valid for a point-like source of heat, since it was derived using formula (6).

In the most general case (extended and non-uniform source ofheat), such a bijective relation does not exist

between the OPD and the temperature and an inversion procedure is required, which we shall detail now.

Consider now an extended non-uniform source of heat characterized by a delivered heat power density

(HPD) p(x,y) = 4πκ p̄(x,y). The subsequent OPD and temperature distributions can be expressed as

convolutions with the associated Green’s functions:

δℓ(x,y) = [p̄⊗Gℓ](x,y), (10)

δT(x,y) = [p̄⊗GT ](x,y), (11)

which turns into simple multiplications in the Fourier domain:

δ̃ℓ(k) = ˜̄p(k)G̃ℓ(k), (12)

˜δT(k) = ˜̄p(k)G̃T(k), (13)

where f̃ stands for the Fourier transform off . From the experimental phase imageδℓ(x,y), the heat

source distribution ¯p(x,y) can be simply retrieved using Eq. (12):˜̄p(k) = δ̃ℓ(k)/G̃ℓ(k) followed by an

inverse Fourier transform. However, such a basic approach is likely to cause divergence problems in

case of low signal to noise ratio in the OPD images. This standard deconvolution issue is well-known and

different approaches have been proposed in the literature.Among them, one of the simplest is the Tikhonov

regularization method,33 which we used here. Its principle is detailed in supplementary information. Then,

the temperature distributionT(x,y) is retrieved using Eqs. (13) followed by an inverse Fourier transform.

The spatial resolution of the TIQSI technique is given byλ /NA (since the illumination is spatially co-

herent) whereλ is the characteristic wavelength of the Köhler illumination andNA the numerical aperture

of the objective. Our set of measurements corresponds toλ = 650 nm andNA = 1.4, which leads to a

theoretical spatial resolution of around 450 nm. The frame rate of our CCD camera is 10 Hz (100 ms per
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Figure 2: a) Scanning Electronic Microscope (SEM) image of the gold structure under study. This struc-
ture was illuminated at a wavelengthλ0 = 808 nm. b) Raw image ofδℓ(x,y), I = 12.8 mW/µm2. c)
Heat power densityp(x,y) processed from image b using the NL algorithm. d) Temperature distribution
δT(x,y) processed from image c using Eq. (11). e) Measured radial profile of the OPD distribution in
image b (solid line), fitted using Eq. (9) (dashed line). f) Delivered powerP0, as function of the laser irra-
diance, measured by fitting the OPD radial profile using Eq. (9) with P0 andh as the unknown parameters.

image). We usually average a series of 10 to 30 frames to improve the signal to noise ratio. Hence, one

usually needs a few seconds per image. This is much faster than most of the other thermal microscopy

techniques that need a few minutes or even a few hours to record an image. This readout rate is not a

fundamental limitation of the TIQSI technique and it could be improved with a faster and better cooled

CCD camera.

We shall first present and discuss experimental results obtained on a point-like source of heat,i.e. a

gold disc, 300 nm in diameter and 40 nm thick illuminated by a laser beam atλ0 = 808 nm (Figure 2a).

Figure 2b displays the raw image of the OPD measured by the WFA. From this image, we have applied the

Tikhonov algorithm to retrieve the actual HPD and temperature distributions, as displayed in Figure 2c-

d. Interestingly, the temperature extension (Figure 2d) ismuch narrower that the extension of the OPD

distribution. This observation is consistent with the− ln(ρ) decrease of the OPD Green’s function (Eq.

(7)), compared to the much steeper 1/ρ decrease of the temperature Green’s function (Eq. (4)). In this



measurement, 30 frames of 100 ms were averaged. The standarddeviation of the noise in the raw OPD

image (Figure 2b) is 0.15 nm and in the temperature image (Figure 2d), 1.1 K.

In experimental optics, determining the actual absorptioncross section of a unique absorber is not

straightforward mainly because the absorption process is precisely not associated with any light reemission

that could contain information and be detected in the far-field (unlike extinction or scattering cross-sections

measurements). Optical techniques to measure absorption cross sections have been proposed recently.34,35

However, all of them suffer from at least one of these drawbacks: i) They consist in fact in measuring

extinction instead of absorption. This assimilation is valid only for small particles,i.e. when scattering

is negligible (extinction=absorption+scattering), ii) They do perform absorption spectroscopy but they do

not yield a quantitative measurement of the cross section. In this second case, a quantitative ACS can be

eventually estimated indirectly by comparing the photothermal signal with the one obtained on a reference

absorber with a supposedly known ACS.29 Our approach circumvent these two limitations at the same

time: It allows to get a direct quantitative measurement of the actual absorption cross sectionσabs without

any assumption and independently of the nature of the absorber. One just needs to estimate the absorbed

powerP0 and then calculateσabs = P0/I whereI is the irradiance of the laser beam (power per unit area).

There are two possibilities to estimateP0. The first one consists in fitting the radial profile of the OPD

image (as shown in Figure 2e) using formula (7) withP0 (and eventuallyh) as the unknown parameter.

This first approach gives in the case of Figure 2:σabs = 14930±530 nm2. The second approach consists

in estimatingP0 by a spatial integration of the HPD image (Figure 2c). It naturally yields a very similar

result: σabs = 15300±600 nm2. Calculations using the Green’s dyadic tensor method18 on a gold disc,

288 nm in diameter, 39 nm thick, discretized using 2066 cellsand illuminated at lambda=808 nm, led to

σabs = 17200 nm2, which is the good order of magnitude. The difference of 14% with the experimental

measurement can be mainly explained by the fact that the realstructure is not a perfect disc. The accuracy

of the measurement can be optimized by acquiring a set of images at different irradiances, as illustrated in

Figure 2f. The first approach is handy since it does not require the computation of the HPD distribution,

while the second approach is more general and applies even for extended (not point-like) sources of heat.

Note that one does not need to optically resolve the NP to measure its ACS. Indeed, the ACS retrieval

procedure is based on the fit of the logarithmic OPD profile around the particle that extends to infinity,

even for nanometric/point-like particles (see Figure 2a–c).
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Figure 3: a) SEM image displaying a quasi-hexagonally ordered array of gold nanoparticles. b) Raw
image of the measured optical path difference. Heating is performed by a circular beam of diameter
D = 8.0 µm and uniform irradiance 105 µW/µm2 at λ = 532 nm. c) Processed heat power density. d)
Processed temperature increase. e) Radial profile of the temperature distribution. f) Optical image of the
micropatterned array of gold nanodots. A SEM image in the inset displays their organization. This whole
structure is illuminated by a uniform beam of irradiance 250µW/µm2. g) Raw image of the measured
optical path difference. h) Heat source density. i) Temperature increase. j) Maximum temperature of the
microstructure as function of the laser irradiance.

We shall now present experimental results that address the situation of an extended distribution of heat

sources. In Figure 3, experiments have been carried out on anarray of quasi-hexagonally organized NPs.

The sample has been done by block-copolymer lithography.36 It consists of spherical gold NPs,d= 30±3

nm in diameter and separated byp = 100±10 nm. The NP interdistance is small enough compared to

the resolution of the microscope to consider the HPD as a continuous physical quantity. The heat is gen-



erated by a laser beam atλ0 = 532 nm, close to the resonance wavelength of the gold particles. In the

first case, the NP array covers the whole sample (Figure 3a) and the laser illuminates uniformly a circular

area of diameter 8.0 µm. In the second case, NP distributionsform cross-like structures (Figure 3f). One

of them is uniformly illuminated by the heating laser. From the optical path difference measured by the

WFA (Figure 3b-g) the distribution of the HPD is computed using the Tikhonov inversion algorithm. As

expected, the heat source distributions (Figure 3c-h) are well delimited while the temperature distributions

tend to spread out (Figure 3d-i). In order to verify the consistency of the temperature distribution, we

performed numerical simulation of the temperature profile in Figure 3d using the Green’s function for-

malism25 (Figure 3e). The input parameters regarding the geometry and the illumination conditions were

I = 105 µW/µm2, D = 8.0 µm,p= 105 nm,d = 28 nm. The only variable parameters wered andp and

remain very close to the measured values on the SEM image. Thematching is very good as observed in

Figure 3e, which reinforces the validity of our post-processing numerical model. A last result that we wish

to share is presented in Figure 3j. It shows that, as expected, the temperature increase is proportional to

the laser irradiance, even over a wide range of temperature.The non-linearities of the problem are thus

well taken into account in our numerical procedure (see Supplementary information).

In this last paragraph, we wish to discuss the temperature sensitivity that the TIQSI method can

achieve. Figure 4 presents a measurement performed on an extended quasi-hexagonal array of nano-

dots. The structure is illuminated by a uniform circular beam of diameter 11 µm and and powerP= 0.35

mW. Such a low irradiance (I = 3.7 µW/µm2) led to a fairly noisy OPD image (Figure 4a) due to a weak

temperature increase. Processing of the OPD image led to a temperature image presented in Figure 4b

and revealed that the temperature increase was about 1 K. Onecan see that such a temperature increase is

perfectly visible on the OPD image, even though it leads to a very noisy temperature image. The standard

deviation of the noise in the OPD image (Figure 4a) is 0.044 nmand in the temperature image (Figure 4b),

0.36 K. The higher noise level in the temperature image compared with the OPD image is inherent to the

deconvolution procedure, and mostly features low frequencies. Below a temperature increase of 1 K, it is

hard to obtain a well-defined temperature map. However, since most of the noise observed on the interfer-

ogram recorded by the CCD image is due to dark current, it could be possible to increase the signal to noise

ratio and reach even better temperature sensitivity by increasing the number of accumulated frames, or by

using a better cooled CCD camera. Note that no physical limitation exists on the temperature accuracy,

unlike the spatial resolution that is bound to remain diffraction-limited.
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Figure 4: a) Raw thermal-induced OPD image obtained on a quasi-hexagonally ordered array of gold
nanoparticles (see Figure 3a). b) Processed temperature distribution (smoothed using a 10-pixel Gaussian
function). c) Cross section of image (a). Cross section of the raw image (b) without smoothing (dash line)
and with smoothing (solid line).

Conclusion

In summary, we introduced a thermal microscopy technique sensitive to thermal-induced refractive

index variation. The measurement is achieved using a simpleexperimental configuration consisting of

a Hartmann diffraction grating attached to a CCD camera. This technique cumulates many valuable ad-

vantages compared with previous thermal imaging techniques: i) It is fast. According to the CCD frame

rate, it takes around one second to acquire an acceptable image in most cases. ii) No scanning is required.

It is a one-shot measurement of a 2D image. iii) It has a diffraction limited resolution (less than 500

nm). iv) No modification of the sample is required, like usingfluorescent markers. It works whatever the

sample as far as there is a liquid environment. v) No need to use sophisticated devices such as heterodyne

detection, acousto-optic modulator, spectrometer, etc, like previous thermal imaging techniques. All the

thermal measurements can be performed by plugging in the CCD/grating device on a conventional optical

microscope, just like a regular CCD camera. vi) The TIQSI techniques features an un precedented ver-

satility since it can quantitatively measure temperature,heat source density and absorption cross sections

of nanoparticles and nanostructures. We chose to illustrate the abilities of the technique on gold NPs,

which stand for ideal nano-sources of heat. However, we wishto emphasize that the method is not re-

stricted to metal NPs and can be extended to any 2D-distribution of heat sources, independently on their

nature. Moreover, this technique is straightforward to implement on any conventional microscope. For

these reasons, pending important applications are envisioned not only in plasmonics but also in areas such



as nano-electronics, micro-fluidics or cell biology.

Methods

Fabrication of the quasi-hexagonal arrays of gold nanodots: In a typical synthesis, polystyrene(1056)-block-poly(2-vinylpyridine)(495)

(PS1056-b-P2VP495) from Polymer Source Inc. was dissolvedat room temperature in anhydrous toluene (Sigma-Aldrich) with

a concentration of 5 mg/mL and stirred for 2 days. The quantity of gold precursor was calculated relative to the number of

P2VP units with a loading parameter equal to 0.5,i.e., 1 molecule of HAuCl4 for 2 P2VP monomers. Hydrogen tetrachloroau-

rate (III) trihydrate (HAuCl4.3H2O, Sigma-Aldrich) was added to the dBCP solution and stirredfor 2 days in a sealed glass

vessel. Glass cover slips (Carl Roth) were cleaned in a piranha solution for at least 5 hours and were extensively rinsed with

MilliQ water and dried under a stream of nitrogen. Micellar monolayers were prepared by dip-coating a glass cover slip into

the previously prepared solutions with a constant velocityequal to 24 mm/min. To remove the organic template and to form

inorganic nanoparticles, the dip-coated glass slides wereexposed to oxygen plasma (150 W, 0.15 mbar, 45 min, PVA TEPLA

100 Plasma System). In the case of the micropatterned arraysof gold nanodots, a 1-µm thick layer of AR-P5350 photoresist

(Allresist GmbH) was spin-coated onto the arrays. Illumination was performed under a maskaligner (Suss Microtec GmbH)

with a dose of 175 mJ/cm2 from a HBO 350 mercury lamp and the microstructures were developed according to the manufac-

turer’s instructions.36 The enlargement of gold nanodots was performed in an aqueoussolution containing hydroxylamine (0.02

mM) and HAuCl4 (0.1 wt%) for 10 min. Scanning electron measurements were performed with a Dual BeamTM (FIB/SEM)

instrument (Quanta 3D FEG, FEI, Hillsboro).
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