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POLYNOMIAL FUNCTORS FROM ALGEBRAS OVER A

SET-OPERAD AND NON-LINEAR MACKEY FUNCTORS

MANFRED HARTL &TEIMURAZ PIRASHVILI & CHRISTINE VESPA

Dedicated to the memory of Jean-Louis Loday for his generosity and benevolence.

Abstract. In this paper, we give a description of polynomial functors from (finitely
generated free) groups to abelian groups in terms of non-linear Mackey functors gen-
eralizing those given in a paper of Baues-Dreckmann-Franjou-Pirashvili published in
2001. This description is a consequence of our two main results: a description of func-
tors from (finitely generated free) P-algebras (for P a set-operad) to abelian groups in
terms of non-linear Mackey functors and the isomorphism between polynomial func-
tors on (finitely generated free) monoids and those on (finitely generated free) groups.
Polynomial functors from (finitely generated free) P-algebras to abelian groups and
from (finitely generated free) groups to abelian groups are described explicitely by
their cross-effects and maps relating them which satisfy a list of relations.

Mathematics Subject Classification: 18D; 18A25; 55U

Keywords : polynomial functors; non-linear Mackey functors; set-operads

Polynomial functors play a prominent role in the representation theory of algebraic
groups, algebraic K-theory as well as in the theory of modules over the Steenrod algebra
(see, for instance, [11]). In particular it is a main computational tool for computing
the stable cohomology of classical groups (considered as discrete groups) with twisted
coefficients (see [4], [12] and [7]).

The study of polynomial functors, in their own right, has a long history starting with
the work of Schur in 1901 in [27], even before the notion of a functor was defined by
Eilenberg and MacLane. In fact, without using the language of functors, Schur proved
that over a field of characteristic zero any polynomial functor is a direct sum of homo-
geneous functors and the category of homogeneous functors of degree d is equivalent to
the category of representations of the symmetric group on d letters. There were many
attempts to generalize Schur’s theorem for general rings. For polynomial functors from
(finitely generated free) abelian groups to abelian groups a satisfactory answer is given
in [2] where the authors obtained a description of those polynomial functors in terms of
non linear Mackey functors.

The principal aim of this paper is to generalize this result. The two main results
of this paper are a description of functors from (finitely generated free) P-algebras
(for P a set-operad) to abelian groups and a description of polynomial functors from
(finitely generated free) groups to abelian groups, obtained from the first result and
an isomorphism between polynomial functors on (finitely generated free) monoids and
those on (finitely generated free) groups.

More precisely, for P a set-operad, Free(P) the category of (finitely generated free) P-
algebras andAb the category of abelian groups, we consider the category Func(Free(P), Ab)
of functors F : Free(P)→ Ab. The first principal result of this paper is the following:
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2 MANFRED HARTL &TEIMURAZ PIRASHVILI & CHRISTINE VESPA

Theorem 0.1. There is a natural equivalence of categories:

Func(Free(P), Ab) ≃ PMack(Ω(P), Ab)

where PMack(Ω(P), Ab) is the category of pseudo-Mackey functors defined in Definition
1.28.

This theorem is the generalization of Theorem 0.2 in [2] giving an equivalence of
categories between the functors from (finitely generated free) commutative monoids
and pseudo-Mackey functors. In fact, applying Theorem 0.1 to the operad Com we
recover Theorem 0.2 in [2] since Free(Com) is the category of (finitely generated free)
commutative monoids (see Example 1.3).

In [2], in order to prove Theorem 0.2 the authors consider the category of finite
pointed sets Γ and the category of sets where the morphisms are the surjections Ω.
An essential tool of the proof is the Dold-Kan type theorem proved in [23], giving a
Morita equivalence between the categories Γ and Ω. In this paper, we replace the
categories Γ and Ω by categories associated to the operad P denoted by Γ(P) and
Ω(P) (see Definitions 1.10 and 1.12) having the same objects as Γ resp. Ω and whose
morphisms are set maps decorated by certain elements depending on P. The extension
of the Dold-Kan type theorem to this context (see Theorem 3.1) is an application of
the general result of S lomińska in [28] describing general conditions which imply Morita
equivalences of functor categories. In this paper, however, we give another proof of
this result which has the advantage to provide an explicit description of the functors
constituting the equivalence. Theorem 0.1, proved in section 4, then is obtained by
combining the following equivalences of categories:

• by Proposition 4.2 the category Free(P) is equivalent to the category of Spans
on the double category S(P)2 having as objects finite sets and where horizontal
maps are set maps and vertical maps are set maps decorated by certain elements
depending on P (see Definition 1.16);
• in Proposition 4.6 we obtain an equivalence of categories between the functors

on this category of Spans and theM-functors on Γ(P) defined in Definition 4.4;
• in Proposition 4.8 we prove that the Morita equivalence between Γ(P) and Ω(P)

provides an equivalence of categories between the M-functors on Γ(P) and the
pseudo-Mackey functors on Ω(P) to Ab.

Applying Theorem 0.1 to the operad As, since Free(As) is the category of (finitely
generated free) monoids (see Example 1.3), we obtain a description of functors from
(finitely generated free) monoids to abelian groups in terms of pseudo-Mackey functors.
In order to obtain a description of polynomial functors from (finitely generated free)
groups to abelian groups we would like to obtain a relationship between polynomial
functors from (finitely generated free) monoids to abelian groups and those from (finitely
generated free) groups to abelian groups. This relation is the second main result of this
paper (see Proposition 5.34). Recall that a reduced functor is a functor such that
F (0) = 0.

Theorem 0.2. There is an isomorphism of categories between the reduced polynomial
functors of degree n from (finitely generated free) monoids to abelian groups and those
from (finitely generated free) groups to abelian groups.

This theorem is the generalization of Proposition 8.3 in [2] giving the equivalence of
categories between the reduced polynomial functors of degree n from (finitely generated
free) commutative monoids to abelian groups and those from (finitely generated free)
abelian groups to abelian groups. In [2] the sketched proof of Proposition 8.3 use, in an
essential way, the fact that the composition:

Homcom-mon(B,C)×Homcom-mon(A,B)→ Homcom-mon(A,C)
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is a bilinear map. In the non-commutative case, this map is linear in the second variable
(i.e. f(g + h) = fg + fh) but no more linear in the first variable. So we can’t adapt
directly the proof proposed in [2] in the non-commutative setting. Consequently, to
prove Theorem 0.2 we have to introduce, in section 5, several new tools of independent
interest. In particular, in Definition 5.19 we extend the notion of polynomial maps in the
sense of Passi (from monoids to abelian groups) to maps from a set of morphisms in a
(suitable) category to abelian groups. Using this notion we can characterize, in Theorem
5.23, polynomial functors in terms of their effect on morphism sets, like in the classical
case of polynomial functors between abelian categories. This leads us to introduce, in
Proposition 5.21, the categories TnZ[C] extending the categories Pn(A) for A an additive
category introduced in [22]. These categories have the following important property
(see Corollary 5.25): polynomial functors of degree n from C to Ab are equivalent to
additive functors from TnZ[C] to Ab. We then compute, in Corollary 5.31, the category
TnZ[C] for C being the category of P-algebras (for P a set-operad having a binary
operation for which 0P ∈ P(0) is a unit). The desired equivalence between polynomial
functors from monoids and those from groups then follows from a canonical isomorphism
TnZ[mon] ≃ TnZ[gr] obtained in Theorem 5.33 from the computation of these categories
given in Corollary 5.31.

We point out that these methods also allow to establish a similar isomorphism between
polynomial functors from (finitely generated free) loops (i.e. quasigroups with unit) and
polynomial functors from (finitely generated free)Mag-algebras whereMag is the set-
operad encoding magmas with unit; the latter can be computed using the results of this
paper. This will be considered elsewhere.

Combining Theorems 0.1 (for P = As) and 0.2 we obtain in section 6:

Theorem 0.3. There is an equivalence of categories between the reduced polynomial
functors of degree n from (finitely generated free) groups to abelian groups and the
category (PMack(Ω(As), Ab))≤n where (PMack(Ω(As), Ab))≤n is the full subcategory
of PMack(Ω(As), Ab) having as objects the functors which vanish on the sets X of
cardinality greater than n and on 0.

Applying our results to P = Com we recover the result of [2].
In section 7 we give a presentation of reduced polynomial functors generalizing the

one given in [2]. In particular we obtain an explanation of a phenomenon which could,
at first glance seem mysterious in [2]. In fact, in the presentation of reduced polynomial
functors given in [2] the longest relation curiously has only 8 terms, independantly of
the degree of the functor under consideration. In section 7 we see that this property
arises from the fact that the operad Com is generated by a binary operation. Since
As is generated also by a binary operation the corresponding longest relation also has
only 8 terms. But, for an operad which has genuine higher than binary operations the
corresponding relation has a number of terms growing exponentially with the arity of
the generating operations.

In the case of reduced polynomial functors of degree two from (finitely generated free)
groups to abelian groups we recover the corresponding result obtained in [3].
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Notations: We denote by Gr the category of groups, Ab the category of abelian
groups, Mon the category of monoids and by ComMon the category of commutative
monoids. We denote by gr (resp. ab, mon and common) the fullsubcategory of Gr
(resp. Ab, Mon and ComMon) having as objects finitely generated free objects.

1. Recollections on set-operads, double categories and Mackey

functors

1.1. Symmetric set-operads. Let S be the skeleton of the category of finite sets with
objects n = {1, . . . , n} for n ≥ 0. We have 0 = ∅ which is the initial object of S.

The category S is a symmetric monoidal category with product the cartesian product
× and unit object 1.

A set-operad P consists of sets P(j) with right actions by the symmetric groups Sj

for j ≥ 0 (with S0 = {Id}), a unit element 1P ∈ P(1) and product maps:

γ(n;m1,...,mn) : P(n)× P(m1)× . . .×P(mn)→ P(m1 + . . .+mn)

that are suitably associative, unital and equivariant. For brevity, we will often write γ
instead of γ(n;m1,...,mn). (For further information about operads, see for instance [16]).

We will assume that the operad P is unitary that is P(0) = 1. We denote by 0P the
unique element of P(0).

Example 1.1. (1) For a set X, we have an associated set-operad EX such that
EX(n) = HomS(Xn, X).

(2) The unitary set-operad I is defined by I(0) = I(1) = 1 and I(n) = ∅ for n > 1.
It is the initial object in the category of unitary set-operads.

(3) The unitary commutative set-operad Com is defined by ∀n ∈ N Com(n) = 1
equipped with the trivial Sn-action. It is the terminal object in the category of

4



POLYNOMIAL FUNCTORS FROM ALGEBRAS OVER A SET-OPERAD 5

unitary set-operads. In fact, for P a unitary set operad the constant maps:

∀j ∈ N, P(j)→ Com(j) = 1

form a morphism of operads: P → Com.
(4) The unitary associative set-operad As is defined by ∀n ∈ N, As(n) = | Sn |,

where | X | denotes the cardinality of the set X, equipped with the action of Sn

given by right translations.

Let P be a set-operad. A P-algebra is a set X and a morphism of operads P → EX .
We denote by P-Alg the category of P-algebras. More explicitely, a P-algebra is a set
X together with a family of maps:

µj : P(j)×Sj
Xj → X, j ∈ N

that is associative and unital. We denote by 1X the element of X given by µ0(0P , ∗)
where ∗ ∈ X0 = 1.

The forgetful functor P-Alg → Set has a left adjoint functor FP : Set → P-Alg,
where Set is the category of all sets. The category of finitely generated free P-algebras
Free(P) is the full subcategory of P-Alg whose objects are FP(n) for n ≥ 0. Recall
that FP(X) = ∐

n≥0
P(n) ×

Sn

Xn.

Remark 1.2. There is an isomorphism of categories between Free(P) and the category
F(P) whose objects are the sets n and whose morphisms are given by F(P)(n,m) =
Free(P)(FP(n),FP(m)).

Example 1.3. (1) We have Free(I) = Γ where Γ is the skeleton of the category of
finite pointed sets having as objects [n] = {0, 1, . . . , n} with 0 as basepoint and
morphisms the pointed set maps f : [n]→ [m].

(2) We have Free(Com) = common where common is the category of finitely gen-
erated free commutative monoids with unit.

(3) We have Free(As) = mon where mon is the category of finitely generated free
monoids with unit.

Remark 1.4. Recall that a bijection h : n → n induces a bijection ĥ : P(n) → P(n)

given by ĥ(ω) = ω.h−1.

1.2. May-Thomason category S(P) and the categories Γ(P) and Ω(P). The
following construction is due to May and Thomason in [18].

Definition 1.5. Let P be a unitary set-operad. The May-Thomason category

associated to P (or the category of operators): S(P), has as objects the finite sets
n = {1, . . . , n}, and morphisms from n to m in S(P) are the pairs (f, ωf) where
f ∈ S(n,m), ωf ∈ Πy∈YP(| f−1(y) |). For (f, ωf) : n → m and (g, ωg) : m → l
morphisms in S(P), the composition (g, ωg) ◦ (f, ωf) in S(P) is the pair (g ◦ f, ωg◦f)
where, for i ∈ {1, . . . l} we have:

ωg◦fi = γ(ωgi ;ω
f
j1
, . . . , ωfjs).σi

where g−1(i) = {j1, . . . , js} with j1 < . . . < js, for h : p → q and α ∈ q, ωhα ∈ P(|

h−1(α) |) is the component of ωh and σi is the permutation of | (g ◦ f)−1(i) | defined
in the following way: let Ai = (x1, . . . , xnj ) be the natural ordering of (g ◦ f)−1(i) and
let Bi = (y1, . . . , ynj) be its ordering obtained by regarding it as ∐g(j)=if

−1(j) so ordered
that:

• if j < j′, all elements of f−1(j) precede all elements of f−1(j′);
• each f−1(j) has its natural ordering as a subset of n;

σi then is defined by: ∀k ∈ {1, . . . nj}, σi(k) = l such that yl = xk.
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Remark 1.6. For n ∈ S(P) the identity morphism of n is (Idn, (1P , . . . , 1P) ∈ P(1)n)
and the associativity of composition follows from the definition of operads.

Example 1.7 (Example of composition in S(P)). Let (f, ω1 ∈ P(1), ω2 ∈ P(2)) : 3→ 2
be the morphism in S(P) defined by f(1) = f(3) = 2 and f(2) = 1 and (g, α1 ∈
P(2), α2 ∈ P(1), α3 ∈ P(3)) : 6 → 3 defined by g(1) = g(5) = 1, g(2) = 2 and
g(3) = g(4) = g(6) = 3. We have:

(f, ω1, ω2)(g, α1, α2, α3) = (fg, γ(ω1, α2) ∈ P(1), γ(ω2, α1, α3).σ ∈ P(5))

where σ =

(
1 2 3 4 5
1 3 4 2 5

)
(in this example A2 = (1, 3, 4, 5, 6) and B2 = (1, 5, 3, 4, 6)).

Example 1.8.

• For P = I, S(I) is the subcategory of S having as morphisms the injections.
• For P = Com. Since ∀n ≥ 0 Com(n) = 1, a morphism in S(P) is a pair (f, ωf)
where f ∈ HomS(X, Y ) and ωf ∈ Πy∈Y Com(| f−1(y) |) = Πy∈Y 1. Consequently,
S(Com) = S.
• For P = As, S(As) is the category of non-commutative sets (see [24]) hav-
ing as objects the sets n and for n and m objects in S(As), an element of
HomS(As)(n,m) is a set map f : n → m together with a total ordering of the
fibers f−1(j) for all j ∈ m. The morphisms of S(As) are called non-commutative
maps. For f : n→ m and g : m→ k two non-commutative maps, the composi-
tion g ◦ f ∈ HomS(As)(n, k) is the set map g ◦ f : n→ k and the total ordering
in (g ◦ f)−1(i) for i ∈ n is given by the ordered union of ordered sets:

(g ◦ f)−1(i) = ∐j∈g−1(i)f
−1(j).

In general, the disjoint union ∐ is not a coproduct in the category S(P) but it defines a
symmetric monoidal category structure on S(P). The following straightforward lemma
will be useful in the sequel.

Lemma 1.9. Let (f, ωf) : X → S1 ∐ S2 be a morphism in S(P) then:

(f, ωf) = (f1, ω
f1)∐ (f2, ω

f2)

where fi is the restriction of f on f−1(Si) for i ∈ {1, 2} and ωf1 and ωf2 are defined by:

ωf = (ωf1, ωf2) ∈
∏

y∈S1∐S2

P(| f−1(y) |) =
∏

y1∈S1

P(| f−1(y1) |)×
∏

y2∈S2

P(| f−1(y2) |)

=
∏

y1∈S1

P(| f−1
1 (y1) |)×

∏

y2∈S2

P(| f−1
2 (y2) |).

In the sequel, we adapt the definition of May-Thomason category to the categories Γ
and Ω.

Definition 1.10. Let P be a unitary set-operad. Let Γ(P) be the category of P-pointed
sets having as objects the pointed sets [n] and an element of HomΓ(P)([n], [m]) is a pair
(f, ωf) where f is a pointed set map f : [n] → [m] and ωf ∈ Πy∈[m],y 6=0P(| f−1(y) |).
The composition is defined in the same way as in the category S(P).

Example 1.11.

• For P = I, Γ(I) is the subcategory of Γ having as morphisms the pointed injec-
tions.
• For P = Com, we have Γ(Com) = Γ.
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• For P = As, we have Γ(P) = Γ(As) where Γ(As) is the category of non-
commutative pointed sets having as objects the sets [n] and for [n] and [m] objects
in Γ(as), an element of HomΓ(as)([n], [m]) is a set map f : [n] → [m] such that
f(0) = 0 together with a total ordering of the fibers f−1(j) for all j = 1, . . . , m.
We remark that this definition differs from the one given in [20]: here, we do
not suppose to have an ordering of f−1(0).

Let Ω be the category having as objects the sets n, for n ≥ 0 and as morphisms the
surjective maps.

Definition 1.12. Let P be a unitary set-operad. Let Ω(P) be the subcategory of S(P)
having as morphisms the morphisms of S(P): (f, ωf) such that f is a surjective map.

Example 1.13.

• For P = I, Ω(I) is the subcategory of S having as morphisms the bijections.
• For P = Com, we have Ω(Com) = Ω.
• For P = As, Ω(As) is the category having as objects the non-commutative sets
and as morphisms the surjective maps.

The following proposition is a direct consequence of definitions.

Proposition 1.14. A morphism of unitary set-operad φ : P → Q gives rise to functors
S(φ) : S(P)→ S(Q), Ω(φ) : Ω(P)→ Ω(Q) and Γ(φ) : Γ(P)→ Γ(Q).

For φ : P → Q a morphism of set-operad, the categories Γ(P), S(P), Ω(P), Γ(Q),
S(Q), Ω(Q) are connected by the functors in the following diagram:

(1.14.1) Ω(P) �
� ι ,2

Ω(φ)
��

S(P)
j

,2

S(φ)
��

Γ(P)

Γ(φ)
��

Ω(Q) �
�

ι
,2 S(Q)

j
,2 Γ(Q)

where

• ι is the obvious faithful functor;
• j is the functor which adds a basepoint to a set, that is: j(n) = [n] and for an

arrow (g, ωg) ∈ HomS(P)(n,m) we define j(g, ωg) = (g+, ω
g+) where the map

g+ ∈ HomΓ([n], [m]) is given by g+(0) = 0 and g+|{1,...,n} = g and

ωg+ = ωg ∈
∏

x∈[m],x 6=0

P(| g−1
+ (x) |) =

∏

x∈m

P(| g−1
+ (x) |) =

∏

x∈m

P(| g−1(x) |).

1.3. Double categories, Mackey and pseudo-Mackey functors. First we recall
the notion of double category due to Ehresmann [8]. We refer the reader to [10] for a
complete definition of a double category.

Definition 1.15. A double category D consists of a set of objects, a set of horizontal

arrows A→ B, a set of vertical arrows

A

��
�

�

�

C

and a set of squares:

A

��
�

�

�
,2 B

��
�

�

�

C ,2 D

satisfying natural conditions. The objects and the horizontal arrows form a category
denoted by Dh. The objects and vertical arrows form a category denoted by Dv.
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The following examples of double category will be useful in the sequel.

Definition 1.16. For the category S(P) (resp. Γ(P), resp. Ω(P)) we define the double
category S(P)2 (resp. Γ(P)2, resp. Ω(P)2) whose objects are objects of S (resp. Γ,
resp. Ω), horizontal arrows are morphisms in S (resp. Γ, resp. Ω), and vertical arrows
are morphisms of S(P) (resp. Γ(P), resp. Ω(P)). Squares are diagrams

D =

A

(φ,ωφ)
��
�

�

�

f
,2 B

(ψ,ωψ)
��
�

�

�

C
g

,2 D

where f and g are horizontal maps and (φ, ωφ) and (ψ, ωψ) are vertical maps of S(P)2
(resp. Γ(P)2, resp. Ω(P)2) , satisfying the following conditions:

(1) the image of D in S is a pullback diagram of sets,
(2) for all c ∈ C the bijection g∗ : P(| φ−1(c) |) → P(| ψ−1(g(c)) |) induced by the

bijection φ−1(c)→ ψ−1(g(c)) (see Remark 1.4) satisfies

g∗(ω
φ
c ) = ωψ

g(c).

Example 1.17. For P = As, S(P)2 = S(As)2 where S(As)2 is the double category
defined in [24]. The condition (2) in the previous definition becomes: for all c ∈ C the
induced map g∗ : φ−1(c)→ ψ−1(g(c)) is an isomorphism of ordered sets.

The following diagram generalizes the diagram (1.17.1):

(1.17.1) Ω(P)2
� � ι ,2

��

S(P)2
j

,2

��

Γ(P)2

��

Ω(Q)2
� �

ι
,2 S(Q)2

j
,2 Γ(Q)2

Remark that a vertical arrow of Γ(P)2: (f, ωf) ∈ HomΓ(P)([n], [m]) is of the form

j(f̃ , ωf̃) if and only if f−1(0) = 0.
For an operad P such that P(1) = {1P}, (S(P)2)

h and (S(P)2)
v have the same class

of isomorphisms but, in general, the class of isomorphisms of (S(P)2)
v is bigger than

that of (S(P)2)
h. So we can not apply directly the construction considered in section

5 in [24]. Nevertheless, we can adapt the construction of the Span category in our
situation considering the notion of double isomorphisms in a double category.

Let D be a double category and A,B be two objects of D. Consider a pair (f, u)
where:

• f : A→ B is a horizontal isomorphism of D;

• u : A ,2___ B is a vertical isomorphism of D;

provided with a square D in D:

D =

A

u

��
�

�

�

f
,2 B

Id
��
�

�

�

B
Id

,2 B.
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Equivalently, the pair (f, u) is provided with the square:

D∗ =

A

Id
��
�

�

�

Id ,2 A

u

��
�

�

�

A
f

,2 B

since we have:

D =

A

u

��
�

�

�

Id ,2 A

Id
��
�

�

�

f
,2 B

Id
��
�

�

�

B
f−1

,2 A
f

,2 B

where the left-hand square of D is the horizontal inverse of D∗ and the right-hand square
is the square of D associated to the horizontal map f .

Definition 1.18. [13] Let D be a double category and A,B be two objects of D. A
double isomorphism from A to B is a pair (f, u) where:

• f : A→ B is a horizontal isomorphism of D;
• u : A ,2___ B is a vertical isomorphism of D.

equipped with a square D (or equivalently with D∗) in D:

D =

A

u

��
�

�

�

f
,2 B

Id
��
�

�

�

B
Id

,2 B.

(equivalently D∗ =

A

Id
��
�

�

�

Id ,2 A

u

��
�

�

�

A
f

,2 B

)

Definition 1.19. Two squares of D

A

a

��
�

�

�

α ,2 B

b

��
�

�

�
and A′

a′

��
�

�

�

α′
,2 B

b′

��
�

�

�

C
β

,2 D C
β′

,2 D′

are isomorphic in D if there exists a double isomorphism (f, u) from A′ to A and a
double isomorphism (f ′, u′) from D to D′

such that α′ = αf , a′ = au, β ′ = f ′β and b′ = u′b.

The following lemma which describes double isomorphisms in the double categories
S(P)2, Ω(P)2 and Γ(P)2 is a straightforward consequence of the definition of squares
in these categories.

Lemma 1.20. Double isomorphisms in S(P)2 (resp. Ω(P)2 resp. Γ(P)2) are pairs

(f, (f, 1
×|A|
P )) where f : A→ A is a bijection.

Proof. Let (f, (g, ω)) be a double isomorphism in S(P)2 (resp. Ω(P)2 resp. Γ(P)2) from
A to A′ provided with the square:

D =

A

(g,ω)
��
�

�

�

f
,2 A′

(Id,1
×|A′|
P )

��
�

�

�

A′

Id
,2 A′.

By definition, f is an isomorphism in S (resp. Ω resp. Γ) from A to A′ so f is a bijection
and A = A′ since we consider skeleton of categories. Since the image of D in S (resp.
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Ω resp. Γ) is a pullback diagram of sets we have g = f . Condition (2) in the definition

of S(P)2 (resp. Ω(P)2 resp. Γ(P)2) implies that ω = 1
×|A|
P . �

In order to define Mackey functors from S(P)2 and pseudo-Mackey functors from
Ω(P)2 we need the following lemma.

Lemma 1.21. Let g : C → D be a horizontal arrow of S(P)2 (resp. Ω(P)2) and
(ψ, ωψ) : B → D be a vertical arrow of S(P)2 (resp. Ω(P)2), there exists a unique
square in S(P)2 (resp. Ω(P)2) up to isomorphism, of the form:

D =

A

(φ,ωφ)
��
�

�

�

f
,2 B

(ψ,ωψ)
��
�

�

�

C
g

,2 D.

Proof. For S(P)2, since the image of D in S is a pullback diagram of sets, A is the
pullback of sets

A

φ

��

f
,2 B

ψ

��
C

g
,2 D

defined up to a bijection α : A′ → A. Then we lift the set map φ into S(P)2 according
to property (2). Indeed, ωφ ∈

∏
c∈C P(| φ−1(c) |) and for c ∈ C, ωφc ∈ P(| φ−1(c) |) such

that g∗(ω
φ
c ) = ωψ

g(c), so the lifting (φ, ωφ) of φ in S(P)2 exists and is unique. The square

A

(φ,ωφ)
��

f
,2 B

(ψ,ωψ)
��

C
g

,2 D

is defined up to the double isomorphism (α, (α, 1
×|A′|
P )) from A′ to A.

For Ω(P)2, in the pullback diagram of sets, since g and ψ are surjective, f and φ are
also surjective. We lift the set map φ into Ω(P)2 as previously. �

Remark 1.22. If we replace the category S(P)2 by Γ(P)2 in Lemma 1.21, the statement
is no more true. If fact, for g : C → D a horizontal arrow of Γ(P)2 and (ψ, ωψ) : B → D
a vertical arrow of Γ(P)2, for c ∈ C \ {0} such that g(c) = 0, there is not a unique way
to define ωφc . However we have the following analogue of Lemma 1.21 for Γ(P)2.

Lemma 1.23. Let g : C → D be a horizontal arrow of Γ(P)2 such that g−1(0) = 0 and
(ψ, ωψ) : B → D be a vertical arrow of Γ(P)2 there exists a unique square in Γ(P)2 up
to isomorphism, of the form:

D =

A

(φ,ωφ)
��
�

�

�

f
,2 B

(ψ,ωψ)
��
�

�

�

C
g

,2 D.

Proof. Since g−1(0) = 0 the lifting (φ, ωφ) of φ into Γ(P)2 exists and is unique. �

Definition 1.24. Let A be a category.

• A Janus functor M from a double category D to A is:
(1) a covariant functor M∗ : Dh → A
(2) a contravariant functor M∗ : (Dv)op → A
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such that, for each object A ∈ D we have M∗(A) = M∗(A) = M(A).
• A Mackey functor M = (M∗,M

∗) from a double category D to A is a Janus
functor M from D to A such that for each square in D,

A

φ

��
�

�

�

f
,2 B

ψ

��
�

�

�

C
g

,2 D

we have:

M∗(ψ)M∗(g) = M∗(f)M∗(φ).

The category of Mackey functors from D to A is denoted by Mack(D,A).

We give the construction of the category of spans of a double category:

Definition 1.25. Let D be a double category, such that for f ∈ HomDh(X,B) and
ψ ∈ HomDv(Y,B) there exists a unique square of D, up to isomorphism, of the form

D =

Z

φ1
��
�

�

�

f1 ,2 Y

ψ

��
�

�

�

X
f

,2 B.

The category of spans of D, denoted by Span(D) is defined in the following way:

(1) the objects of Span(D) are those of D;
(2) for A and B objects of D, HomSpan(D) is the set of equivalence classes of diagrams

X

φ

��
�

�

�

f
,2 B

A

where φ ∈ HomDv(X,A) and f ∈ HomDh(X,B), for the equivalence relation

which identifies the two diagrams ( A X
φ

lr_ _ _
f

,2 B ) and ( A X ′φ′
lr_ _ _

f ′
,2 B )

if there exists a double isomorphism (h, u) from X ′ to X in D such that:

( A X ′φ′
lr_ _ _

f ′
,2 B ) = ( A X ′φu

lr_ _ _
fh

,2 B ).

We denote by [ A X
φ

lr_ _ _
f

,2 B ] the map of HomSpan(D)(A,B) represented by

the diagram A X
φ

lr_ _ _
f

,2 B .

(3) the composition of [ A X
φ

lr_ _ _
f

,2 B ] and [ B Y
ψ

lr_ _ _
g

,2 C ] is the class of

the diagram A Z
φφ1lr_ _ _

gf1 ,2 C where

D =

Z

φ1
��
�

�

�

f1 ,2 Y

ψ

��
�

�

�

X
f

,2 B

is a square in D.

The following lemma is a generalization of a result of Lindner [17] in the context of
classical Mackey functors.
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Lemma 1.26. Let D be a double category satisfying the hypothesis of Definition 1.25,
there is a natural equivalence:

Mack(D,A) ≃ Func(Span(D),A).

According to Lemma 1.21 the category Span(S(P)2) exists. We have the following
result.

Proposition 1.27. The disjoint union ∐ is a coproduct in Span(S(P)2).

Proof. Let S1, S2 and T be objects of S(P)2 and β = [ S1 A
(f,ωf )
lr_ _ _

f ′
,2 T ] , γ =

[ S2 B
(g,ωg)
lr_ _ _

g′
,2 T ] , I1 = [ S1 S1

(Id,1
×|S1|
P )

lr_ _ _
i1 ,2 S1 ∐ S2] and I2 = [ S2 S2

(Id,1
×|S2|
P )

lr_ _ _
i2 ,2 S1 ∐ S2]

morphisms of Span(S(P)2).

For α = [ S1 ∐ S2 A∐ B
(f,ωf )∐(g,ωg)

lr_ _ _
f ′∐g′

,2 T ] we have:

α ◦ I1 = β and α ◦ I2 = γ.

The uniqueness of α is obtained according to Lemma 1.9. �

Although the notion of Mackey functors from Ω(P)2 is well defined, we need to intro-
duce the notion of pseudo-Mackey functors from Ω(P)2 in order to obtain a description
of functors from finitely generated free P-algebras to Ab. Let

D =

A

(φ,ωφ)
��
�

�

�

f
,2 B

(ψ,ωψ)
��
�

�

�

C
g

,2 D

be a square in Ω(P)2. (For fixed morphisms g and (ψ, ωψ), D is unique up to isomor-
phism according to Lemma 1.21). For any subset A′ of A we let fA′ and (φ, ωφ)A′ be the
restrictions of f and (φ, ωφ) on A′ (i.e., if i : A′ → A is the inclusion, we have (i, ωi) ∈

HomS(P)(A
′, A) where ωi = (1

×|A′|
P , 0

×|A′c|
P ) ∈ Πy∈i(A′)P(| i−1(y) |) × Πy∈i(A′)cP(0), so

(φ, ωφ)A′ = (φ, ωφ) ◦ (i, ωi).) Following [2], we call A′ a D-admissible subset of A if
fA′ and φA′ = φ ◦ i are surjections. We denote by Adm(D) the set of all D-admissible
subsets of A.

Definition 1.28. A pseudo-Mackey functor M : Ω(P)2 → Ab is a Janus functor such
that:

(1) For a double isomorphism (f, u) of Ω(P)2 we have:

M∗(f)M∗(u) = Id.

(2) For a pair of horizontal and vertical morphisms of Ω(P)2 having the same target:

g : C → D and (ψ, ωψ) : B ,2___ D and the unique square, up to isomorphism,
in Ω(P)2

D =

A

(φ,ωφ)
��
�

�

�

f
,2 B

(ψ,ωψ)
��
�

�

�

C
g

,2 D

we have

M∗(ψ, ωψ) ◦M∗(g) =
∑

A′∈Adm(A)

M∗(fA′) ◦M∗(φ, ωφ)A′ .
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Note that the notion of pseudo-Mackey functor is not weaker than that of Mackey
functor. There is no obvious link between the categories of pseudo-Mackey functors and
of Mackey functors of Ω(P)2.

2. Polynomial functors

In this section we generalize the definition of polynomial functors introduced by Eilen-
berg and MacLane [9] for covariant and contravariant functors from a pointed monoidal
category.

Let C be a pointed category (i.e. having a null object denoted by 0) and equipped
with a monoidal structure ∨ , whose neutral object is 0. In other words, there is a
bifunctor ∨ : C × C → C together with isomorphisms X ∨ 0 ≃ X and 0 ∨X ≃ X such
that usual properties (associativity, etc) hold.

Example 2.1. (1) Any pointed category with finite coproducts is an example of such
category. In particular, the categories Gr, Ab, Mon and ComMon are pointed
categories with finite coproducts.

(2) Although Γ(P) has no coproduct, it is an example of such a category. In fact,
the null object of Γ(P) is [0] and the symmetric monoidal structure is given by
the wedge operation of pointed sets: [n] ∨ [m] = [n +m].

In the sequel, we need the following notations: for X1, X2, . . .Xn ∈ C, let

in
k̂

: X1 ∨ . . . ∨ X̂k ∨ . . . ∨Xn → X1 ∨ . . . ∨Xk ∨ . . . ∨Xn

be the composition:

X1 ∨ . . . ∨ X̂k ∨ . . . ∨Xn ≃ X1 ∨ . . . ∨ 0 ∨ . . . ∨Xn → X1 ∨ . . . ∨Xk ∨ . . . ∨Xn

where the second map is induced by the unique map 0 → Xk. Similarly one obtains
morphisms:

rn
k̂

= (1X1 , . . . , 1X1, 0, 1X1, . . . , 1Xn) : X1∨ . . .∨Xk ∨ . . .∨Xn → X1∨ . . .∨ X̂k ∨ . . .∨Xn.

We have the relation:
rn
k̂
in
k̂

= 1X1∨...∨X̂k∨...∨Xn
.

In the following, D is an abelian category.

2.1. Cross-effects of covariant functors. Let F : C → D be a functor.

Definition 2.2. The n-th cross-effect of F is a functor crnF : C×n → D (or a multi-
functor) defined inductively by

cr1F (X) = ker(F (0) : F (X)→ F (0))

cr2F (X1, X2) = ker((F (r2
2̂
), F (r2

1̂
))t : F (X1 ∨X2)→ F (X1)⊕ F (X2))

and, for n ≥ 3, by

crnF (X1, . . . , Xn) = cr2(crn−1F (−, X3, . . . , Xn))(X1, X2).

We write also F (X1 | . . . | Xn) instead of crnF (X1, . . . , Xn).
Recall that a reduced functor F : C → D is a functor satisfying F (0) = 0. We denote

by Func∗(C,D) the category of reduced functors F : C → D.
There is an alternative description of cross-effects.

Proposition 2.3. Let F : C → D be a functor. Then the n-th cross-effect
crnF (X1, . . . , Xn) is equal to the kernel of the natural homomorphism

r̂F : F (X1 ∨ . . . ∨Xn) −−→
n⊕

k=1

F (X1 ∨ . . . ∨ X̂k ∨ . . . ∨Xn).

where r̂F is the map (F (rn
1̂
), . . . , F (rnn̂))t.
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The next proposition gives the cross-effect decomposition of F (X1 ∨ . . . ∨Xn).

Proposition 2.4. Let F : C → D be a reduced functor. Then there is a natural
decomposition

F (X1 ∨ . . . ∨Xn) ≃
n⊕

k=1

⊕

1≤i1<...<ik≤n

crkF (Xi1 , . . . , Xik).

The cross-effects have the following crucial property.

Proposition 2.5. The functor crn : Func(C,D)→ Func(C×n,D) is exact for all n ≥ 1.

Proof. For n = 1 it is a consequence of the natural decomposition F (X) ≃ cr1F (X)⊕
F (0). For n = 2 this follows from the snake-lemma. For higher n use induction. �

Definition 2.6. A functor F : C → D is said to be polynomial of degree lower or equal
to n if crn+1F = 0. A reduced functor F is called linear if n = 1 and is called quadratic
if n = 2.

We denote by Poln(C,D) the full subcategory of Func∗(C,D) consisting of reduced
polynomial functors of degree lower or equal to n from C toD, Lin(C,D) the subcategory
of linear functors and Quad(C,D) those of quadratic functors.

If C is a preadditive category, the linear functors are precisely the additive functors.
In this case, we will denote Add(C,D) instead of Lin(C,D).

The category Poln(C,D) has the following fundamental property which is an imme-
diate consequence of Proposition 2.5.

Proposition 2.7. The category Poln(C,D) is thick i.e. closed under quotients, subob-
jects and extensions.

For X a fixed object of C we define the universal functor UC
X : C → Ab as follows.

For a set S, let Z[S] denote the free abelian group with basis S. Since for all Y ∈ C,
HomC(X, Y ) is pointed with basepoint the zero map, we can define a subfunctor Z[0]

of Z[HomC(X,−)] by Z[0](Y ) = Z[{X
0
−→ Y }] for Y ∈ C.

Definition 2.8. The universal functor UC
X : C → Ab relative to X is the quotient of

Z[HomC(X,−)] by the subfunctor Z[0].

Note that UC
X is the reduced standard projective functor associated with X .

To keep notation simple we write f also for the equivalence class in UC
X(Y ) of an

element f of HomC(X, Y ).

2.2. Cross-effects of contravariant functors. Let G be a contravariant functor from
C to D.

Definition 2.9. The n-th cross-effect of G is a functor c̃rnG : (Cop)×n → D (or a
multi-functor) defined inductively by

c̃r1G(X) = ker(G(0) : G(X)→ G(0))

c̃r2G(X1, X2) = ker((G(i2
2̂
), G(i2

1̂
))t : G(X1 ∨X2)→ G(X1)⊕G(X2))

and, for n ≥ 3, by

c̃rnG(X1, . . . , Xn) = c̃r2(c̃rn−1G(−, X3, . . . , Xn))(X1, X2).

Proposition 2.10. Let G be a contravariant functor from C to D. Then the n-th cross-
effect
c̃rnG(X1, . . . , Xn) is equal to the kernel of the natural homomorphism

îG : G(X1 ∨ . . . ∨Xn) −−→
n⊕

k=1

G(X1 ∨ . . . ∨ X̂k ∨ . . . ∨Xn)
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where îG is the map (G(in
1̂
), . . . , G(in

k̂
))t.

Proposition 2.11. If G is a contravariant functor from C to D then for all n ∈ N:

c̃rnG(X1, . . . , Xn) ≃ coker(

n⊕

k=1

G(rn
k̂
) :

n⊕

k=1

G(X1∨. . .∨X̂k∨. . .∨Xn) −−→ G(X1∨. . .∨Xn)).

Definition 2.12. A contravariant functor G from C to D is said to be polynomial of
degree lower or equal to n if c̃rn+1G = 0. A reduced functor is called linear if n = 1 and
is called quadratic if n = 2.

Let G be a contravariant functor from C to D. We can consider the covariant functor
Gop : C → Dop associated to G.

Proposition 2.13. Let G be a contravariant functor from C to D and Gop : C → Dop

be the covariant functor associated to G. If D is an abelian category, then:

crn(Gop) ≃ c̃rn(G) ∀n ∈ N.

Proof. In an abelian category, finite products and coproducts coincide.

crn(Gop)(X1, . . . , Xn)

= KerAb
op

(r̂G
op

: Gop(X1 ∨ . . . ∨Xn) −−→
⊕n

k=1G
op(X1 ∨ . . . ∨ X̂k ∨ . . . ∨Xn))

= cokerAb(r̂G : G(X1 ∨ . . . ∨Xn) ←−−
⊕n

k=1G(X1 ∨ . . . ∨ X̂k ∨ . . . ∨Xn))
≃ c̃rnG(X1, . . . , Xn).

Where the latter isomorphism is given by Proposition 2.11. �

Remark 2.14. When we consider polynomial functors with values in a suitable non-
abelian category D (for example, the category of groups or, more generally, a semi-
abelian category (see [6])) and suppose that Dop has products and kernels, crn(Gop) is
defined but in general crn(Gop) 6≃ c̃rn(G).

2.3. Polynomial functors on a pointed category having finite coproducts. In
section 5 we will consider polynomial functors on a pointed category having finite co-
products C. In this setting the existence of the folding map ∇n : ∨ni=1X → X gives us
an explicit description of the n-Taylorisation functor (see Definition 2.16). Then, using
this description, we give several results on polynomial functors in this setting which will
be useful in section 5.

We denote by ∆n
C : C → C×n the diagonal functor. For n = 2 we write ∆C instead of

∆2
C .

Definition 2.15. For F ∈ Func(C,D) and X ∈ C, we denote by SFn the natural
transformation SFn : (crnF )∆n

C → F given by the composition

crnF (X, . . . , X)
inc
−→ F (∨ni=1X)

F (∇n)
−−−→ F (X)

where ∇n : ∨ni=1X → X is the folding map.

In the sequel we denote by Func(C,D)≤n the full subcategory of Func(C,D) consist-
ing of polynomial functors of degree lower or equal to n.

Definition 2.16. The n−Taylorisation functor Tn : Func(C,D) → Func(C,D)≤n is

defined by: TnF = coker((crn+1F )∆n+1
C

SFn+1
−−−→ F ) for F ∈ Func(C,D). We call T1 the

linearization functor and T2 the quadratization functor.

Let Un : Func(C,D)≤n → Func(C,D) denote the forgetful (i.e. inclusion) functor.

Proposition 2.17. The n−Taylorisation functor Tn : Func(C,D)→ (Func(C,D))≤n is
a left adjoint to Un. The unit of the adjunction is the natural epimorphism tFn : F → TnF
which is an isomorphism if F is polynomial of degree ≤ n.
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Thus, we obtain the diagram:

F
tFn+1

v�uu
uu
uu
uu
uu

tFn
��

tFn−1

�(I
II

II
II

II
I

. . . ,2 Tn+1F
πn+1 ,2 TnF

πn ,2 Tn−1F
πn−1 ,2 . . . ,2 T1F ,2 T0F = 0.

To keep notation simple we write tn instead of tFn when the functor F is understood.

Lemma 2.18. Let C,D be pointed categories with finite sums, E be an abelian category

and C
F ,2 D

G ,2 E be functors where F is reduced. Then the natural transformation

Tn(F ∗tGn ) : Tn(G ◦ F ) −→ Tn(TnG ◦ F )

is an isomorphism.

Proof. To construct an inverse of Tn(F ∗tGn ) we first show that the epimorphism

tGFn : G ◦ F ,2,2 Tn(G ◦ F ) factors through the epimorphism F ∗tGn .

Consider the following diagram.

crn+1G(FX, . . . , FX)

(SGn+1)FX

%,

��

,2 ιG ,2 G(F (X)∨n+1)

G((F i1,...,F in+1))

��

r̂G ,2
∏n+1

k=1 G(F (X)∨n)

∏
G((F i1,...,F in))

��

crn+1(G ◦ F )(X, . . . , X)

(SGFn+1)X
��

,2ι
GF

,2 (G ◦ F )(X∨n+1)

GF (∇n+1
X )qxjjjj

jjj
jjj

jjj
jjj

jj

r̂GF ,2
∏n+1

k=1 G(F (X)∨n)

GF (X)

The right-hand square commutes: for 1 ≤ k ≤ n+ 1, denoting by prk the projection to
the k-th factor, we have

prk ◦ r̂
GF ◦G((Fi1, . . . , F in+1)) = GF (rn+1

k̂
)G((Fi1, . . . , F in+1))

= G((F (rn+1

k̂
i1), . . . , F (rn+1

k̂
in+1))

= G((Fi1, . . . , F in)rn+1

k̂
) since F is reduced

= G((Fi1, . . . , F in))G(rn+1

k̂
)

= prk ◦
∏
G((Fi1, . . . , F in)) ◦ r̂G

whence the dotted arrow exists making the left-hand square commute. By defini-
tion of the map Sn+1 the right-hand triangle commutes , and so does the (graphi-
cally degenerate) left-hand triangle since GF (∇n+1

X )G((Fi1, . . . , F in+1)) = G(∇n+1
FX ).

Thus SGn+1 factors through SGFn+1 which means that tGFn = coker(SGFn+1) factors through

F ∗tGn = coker(tGn )FX , as tGFn : (G ◦ F )(X)
F ∗tGn ,2,2 (TnG) ◦ F (X)

tGFn ,2,2 Tn(G ◦ F )(X). As

Tn(G ◦ F ) is polynomial of degree ≤ n, the map tGFn further factors as a composition

tGFn : (TnG) ◦ F
tHn ,2,2 Tn(TnG ◦ F )

tGFn ,2,2 Tn(G ◦ F )

where H = (TnG) ◦ F . It remains to check that tGFn is an inverse of Tn(F ∗tGn ):
(
tGFn ◦ Tn(F ∗tGn )

)
tGFn = tGFn ◦ t

H
n ◦ F

∗tGn

= tGFn ◦ F
∗tGn

= tGFn
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whence tGFn ◦Tn(F ∗tGn ) = 1. As Tn(F ∗tGn ) is an epimorphism this suffices to conclude. �

Lemma 2.19. Let C be a pointed category with finite sums and D be abelian. Let
M : Cm → D be a multireduced multifunctor (i.e. such that M(X1, . . . , Xn) = 0 if
Xk = 0 for some 1 ≤ k ≤ m). Denote by ∆m : C → Cm the diagonal functor. Then for
1 ≤ n < m one has Tn(M∆m) = 0 (in other words, M∆m is cohomogenous of degree
≤ n).

Proof. We may assume that n = m− 1, thanks to the natural factorization of the mor-

phism tn : M∆m
tm−1 ,2,2 Tm−1(M∆m)

tn ,2,2 Tn(M∆m) , where tn = πn+1 . . . πm−1 (see the

diagram after the Proposition 2.17). So it suffices to show that the map SM∆m

m : crm(M∆m)◦
∆m →M∆m is a pointwise epimorphism. For X ∈ C,

(SM∆m

m )X : crm(M∆m)(X, . . . , X) ,2
ιM∆m

X,...,X,2 M(X∨m, . . . , X∨m)
M(∇m,...,∇m)

,2 M(X, . . . , X).

But M(i1, . . . , im) : M(X, . . . , X)→M(X∨m, . . . , X∨m) is a section of M(∇m, . . . ,∇m)
which takes values in crm(M∆m)(X, . . . , X) since for 1 ≤ k ≤ m, M∆m(rm

k̂
)M(i1, . . . , im)

= 0 since rm
k̂
ik = 0 and M is multireduced. Hence (ιM∆m

X,...,X)−1M(i1, . . . , im) is a section

of (SM∆m

m )X , whence the latter indeed is an epimorphism. �

The following proposition will be useful in section 5.

Proposition 2.20. [Theorem 1.9 in [21] or Proposition 1.6 in [15]] Let C
F ,2 A

G ,2 B
be functors where A and B are abelian categories. If F is polynomial of degree ≤ n and
G is polynomial of degree ≤ m then G ◦ F is polynomial of degree ≤ nm.

3. Dold-Kan type theorem for Γ(P)

In [23] it is proved that the categories Γ and Ω are Morita equivalent i.e. we have
an equivalence of categories Func(Γ, Ab) ≃ Func(Ω, Ab). In [2], the authors use this
result and its contravariant version. The aim of this section is to generalize this Morita
equivalence to the category Γ(P). More precisely, we have the following result.

Theorem 3.1. Let P be a unitary set operad, there are natural equivalences:

Func(Γ(P), Ab)
cr

,2 Func(Ω(P), Ab)
i!lr

Func(Γ(P)op, Ab)
c̃r

,2 Func(Ω(P)op, Ab)
i∗lr .

These equivalences are already established in [28]. In this paper, S lomińska describes
general conditions which imply Morita equivalences of functor categories. The previous
theorem is an application, given in section 2.7, of her general result. However, we here
give another proof of this theorem. We obtain the following explicit description of the
natural equivalences appearing in the previous theorem.

Proposition 3.2. For F∗ ∈ Func(Γ(P), Ab)

cr(F∗)(n) = crnF∗([1], . . . , [1])

where crn is the n-th cross-effect of a covariant functor, and for (f, ωf) ∈ HomΩ(P)(n,m)
we denote by (f+, ω

f+) the unique extension of (f, ωf) in Γ(P), cr(F∗)(f, ω
f) is the mor-

phism induced by restriction of F (f+, ω
f+).

For F ∗ ∈ Func(Γ(P)op, Ab))

c̃r(F ∗)(n) = ˜crnF
∗([1], . . . , [1])
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where ˜crn is the n-th cross-effect of a contravariant functor, and for (f, ωf) ∈ HomΩ(P)(n,m)
c̃r(F ∗)(f, ωf) is defined as previously.

For G∗ ∈ Func(Ω(P), Ab),

i!(G∗)([n]) =
⊕

µ⊂n

G∗(| µ |).

For (g, ωg) ∈ HomΓ(P)([n], [m]) the restriction of the morphism i!(G∗)(g, ωg) to the
summand G∗(| µ |) of i!(G∗)([n]) is 0 if 0 ∈ g(µ) and is the morphism:

G∗(g|µ, ω
g|µ) : G∗(| µ |)→ G∗(| g(µ) |)

followed by the injection into i!(G∗)([m]) otherwise.
For G∗ ∈ Func(Ω(P)op, Ab),

i∗(G
∗)([n]) =

⊕

µ⊂n

G∗(| µ |).

For (h, ωh) ∈ HomΓ(P)op([n], [m]) the restriction of the morphism i∗(G
∗)(h, ωh) to the

summand G∗(| µ |) of i∗(G
∗)([n]) is 0 to the factors G∗(| ν |) such that h(ν) 6= µ and is

the morphism:
G∗(h|ν, ω

h|ν) : G∗(| µ |)→ G∗(| ν |)

to the factors G∗(| ν |) such that h(ν) = µ.

The previous explicit description of natural equivalences let us to prove the following
result.

Proposition 3.3. The natural equivalences of Theorem 3.1 are natural in P (i.e. for
a morphism of set-operad α : P → Q we have commutative diagrams

Func(Γ(P), Ab)
cr

,2 Func(Ω(P), Ab)
i!lr

Func(Γ(Q), Ab)
cr

,2

LR

Func(Ω(Q), Ab)
i!lr

LR
Func(Γ(P)op, Ab)

c̃r
,2 Func(Ω(P)op, Ab)

i∗lr

Func(Γ(Q)op, Ab)
c̃r

,2

LR

Func(Ω(Q)op, Ab)
i∗lr

LR

where the vertical maps are induced by precomposition by the functors Γ(P)→ Γ(Q)
and Ω(P)→ Ω(Q) induced by α.

Remark 3.4. For P a unitary set-operad, we have a unique morphism P → Com since
Com is the terminal object in the category of unitary set-operads (see Example 1.1 (2)).
So, we obtain that the natural equivalences cr, i!, c̃r, i∗ extend the Morita equivalence
between Γ and Ω in [23], i.e. we have commutative diagrams

Func(Γ(P), Ab)
cr

,2 Func(Ω(P), Ab)
i!lr

Func(Γ, Ab)
cr

,2
?�

LR

Func(Ω, Ab)
i!lr ?�

LR
Func(Γ(P)op, Ab)

c̃r
,2 Func(Ω(P)op, Ab)

i∗lr

Func(Γop, Ab)
c̃r

,2
?�

LR

Func(Ωop, Ab)
i∗lr ?�

LR

where the vertical functors are induced by precomposition by the functors Ω(P) →
Ω(Com) = Ω and Γ(P)→ Γ(Com) = Γ induced by the unique morphism P → Com.

To prove Proposition 3.2, we use an argument combining the Moebius inversion and
the theorem of Gabriel-Popescu. This argument has been used in [30] to obtain a
description of the category Func(Span(E qdeg(F2)), E) in terms of modules over orthogonal
groups where E qdeg(F2) is the category of F2-quadratic spaces and E is the category of
F2-vector spaces and in the appendix of [7] to give an alternative proof of the Dold-Kan
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type theorem given in [23] which is very similar to the proof of Theorem 3.1 presented
here.

First, we recall the two principal ingredients.

Theorem 3.5 (Theorem 3.9.2 [29]). Let (X,≤) be a finite poset, in which every pair
{x, y} has a greatest lower bound x∧y. Let 0 denote the smallest element in X. Suppose
that X has a greatest element 1. Let R be a ring (with identity element 1R), and suppose
that α 7→ eα is a map from X to R with the properties that eαeβ = eα∧β for any α, β ∈ X,
and e1 = 1R. For α ∈ X, define

fα =
∑

β≤α

µX(β, α)eβ,

where µX is the Möbius function of X. Then the elements fα, for α ∈ X, are orthogonal
idempotents of R, whose sum is equal to 1R. Furthermore, we have eα =

∑
β≤α fβ.

Theorem 3.6 (Gabriel-Popescu theorem; [26] Corollaire 6.4 p 103). For any abelian
category C the following assertions are equivalent.

(1) The category C has arbitrary direct sums and a set {Pi}i∈I of small projective
generators of C.

(2) The category C is equivalent to the subcategory Funcadd(Qop, Ab) of Func(Qop, Ab)
whose objects are additive functors (i.e. functors satisfying F (f + g) = F (f) +
F (g) where f and g are morphisms of HomQop(V,W )) and Q is the full subcat-
egory of C whose set of objects is {Pi | i ∈ I}.

The proof of Proposition 3.2 relies on the following lemmas.

Lemma 3.7. Let R be the ring Z[EndΓ(P)([n])] (the identity element of R is (Id[n], 1
×n
P )),

A be a subset of [n] containing 0 and (eA, ω
eA) ∈ EndΓ(P)([n]) given by eA(j) = j if

j ∈ A and eA(j) = 0 else, and

ωeA = (1P , . . . 1P , 0P , . . . , 0P) ∈
∏

y∈[n],y 6=0

P(| e−1
A (y) |) =

∏

a∈A,a6=0

P(1)×
∏

a′∈Ac

P(0)

where 1P ∈ P(1) and 0P ∈ P(0). Then the elements fA defined by:

fA =
∑

B⊂A

µPos([n])(B,A)(eB, ω
eB) =

∑

B⊂A

(−1)|A\B|(eB, ω
eB)

are orthogonal idempotents of R such that
∑

A⊂[n] fA = (Id[n], (1P , . . . , 1P) ∈ P(1)×n),

for Pos([n]) the poset of subsets of [n] containing 0 ordered by the inclusion.

Proof. Let [n] be an object in Γ(P). The pointed set [n] is a greatest element of Pos([n]).
Every pair {A,B} of elements of Pos([n]) admits a greatest lower bound given by the
intersection A∩B. Let R be the ring Z[EndΓ(P)([n])]. To an element A of Pos([n]) we
associate the endomorphism of [n] in Γ(P) (eA, ω

eA) defines in the statement. We have,

(e[n], ω
e[n]) = (Id[n], (1P , . . . , 1P) ∈ P(1)×n) and (eA, ω

eA)(eB, ω
eB) = (eA∩B, ω

eA∩B).

Consequently, by Theorem 3.5 the elements fA defined in the statement are orthogonal
idempotents of R such that

∑
A⊂[n] fA = (Id[n], (1P , . . . , 1P)). �

In the following proposition we give another description of the idempotents fA which
will be useful in the sequel.

Proposition 3.8. Let A be a subset of [n]. We have the following identity:

fA = (eA, ω
eA)
∏

B(A

((Id[n], 1
×n
P )− (eB, ω

eB)).
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Proof. The proof of this proposition is the same that the proof of Proposition 4.39 in
[30] mutatis mutandis. �

Let P
Γ(P)
[n] = Z[HomΓ(P)([n],−)] be the standard projective objects of Func(Γ(P), Ab).

Lemma 3.9. Let A be a subset of [n] and B be a subset of [m], we have:

HomFunc(Γ(P),Ab)(P
Γ(P)
[n] fA, P

Γ(P)
[m] fB) ≃ Z[HomΩ(P)(| B \ {0} |, | A \ {0} |)].

Proof. By the Yoneda lemma, we have

HomFunc(Γ(P),Ab)(P
Γ(P)
[n] fA, P

Γ(P)
[m] fB) ≃ fAP

Γ(P)
[m] ([n])fB

= fAZ[HomΓ(P)([m], [n])]fB

Consider the linear map

κ : Z[HomΩ(P)(| B \ {0} |, | A \ {0} |)]→ fAZ[HomΓ(P)([m], [n])]fB

given by
κ(α, ωα) = fA(α̃, ωα̃)fB

where α̃ is the unique extension of α such that α̃ = 0 on (B \ {0})c and ωα̃ =
(ωα, 0P , . . . , 0P) ∈ Πy∈[n],y 6=0P(| α̃−1(y) |) = Πy∈A\{0}P(| α−1(y) |) × Πy∈AcP(0). We

will prove that κ is an isomorphism. First, it is straightforward to see that, for
(t, ωt) ∈ HomΓ(P)([m], [n]):

(1) (eA, ω
eA)(t, ωt) = (t, ωt)(et−1(A), ω

t−1(A));
(2) (t, ωt) = (t, ωt)(eE , ω

eE) for E = {0} ∪ (t−1(0))c;

(3) (eC , ω
eC)fD =

{
fD if D ⊂ C
0 otherwise.

We compute

fA(t, ωt)fB =
∑

C⊂A

µPos(C,A)(eC, ω
eC)(t, ωt)fB by definition of fA

= (t, ωt)
∑

C⊂A

µPos(C,A)(et−1C , ω
et−1C)fB by (1)

= (t, ωt)
∑

t(B)⊂C⊂A

µPos(C,A)fB by (3)

=

{
(t, ωt)fB if t(B) = A
0 otherwise

=

{
(t, ωt)(eE, ω

eE)fB if t(B) = A, for E = {0} ∪ (t−1(0))c

0 otherwise by (2)

=

{
(t, ωt)fB if t(B) = A and B ⊂ E = {0} ∪ (t−1(0))c

0 otherwise by (3).

Since (t, ωt)fB depends only of the restriction of t on B, we deduce from the previous
calculation that a non-zero element of the form fA(t, ωt)fB induces a map in Ω(P) from
B \ {0} to A \ {0}: (t, ωt)(eB, ω

eB)|B\{0}. Furthermore

κ((t, ωt)(eB, ω
eB)|B\{0}) = fA(t, ωt)(eB, ω

eB)fB = fA(t, ωt)fB

where the last equality is given by (3). We deduce that κ is surjective.
To prove that κ is bijective, we use a rank argument. On the one hand we have the

isomorphism:
⊕

A⊂[n];B⊂[m]

fAZ[HomΓ(P)([m], [n])]fB ≃ Z[HomΓ(P)([m], [n])]
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and, on the other hand, the bijection

HomΓ(P)([m], [n]) ≃
∐

A⊂[n];B⊂[m]

HomΩ(P)(B \ {0}, A \ {0})

which associates to (t, ωt) ∈ HomΓ(P)([m], [n]) the elements B = {0} ∪ (t−1(0))c ,
A = t([m]) and the map in HomΩ(P)(B \ {0}, A \ {0}) induced by (t, ωt).

�

Lemma 3.10. Let Q be the full subcategory of Func(Γ(P), Ab) whose set of objects is

{P
Γ(P)
[n] fA}n,A([n], there is a natural equivalence of categories:

Qop ≃ Z[Ω(P)]

where Z[Ω(P)] is the linearization of the category Ω(P) (i.e. Obj(Z[Ω(P)]) = Obj(Ω(P))
and HomZ[Ω(P)](A,B) = Z[HomΩ(P)(A,B)]).

Proof. Let Φ : Qop → Z[Ω(P)] be the functor defined by:

Φ(P
Γ(P)
[n] fA) = | A \ {0} |

and for f ∈ HomQ
op

[n]
(P

Γ(P)
[n] fA, P

Γ(P)
[n] fB) we define F (f) using the morphism κ−1 intro-

duced in the proof of Lemma 3.9. To prove that Φ is a functor we have to verify that κ is
compatible with the composition. Let cC be the composition map in the category C and
consider (α, ωα) ∈ HomΩ(P)(B \ {0}, A \ {0}) and (β, ωβ) ∈ HomΩ(P)(C \ {0}, B \ {0}).
In one hand we have:

κcZ[Ω(P)]((α, ω
α), (β, ωβ)) = fA(α̃ ◦ β, ωα̃◦β)fC

and in the other hand we have:

cQop(κ(α, ωα), κ(β, ωβ)) = fA(α̃, ωα̃)fBfB(β̃, ωβ̃)fC .

We have:

fA(α̃, ωα̃)fBfB(β̃, ωβ̃)fC = fA(α̃, ωα̃)fB(β̃, ωβ̃)fC since fB is an idempotent

= fA(α̃, ωα̃)
∑

D⊂B

µP(D,B)(eD, ω
eD)(β̃, ωβ̃)fC by definition of fB

= fA(α̃, ωα̃)
∑

D⊂B

µP(D,B)(β̃, ωβ̃)(eβ̃−1(D), ω
e
β̃−1(D))fC by (1) in the proof of Lemma 3.9

= fA(α̃, ωα̃)
∑

β̃(C)⊂D⊂B

µP(D,B)(β̃, ωβ̃)fC by (3) in the proof of Lemma 3.9

=

{
fA(α̃, ωα̃)(β̃, ωβ̃)fC if β̃(C) = B
0 otherwise

Since (β, ωβ) ∈ HomΩ(P)(C \ {0}, B \ {0}), β is a surjective map and β̃(C) = B so:

fA(α̃, ωα̃)fBfB(β̃, ωβ̃)fC = fA(α̃, ωα̃)(β̃, ωβ̃)fC = fA(α̃ ◦ β, ωα̃◦β)fC

and Φ is a functor.
Since the morphism κ is bijective, Φ is fully faithful. For k ∈ Ω(P), the relation

Φ(P
Γ(P)
[n] f[k]) = k proves that Φ is essentially surjective. �

Proof of Theorem 3.1. By Lemma 3.7, we have the decomposition

P
Γ(P)
[n] =

⊕

A⊂[n]

P
Γ(P)
[n] fA.
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Applying Theorem 3.6 to C = Func(Γ(P), Ab) and Q being the full subcategory of

Func(Γ(P), Ab) whose set of objects is {P Γ(P)
[n] fA}n,A⊂[n] we obtain an equivalence of

categories:
σ : Func(Γ(P)n, Ab)→ Funcadd(Qop

n , Ab))

given by: σ(G)(P
Γ(P)
[n] fA) = HomFunc(Γ(P)n,Ab)(P

Γ(P)
[n] fA, G) for G ∈ Func(Γ(P)n, Ab).

So, we have the following sequence of natural equivalences:

Func(Γ(P), Ab) ≃ Funcadd(Qop, Ab)

≃ Funcadd(Z[Ω(P)], Ab) by Lemma 3.10

≃ Func(Ω(P), Ab)

Now we prove the explicit formulae of the natural equivalences given in the statement.
To obtain the explicit description of cr, recall that cr is given by the composition:

cr : Func(Γ(P), Ab)
≃
−→ Funcadd(Qop, Ab)

(Φ̂)∗

−−→ Func(Z[Ω(P)], Ab)→ Func(Ω(P), Ab)

where Φ̂ : Z[Ω(P)]→ Qop is an inverse of Φ given by:

Φ̂(n) = P
Γ(P)
[n] f[n]

and by κ on morphisms. For a functor F : C → Ab let F̂ : Z[C] → Ab denote the
Z-linear extension of F . Then:

cr(F )(n) = HomFunc(Γ(P),Ab)(P
Γ(P)
[n] f[n], F ) ≃ F̂ (f[n])F ([n]) ≃ Im(F̂ (f[n])).

By Proposition 3.8 we have:

f[n] =
∏

B([n]

((Id[n], 1
×n
P )− (eB, ω

eB))

so

(3.10.1) F̂ (f[n]) =
∏

B([n]

F̂ ((Id[n], 1
×n
P )− (eB, ω

eB)) =
∏

B([n]

(1− F (eB, ω
eB)).

Recall that for two commuting idempotents EA, EB we have:

Im(EAEB) = Im(EA) ∩ Im(EB).

So, by (3.10.1) we obtain:

Im(F (f[n])) =
⋂

B([n]

Im(1− F (eB, ω
eB)) =

⋂

B([n]

Ker(F (eB, ω
eB)).

For B ∈ Pos([n]) such that B 6= [n], let pB : [n] → B (resp. iB : B → [n]) be the
epimorphism (resp. monomorphism) such that:

eB = iB ◦ pB.

We have (eB, ω
eB) = (iB, ω

eB) ◦ (pB, 1
×|B|
P ). Since (IdB, 1

×|B|
P ) = (pB, 1

×|B|
P ) ◦ (iB, ω

eB)
we have:

Ker(F (eB, ω
eB)) = Ker(F (pB, 1

×|B|
P )).

Therefore:

Im(F (f[n])) =
⋂

B([n]

Ker(F (pB, 1
×|B|
P )) =

⋂

B([n],|B|=n

Ker(F (pB, 1
×|B|
P ))

since for B ( [n] such that | B |< n there exists B′ ( [n] with | B′ |= n such that pB
factors through pB′ . We deduce that:

cr(F )(n) = crnF ([1], . . . , [n])

by Proposition 2.3.
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Now we show that for G ∈ Func(Ω(P), Ab), the functor i!(G) : Γ(P) → Ab corre-
sponds to G under the above equivalences. We must check that:

Φ∗Ĝ = Hom(−, i!(G)) : Qop → Ab.

We have Φ∗Ĝ(P
Γ(P)
[n] fA) = G(| A \ {0} |) while

Hom(P
Γ(P)
[n] fA, i!(G)) ≃ Im (i!(G)(fA))

= Im

(∑

B⊂A

µPos[n](B,A)i!(G)(eB, ω
eB) : i!(G)([n])→ i!(G)([n])

)
.

Let µ ⊂ n. Then i!(G)(eB, ω
eB)|G(|µ|) is 0 if µ 6⊂ B and is the injection

Iµ : G(| µ |) →֒ i!(G)([n])

if µ ⊂ B. In particular, it is 0 if µ 6⊂ A. For µ ⊂ A, we have:
∑

B⊂A

µPos[n](B,A)i!(G)(eB, ω
eB)|G(|µ|) =

∑

µ⊂B⊂A

(−1)|A\B|Iµ =

{
Iµ if µ = A \ {0}
0 otherwise

since B contains 0 while µ does not. It follows thatHom(P
Γ(P)
[n] .fA, i!(G)) ≃ G(| A \ {0} |),

as desired. �

4. Equivalence between functors from P-alg and pseudo Mackey

functors

The aim of this section is to prove the following theorem.

Theorem 4.1. There is a natural equivalence of categories

Func(Free(P), Ab) ≃ PMack(Ω(P), Ab)

where Free(P) is the category of finitely generated free P-algebras and Ω(P) is the
category defined in 1.12.

The proof is divided into three steps. In the first one, we prove the equivalence
of categories Free(P) ≃ Span(S(P)2) where Span(S(P)2) is the category of Spans
given in Definition 1.25. Then, we define in Definition 4.4 the notion of M-functor
from P-pointed sets. In the second part, we prove in Proposition 4.6 the equivalence
of categories Mack(S(P)2, Ab) ≃ M-func(Γ(P), Ab). Recall that Mack(S(P)2, Ab) ≃
Func(Span(S(P)2), Ab) by Lemma 1.26. Finally, we prove in Proposition 4.8 the equiv-
alence M-func(Γ(P), Ab) ≃ PMack(Ω(P), Ab).

In the following proposition we extend an analogous result already present in [24] and
corresponding to the particular case of a set-operad satisfying P(1) = {1P}.

Proposition 4.2. For P a unitary set-operad, there is an equivalence of categories:

Free(P) ≃ Span(S(P)2)

where Span(S(P)2) is the category of Spans defined in Definition 1.25.

The proof of this result relies on the following lemma.

Lemma 4.3. (1) Let f, f ′ ∈ HomS(n,m) and ω, ω′ ∈ P(n). The following asser-
tions are equivalent in the double category S(P)2:

(a) The diagrams 1 n
(s,ω)
lr_ _ _

f
,2 m and 1 n

(s,ω′)
lr_ _ _

f ′
,2 m are equivalent.

(b) (ω, (f(1), . . . , f(n))) = (ω′, (f ′(1), . . . , f ′(n))) ∈ P(n) ×
Sn

mn.

(2) We have: HomSpan(S(P)2)(1, m) ≃ ∐nP(n) ×
Sn

mn.
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Proof. (1) If the two diagrams in the statement are equivalent, by definition, there
exists a double isomorphism in S(P)2: (h, (h, 1×n

P )) where h : n→ n is a bijection
such that: f ′ = fh and (s′, ω′) = (s, ω)(h, 1×n

P ) = (s, ωh). So, we have:

h.(ω′, (f ′(1), . . . , f ′(n))) = (ω′.h−1, h.(f ′(1), . . . , f ′(n))) = (ω′.h−1, (f ′(h−1(1)), . . . , f ′(h−1(n))))

= (ω, (f(1), . . . , f(n)).

Therefore: (ω, (f(1), . . . , f(n))) = (ω′, (f ′(1), . . . , f ′(n))) ∈ P(n) ×
Sn

mn.

Conversely, if (ω, (f(1), . . . , f(n))) = (ω′, (f ′(1), . . . , f ′(n))) ∈ P(n) ×
Sn

mn, there

exists σ ∈ Sn such that

(ω′, (f ′(1), . . . , f ′(n))) = σ.(ω, (f(1), . . . , f(n))) = (ω.σ−1, σ.(f(1), . . . , f(n)))

= (ω.σ−1, (f(σ−1(1)), . . . , f(σ−1(n)))

So the double isomorphism (σ−1, (σ−1, 1×n
P )) provides an isomorphism between

the two diagrams.
(2) Consider the map : φ : HomSpan(S(P)2)(1, m)→ ∐nP(n) ×

Sn

mn given by:

φ([ 1 n
(s,ω)
lr_ _ _

f
,2 m ]) = (ω, (f(1), . . . , f(n))).

This map is well-defined and is an injection by (1) and obviously is a surjection.
�

Proof of Proposition 4.2. We define a functor F : Span(S(P)2) → Free(P). On ob-
jects we take F (n) = FP(n). Proposition 1.27 gives the existence of coproducts
in Span(S(P)2) so HomSpan(S(P)2)(k,m) = ∐HomSpan(S(P)2)(1, m). Consequently, it

is sufficient to define F on morphisms of the type [ 1 n
(s,ω)
lr_ _ _

f
,2 m ]. Let D =

( 1 n
(s,ω)
lr_ _ _

f
,2 m ) be a diagram. Since FP is the left adjoint to the forgetful func-

tor U : P-Alg → Set, to define a morphism in P-Alg: FP(1) → FP(m) is equiv-
alent to define a set morphism 1 → U(FP(m)) = ∐nP(n) ×

Sn

mn i.e. an element of

U(FP(m)) = ∐nP(n) times
Sn

mn. So let

F ( 1 n
(s,ω)
lr_ _ _

f
,2 m ) = (ω, (f(1), . . . , f(n))) ∈ P(n) ×

Sn

mn.

Note that F ( 1 0
(s,ω)
lr_ _ _

f
,2 m ) = (0P , ∗). Let D′ = ( 1 n

(s,ω′)
lr_ _ _

f ′
,2 m ) be another

diagram such that D and D′ are equivalent in Span(S(P)2). By Lemma 4.3

(ω, (f(1), . . . , f(n))) = (ω′, (f ′(1), . . . , f ′(n))) ∈ P(n) ×
Sn

mn.

So we can define:

F ([ 1 n
(s,ω)
lr_ _ _

f
,2 m ]) = (ω, (f(1), . . . , f(n))) ∈ P(n) ×

Sn

mn.

One verifies that F preserves composition. Furthermore F is essentially surjective and
fully faithful since:

HomFree(P)(FP(p),FP(m) ≃ HomSet(p, U(FP(m))) ≃ ∐p HomSet(1, U(FP(m)))

≃ ∐p (∐kP(k) ×
Sn

mk) ≃ ∐p HomSpan(S(P)2)(1, m) ≃ HomSpan(S(P)2)(p,m).

�

Definition 4.4. A Janus functor M : Γ(P)2 → Ab is aM-functor if:
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(1) for a standard inclusion i : [n] → [n] ∨ [m] and a standard retraction r : [n] ∨
[m]→ [n] one has

M∗(r) = M∗(i, ωi) : M([n] ∨ [m])→ M([n])

M∗(r, ωr) = M∗(i) : M([n])→ M([n] ∨ [m])

where ωi = (1×n
P , 0×m

P ) and ωr = 1×n
P ;

(2) for any square in Γ(P)2

D =

[k]

(φ,ωφ)
��
�

�

�

f1 ,2 [l]

(ψ,ωψ)
��
�

�

�

[m]
f

,2 [n]

with f−1(0) = 0 we have:

M∗(ψ, ωψ)M∗(f) = M∗(f1)M
∗(φ, ωφ).

The category ofM-functors is denoted byM-func(Γ(P), Ab).

Remark 4.5. (1) For M a M-functor, by condition (2) we have, in particular, that
for an isomorphism f : [n]→ [n] of Γ: M∗(f) = M∗(f−1, 1×n

P ).
(2) Condition (1) of the proposition also holds for all injections i′ : [n] → [n] ∨ [m]

in Γ(P) and their dual retraction r′ : [n] ∨ [m] → [n]. To see this choose a
permutation σ of [n] ∨ [m] s.t. i′ = σi and r′ = rσ and use point (1).

Proposition 4.6. There is an equivalence of categories:

Mack(S(P)2, Ab) ≃M-func(Γ(P), Ab).

In order to prove this proposition, we need the following construction and result.
For a horizontal morphism h : X → Y in Γ(P)2 we consider the restriction of h on
X \ h−1(0): h− : X \ h−1(0) → Y \ {0} and the inclusion: ih : X \ h−1(0) → X \ {0}.
Similarly, for a vertical map (φ, ωφ) : X → Y in Γ(P)2 where

ωφ ∈
∏

y∈Y \{0}

P(| φ−1(y) |)

we define the restriction of (φ, ωφ) on X \ φ−1(0): (φ−, ω
φ) : X \ φ−1(0)→ Y \ {0} and

the inclusion: (iφ, ω
iφ) : X \ φ−1(0) → X \ {0} where ωiφ = (1P , . . . , 1P , 0P , . . . , 0P) ∈∏

x∈X\{0}P(| i−1
φ (x) |).

Lemma 4.7. If

D =

[k]

(φ,ωφ)
��
�

�

�

g
,2 [l]

(ψ,ωψ)
��
�

�

�

[m]
f

,2 [n]

is a square in Γ(P)2 such that f−1(0) = 0 then

D′ =

[k] \ φ−1(0)

(φ−,ωφ)

��
�

�

�

g|[k]\φ−1(0)
,2 [l] \ ψ−1(0)

(ψ−,ω
ψ)

��
�

�

�

m
f−

,2 n
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and

D′′ =

[k] \ φ−1(0)

(iφ,ω
iφ)

��
�

�

�

g|[k]\φ−1(0)
,2 [l] \ ψ−1(0)

(iψ ,ω
iψ )

��
�

�

�

k
g−

,2 l

are squares in S(P)2.

Proof. Since the image of D in Γ is a pullback diagram we have bijections:

g−1(0) ≃ f−1(0) = {0} and ψ−1(0) ≃ φ−1(0).

We compute the pullback of

[l] \ ψ−1(0)

(ψ−,ω
ψ)

��
�

�

�

m
f−

,2 n

in S.

m×n ([l] \ ψ−1(0)) = {(c, e) ∈ m× ([l] \ ψ−1(0)) | f−(c) = ψ−(e)}

= {(c, e) ∈ [m]× [l] | f(c) = ψ(e)} \ {(c, e) ∈ [m]× [l] | f(c) = ψ(e) = 0}

= [m]×[n] [l] \ (f−1(0)× ψ−1(0))

≃ [k] \ φ−1(0).

So, the image of D′ in S is a pullback diagram. Furthermore, for y ∈ m we have
(φ−)−1(y) = φ−1(y) and (ψ−)−1(y) = ψ−1(y) so the second condition to be a square in
Γ(P)2 is satisfied by D′ since it is satisfied by D.

We compute the pullback of

[l] \ ψ−1(0)

(iψ ,ω
iψ )

��
�

�

�

k
g−

,2 l

in S.

k ×l ([l] \ ψ−1(0)) = {(c, e) ∈ k × ([l] \ ψ−1(0)) | g−(c) = e}

≃ {c ∈ k | g−(c) ∈ [l] \ ψ−1(0)}

= {c ∈ k | c ∈ [k] \ φ−1(0)} since g−(c) ∈ ψ−1(0) iff c ∈ φ−1(0)

= [k] \ φ−1(0).

So, the image of D′′ in S is a pullback diagram. Furthermore, for y ∈ k since |
(iφ)−1(y) |= 1 =| (iψ)−1(g(y)) |, we have a bijection (iφ)−1(y) → (iψ)−1(g(y)) such

that the induced bijection P(1)→ P(1) is the identity and satisfies ω
iφ
y = 1P 7→ ω

iψ
g(y) =

1P . �

Proof of Proposition 4.6. Let M : Γ(P)2 → Ab be a M-functor. We define a Janus

functor F (M) = (F (M)∗, F (M)∗) : S(P)2
j
−→ Γ(P)2

M=(M∗,M
∗)

−−−−−−−→ Ab by precomposition
of M with the functor of double categories j. Let

D =

k

(φ,ωφ)

��
�

�

�

f1 ,2 l

(ψ,ωψ)

��
�

�

�

m
f

,2 n
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be a square in S(P)2,

j(D) =

[k]

(φ+,ωφ)
��
�

�

�

f1+ ,2 [l]

(ψ+,ω
ψ)

��
�

�

�

[m]
f+

,2 [n]

is a square in Γ(P)2 such that f−1
+ (0) = 0. Since M is a M-functor we have:

M∗(ψ+, ω
ψ) ◦M∗(f+) = M∗(f1+) ◦M∗(φ+, ω

φ)

i.e.

F (M)∗(ψ, ωψ) ◦ F (M)∗(f) = F (M)∗(f1) ◦ F (M)∗(φ, ωφ)

so, F (M) is a Mackey functor and we defined a functor F : M-func(Γ(P)2, Ab) →
Mack(S(P)2, Ab).

Let N : S(P)2 → Ab be a Mackey functor. We define G(N) = (G(N)∗, G(N)∗) :
Γ(P)2 → Ab by:

G(N)∗([k]) = G(N)∗([k]) = N(k)

and, for h : X → Y ∈ Γ(P)h2

G(N)∗(h) = N∗(h−) ◦N∗(ih, ω
ih)

and for (φ, ωφ) : X → Y ∈ Γ(P)v2

G(N)∗(φ, ωφ) = N∗(iφ) ◦N∗(φ−, ω
φ).

Let i : [n] → [n] ∨ [m] be a standard inclusion and r : [n] ∨ [m] → [n] be a standard
retraction. We have:

r− = ii = Id[n]\{0} : [n] \ {0} → [n] \ {0}

ir = i− : ([n] ∨ [m]) \ ({0} ∨ [m]) = [n] \ {0} → ([n] ∨ [m]) \ {0}.

So, we have

G(N)∗(r) = G(N)∗(i, ωi) and G(N)∗(r, ωr) = G(N)∗(i)

since

G(N)∗(r) = N∗(r−)◦N∗(ir, ω
ir) = N∗(ir, ω

ir) and G(N)∗(i, ωi) = N∗(ii)◦N
∗(i−, ω

i) = N∗(i−, ω
i)

and

G(N)∗(r, ωr) = N∗(ir)◦N
∗(r−, ω

r) = N∗(ir) and G(N)∗(i) = N∗(i−)◦N∗(ii, ω
i) = N∗(i−).

Let

D =

[k]

(φ,ωφ)
��
�

�

�

g
,2 [l]

(ψ,ωψ)
��
�

�

�

[m]
f

,2 [n]

be a square in Γ(P)2 such that f−1(0) = {0}, according to Lemma 4.7 the squares D′

and D′′ in this lemma are squares of S(P)2. Since N is a Mackey functor we deduce
that:

N∗(ψ−, ω
ψ) ◦N∗(f−) = N∗(g|[k]\φ−1(0)) ◦N

∗(φ−, ω
φ)

and

N∗(iψ, ω
iψ) ◦N∗(g−) = N∗(g|[k]\φ−1(0)) ◦N

∗(iφ, ω
iφ).
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Furthermore, since f−1(0) = g−1(0) = {0} we have if = Idm and ig = Idk. We compute
on the one hand:

G(N)∗(ψ, ωψ) ◦G(N)∗(f) = N∗(iψ) ◦N∗(ψ−, ω
ψ) ◦N∗(f−) ◦N∗(if , ω

if )

= N∗(iψ) ◦N∗(g|[k]\φ−1(0)) ◦N
∗(φ−, ω

φ) ◦N∗(if , ω
if )

= N∗(iψ) ◦N∗(g|[k]\φ−1(0)) ◦N
∗(φ−, ω

φ)

= N∗(iψ ◦ g|[k]\φ−1(0)) ◦N
∗(φ−, ω

φ)

and on the other hand:

G(N)∗(g) ◦G(N)∗(φ, ωφ) = N∗(g−) ◦N∗(ig, ω
ig) ◦N∗(iφ) ◦N∗(φ−, ω

φ)

= N∗(g−) ◦N∗(iφ) ◦N∗(φ−, ω
φ)

= N∗(g− ◦ iφ) ◦N∗(φ−, ω
φ).

Since iψ ◦ g|[k]\φ−1(0) = g− ◦ iφ we conclude that G(N) is a M-functor.
We verify easily that the functors F and G define an equivalence of categories. �

Proposition 4.8. There is an equivalence of categories:

M-func(Γ(P), Ab) ≃ PMack(Ω(P), Ab).

Proof. (1) Let M = (M∗,M
∗) be aM-functor, we prove that (cr(M∗), c̃r(M

∗)) is a
pseudo-Mackey functor.

First, we prove that (cr(M∗), c̃r(M
∗)) is a Janus functor. Let n ∈ Ob(Ω(P)2)

we have:

cr(M∗)(n) = crnM∗([1], . . . , [1])

= Ker(

n∏

k=1

M∗(r
n

k̂
))

= Ker(

n∏

k=1

M∗(in
k̂
, ωi

n

k̂ )) by Remark 4.5 (2)

= c̃rnM
∗([1], . . . , [1])

= c̃r(M∗)(n).

Let (f, (f, 1
×|B|
P )) be a double isomorphism from A to B in Ω(P)2. We consider

the double isomorphism (j(f), (j(f), 1
×|B|
P )) from j(A) to j(B) of Γ(P)2, where

j is the functor which adds a basepoint. By Remark 4.5 (1) we have:

M∗(j(f)) = M∗(j(f−1), 1
×|B|
P ) and M∗(j(f), 1

×|B|
P ) = M∗(j(f

−1)).

In the sequel, for simplicity, for f : A→ B a bijection, we denote by f also the

vertical morphism (f, 1
×|B|
P ). Since f is an isomorphism, by definition of i∗ and

i! in Proposition 3.2 we have the following commutative diagram:

cr(M)(B)

c̃r(M∗)(f)

��

� � ,2
⊕

X⊂B cr(M)(X) = i∗(c̃rM
∗)(j(B))

i∗(c̃rM∗)(j(f))

��

≃ ,2 M(j(B))

M∗(j(f))

��

cr(M)(f(B)) = cr(M)(A)

cr(M∗)(f)

��

� � ,2
⊕

Y⊂A cr(M)(Y ) = i∗(c̃rM
∗)(j(A))

i!(crM∗)(j(f))

��

≃ ,2 M(j(A))

M∗(j(f))

��

cr(M)(B) �
�

,2
⊕

Z⊂B cr(M)(Z) = i!(crM)(j(B)) ,2≃ ,2 M(j(B))

.
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So cr(M∗)(f)c̃r(M∗)(f) is the restriction of M∗(j(f))M∗(j(f)) on cr(M)(B),
but

M∗(j(f))M∗(j(f)) = M∗(j(f))M∗(j(f
−1))

= M∗(j(f)j(f−1))

= Id

whence cr(M∗)(f)c̃r(M∗)(f) = Id.
Let

D =

A

(φ,ωφ)
��
�

�

�

f
,2 B

(ψ,ωψ)
��
�

�

�

C
g

,2 D

be a square in Ω(P)2. Applying to D the functor j : Ω(P)2 → Γ(P)2 we obtain
a square in Γ(P)2 such that j(g)−1(0) = 0. Since M is aM-functor we have the
following commutative diagram:

M(j(A))
M∗(j(f)) ,2 M(j(B)) =

⊕
Z⊂B crM(Z)

p
,2,2 crM(B)

crM(C) �
�

i
,2 M(j(C)) ≃

⊕
X⊂C crM(X)

M∗(j(g))
,2

M∗(j(φ,ωφ))

LR

M(j(D)).

M∗(j(ψ,ωψ))

LR

On the one hand we compute the composition p ◦M∗(j(ψ, ωψ)) ◦M∗(j(g)) ◦ i.
Since g is surjective, by definition of i∗ and i! in Theorem 3.1 we have the
following commutative diagram:

cr(M)(C)

cr(M∗)(g)

��

� � i ,2
⊕

X⊂C cr(M)(X) = i!(crM∗)(j(C))

i!(crM∗)(j(g))

��

≃ ,2 M(j(C))

M∗(j(g))

��

cr(M)(g(C)) = cr(M)(D)

c̃r(M∗)(ψ,ωψ)
��

� � ,2
⊕

Y⊂D cr(M)(Y ) = i!(crM∗)(j(D))

i∗(c̃rM∗)(j(ψ,ωψ))
��

≃ ,2 M(j(D))

M∗(j(ψ,ωψ))
��

cr(M)(B)
⊕

Z⊂B cr(M)(Z) = i∗(crM)(j(B))
p

lr lr ≃ ,2 M(j(B))

.

So

(4.8.1) p ◦M∗(j(ψ, ωψ)) ◦M∗(j(g)) ◦ i = c̃r(M∗)(ψ, ωψ) ◦ cr(M∗)(g).

On the other hand we compute the composition p◦M∗(j(f))◦M∗(j(φ, ωφ))◦i.
By definition of i∗ the restriction of M∗(j(φ, ωφ)) to the factor cr(M)(C) is 0 to
the factors cr(M)(L) such that L ⊂ A and φ(L) 6= C and is the morphism

cr(M∗)(φ, ωφ)L : cr(M)(C)→ cr(M)(L)
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to the factors cr(M)(L) where L ⊂ A and φ(L) = C. So, we have the following
commutative diagram:

cr(M)(C)

��

� � i ,2 i∗(c̃rM
∗)(j(C)) ≃ M(j(C))

i∗(c̃rM∗)(j((φ,ωφ)))≃M∗(j((φ,ωφ)))

��⊕
L ⊂ A

φ(L) = C; f(L) = B

crM(L)

k
��

⊕
L ⊂ A

φ(L) = C

crM(L)

��

� � ,2lr lr i∗(c̃rM
∗)(j(D)) ≃M(j(A))

i!(crM∗)(j(f))≃M∗(j(f))

��

cr(M)(B)
⊕
L ⊂ A

φ(L) = C

crM(f(L))lr lr i!(crM∗)(j(B)) ≃ M(j(B))lr lr

where we have k =
⊕
L ⊂ A

φ(L) = C

f(L) = B

cr(M∗)(f|L). We deduce that:

p ◦M∗(j(f)) ◦M∗(j(φ, ωφ)) ◦ i =
∑

L ⊂ A

φ(L) = C

f(L) = B

cr(M∗)(f|L) ◦ cr(M∗)(φ, ωφ)L

=
∑

L∈Adm(A)

cr(M∗)(f|L) ◦ cr(M∗)(φ, ωφ)L.

Combining this last equality and (4.8.1) we obtain:

cr(M∗)(ψ, ωψ) ◦ cr(M∗)(g) =
∑

L∈Adm(A)

cr(M∗)(f|L) ◦ cr(M∗)(φ, ωφ)L.

(2) Let M = (M∗,M
∗) ∈ PMack(Ω(P), Ab), we prove that (i!M∗, i∗M

∗) is a M-
functor.

First, we check that (i!(M∗), i∗(M
∗)) is a Janus functor. For [n] ∈ Γ(P)2,

i!(M∗)([n]) =
⊕

µ⊂n

M∗(µ) =
⊕

µ⊂n

M∗(µ) = i∗(M∗)([n]).

Let i : [n] → [n] ∨ [m] be a standard inclusion and r : [n] ∨ [m] → [n] be the
associated standard retraction. On the one hand, we compute i∗(M

∗)(r, ωr).

M∗(| µ |)

M∗((r,ωr)i(µ))

��

� � ,2
⊕

µ⊂nM
∗(| µ |) = i∗(M

∗)([n])

i∗(M∗)(r,ωr)

��

M∗(| i(µ) |) �
�

,2
⊕

ν⊂n+mM
∗(| ν |) = i∗(M

∗)([n] ∨ [m])

since, the only subset ν ⊂ n +m such that r(ν) = µ is i(µ).
On the other hand, we compute i!(M∗)(i).

M∗(| µ |)

M∗(i|µ)

��

� � ,2
⊕

µ⊂nM∗(| µ |) = i!(M∗)([n])

i!(M∗)(i)

��

M∗(| i(µ) |) �
�

,2
⊕

ν⊂n+mM∗(| ν |) = i!(M∗)([n] ∨ [m])

.
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Since i|µ : µ → i(µ) and r|i(µ) : i(µ) → µ are isomorphisms inverse to each
other and M is in PMack(Ω(P), Ab) we have: M∗((r, ωr)i(µ)) = M∗(i|µ). So

i∗(M
∗)(r, ωr) = i!(M∗)(i).

We prove, in a similar way, that: i∗(M
∗)(i) = i!(M∗)(r, ω

r).
Let

D =

[k]

(φ,ωφ)
��
�

�

�

f1 ,2 [l]

(ψ,ωψ)
��
�

�

�

[m]
f

,2 [n]

be a square in Γ(P)2 such that f−1(0) = 0. On the one hand, we compute
i∗(M∗)(ψ, ωψ)i!(M∗)(f):

M∗(| µ |)

M∗(f|µ)

��

� � ,2
⊕

µ⊂mM∗(| µ |) = i!(M∗)([m])

i!(M∗)(f)

��

M∗(| f(µ) |)

u

��

� � ,2 i!(M∗)([n])

i∗(M∗)(ψ,ωψ)

��⊕
K⊂l,ψ(K)=f(µ))M(K) �

�
,2 i!(M∗)([l])

(since f−1(0) = 0, 0 6∈ f(µ)) where u is the sum of the maps

M∗((ψ, ωψ)K) : M∗(| f(µ) |)→M∗(K)

to the factors M∗(K) such that K ⊂ l and ψ(K) = f(µ). For a fixed K ⊂ l such
that ψ(K) = f(µ) we have the following square in Ω(P)2:

φ−1(µ) ∩ f−1
1 (K)

(φ̃,ωφ̃)

��
�

�

�

f̃1 ,2 K

(ψ,ωψ)K
��
�

�

�

µ
f|µ

,2 f(µ) = ψ(K).

Since (M∗,M
∗) is a pseudo-Mackey functor we have:

M∗((ψ, ωψ)K)M∗(f|µ) =
∑

K ′∈Adm(φ−1(µ)∩f−1
1 (K))

M∗(f̃1|K ′)M∗((φ̃, ωφ̃)K ′).

On the other hand, we compute i!(M∗)(f1)i
∗(M∗)(φ, ωφ). We have:

M∗(| µ |)

v

��

� � ,2
⊕

µ⊂nM∗(| µ |) = i∗(M∗)([m])

i∗(M∗)(φ,ωφ)

��⊕
L⊂[k],φ(L)=µM(L)

⊕
L⊂[k],φ(L)=µM∗(f1|L)

��

� � ,2 i!(M∗)([k])

i!(M∗)(f1)

��⊕
L⊂[k],φ(L)=µM(f1(L)) �

�
,2 i!(M∗)([l])

where v is the sum of the morphisms M∗(φ|L) : M∗(| µ |)→ M(L) to the factors

M(L) such that L ⊂ [k] and φ(L) = µ. For a fixed K ⊂ l such that ψ(K) = f(µ),
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the value of the composition
⊕

L⊂[k],φ(L)=µM∗(f1|L)v to M(K) is equal to:
∑

L⊂[k],φ(L)=µ,f1(L)=K

M∗(f1|L)M∗((φ, ωφ)L) =
∑

L∈Adm(φ−1(µ)∩f−1
1 (K))

M∗(f1|L)M∗((φ, ωφ)L).

We deduce that:

i∗(M∗)(ψ, ωψ)i!(M∗(f)) = i!(M∗(f1))i
∗(M∗)(φ, ωφ).

�

As a corollary of Theorem 4.1 we obtain the following result:

Corollary 4.9. There is a natural equivalence of categories between the category of
reduced polynomial functors of degree ≤ n from Free(P) to Ab and the category of
pseudo-Mackey functors from Ω(P) to Ab which have zero values on 0 and on sets of
cardinality > n.

Remark 4.10. Applying Theorem 4.1 for P = I (the initial unitary set-operad, see
Example 1.1 (2)), we recover the Dold-Kan type theorem of [23]: Func(Γ, Ab) ≃
Func(Ω, Ab). In fact, the vertical maps of Ω(P)2 are just the bijections, so by Re-
mark 4.5 (1) the functor M∗ is determined by M∗.

5. Polynomial maps and polynomial functors

The principal aim of this section is to prove, in Corollary 5.34, that polynomial
functors of degree n from finitely generated free groups to abelian groups coincide with
polynomial functors of degree n from finitely generated free monoids to abelian groups.
In order to prove this crucial result for this paper, we introduce intermediate material
interesting on its own. In fact, after recalling the definition of polynomial maps from
monoids in the sense of Passi, we extend this definition to algebraic theories and, more
generally to sets of morphisms of a suitable general category. This leads us to introduce a
category Tn(Z[C]) generalizing the categories Pn(C) for C an additive category considered
in [22]. These categories have the important property that polynomial functors of degree
n from C to Ab are equivalent to additive functors from Tn(Z[C]) to Ab (see Corollary
5.25).

The proof of Corollary 5.34 relies on three main ingredients: the isomorphism between
polynomial maps from monoids and from their “groupification” in Proposition 5.4, the
link between polynomial functors and polynomial maps leading to Corollary 5.25 and
the canonical isomorphism TnZ[gr] ≃ TnZ[mon] obtained in Theorem 5.33 from the
computation of these categories given in Corollary 5.31.

5.1. Passi polynomial maps. In this section, we begin by recalling the classical def-
inition of polynomial maps from monoids to abelian groups due to Passi and we prove
that polynomial maps on a monoid and on its groupification coincide (see Proposition
5.4). Then we extend the definition of Passi to maps from algebraic objects of any type,
i.e. from models of any algebraic theory.

5.1.1. The classical case for monoids. Let M be a monoid with a unit element e and
I(M) be the augmentation ideal of the monoid algebra Z[M ] (i.e. the kernel of the map
ǫ : Z[M ] → Z such that ǫ(

∑
m∈M αmm) =

∑
m∈M αm). We know that I(M) is a free

abelian group having as free basis the elements m − 1 where m ∈ M and m 6= e. For
k ≥ 0, we denote by Ik(M) the k−th power of I(M) with the convention I0(M) = Z[M ].
Let A be an abelian group, for a map f : M → A let f̄ : Z[M ]→ A denote the extension
of f to a Z-linear homomorphism.
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Definition 5.1. [19] Let M be a monoid and A be an abelian group. A map f : M → A
such that f(e) = 0 is polynomial of degree lower or equal to n if f̄ vanishes on In+1(M).

The abelian group I(M)/In+1(M) is denoted by Pn(M) and is called the Passi group
of M of order n. The canonical quotient map I(M) → Pn(M) is denoted by ρn. The
following Proposition explains the importance of the Passi group.

Proposition 5.2. [19] Let M be a monoid and fn : M → Pn(M) given by fn(x) =
ρn(x − 1), then fn is the universal polynomial map of degree n from M to abelian
groups.

Let Mapn(M,A) be the abelian group of polynomial maps f : M → A of degree ≤ n.
By the previous Proposition we have:

(5.2.1) Mapn(M,A) ≃ HomAb(Pn(M), A).

In the sequel, we need the following elementary result which is wellknown.

Proposition 5.3. For G ∈ Gr we have a natural isomorphism of abelian groups:

θ : P1(G) = I(G)/I2(G)
≃
−→ Gab := G/[G,G]

such that for g ∈ G, θ(g − 1) = g.

Let Gr be the category of all groups and Mon the category of all monoids. The
forgetful functor U : Gr →Mon admits a left adjoint denoted by g and named groupi-
fication functor. The unit of this adjunction ηM : M → U(g(M)) for M ∈Mon induces
a homomorphism:

η∗M : Mapn(Ug(M), A)→ Mapn(M,A).

In the sequel, we prove the following result:

Proposition 5.4. Let M be a monoid and A be an abelian group, the homomorphism:

η∗M : Mapn(Ug(M), A)→ Mapn(M,A)

is an isomorphism.

By (5.2.1) it is sufficient to prove the following lemma:

Lemma 5.5. Let M be a monoid. Then the map

Pn(η) : Pn(M)→ Pn(Ug(M))

is an isomorphism of abelian groups.

Proof. Recall that for a monoid (resp. group) N the natural injection αN : N → Z[N ]
is the unit of the adjunction between monoids (resp. groups) and rings, sending N to
Z[N ] and a ring R to itself viewed as a multiplicative monoid (resp. to its group of units
R×). Moreover, the augmentation map ǫ : Z[N ]→ Z induces an augmentation map ǫ on
the quotient ring Z[N ]/In+1(N) such that ǫqNn = ǫ, where qNn : Z[N ] → Z[N ]/In+1(N)
is the canonical projection.

It follows that the map ηM : M → U(g(M)) successively induces unique homomor-
phism of augmented rings Z[M ]→ Z[U(g(M))] and

ηM : Z[M ]/In+1(M)→ Z[U(g(M))]/In+1(U(g(M))) = Z[g(M)]/In+1(g(M))

such that ηMq
M
n αM = q

U(g(M))
n αU(g(M))ηM . So it suffices to construct an augmented ring

homomorphism γM : Z[g(M)]/In+1(g(M)) → Z[M ]/In+1(M) inverse to ηM , since by
restriction to augmentation ideals we then obtain the desired isomorphism Pn(ηM) and
its inverse.

The key point is that the multiplicative submonoid qMn (1 + I(M)) of Z[M ]/In+1(M)
actually is a subgroup of its group of units since for x ∈ I(M), qn(

∑n
k=0(−1)kxk)
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is a multiplicative inverse of qn(1 + x). Thus the monoid homomorphism βn : M →
U(qMn (1 + I(M))), βn(m) = qn(m) = qn(1 + (m − 1)), extends to a group homo-
morphism β ′

n : g(M) → qMn (1 + I(M)) such that β ′
nηM = βn since ηM is the unit

of the adjunction between monoids and groups. In turn, β ′
n induces a unique ring

homomorphism γM : Z[g(M)] → Z[M ]/In+1(M) such that γMαg(M) is the compos-

ite map g(M)
β′
n ,2 qMn (1 + I(M)) →֒ Z[M ]/In+1(M) . Moreover, γM commutes with

the augmentation maps, hence induces the desired augmented ring homomorphism

γM : Z[g(M)]/In+1(g(M)) → Z[M ]/In+1(M) such that γMq
g(M)
n = γM . To check that

ηM and γM indeed are mutually inverse ring isomorphisms, it suffices to precompose the

composite maps γM ηM and ηM γM with the maps M
αM ,2 Z[M ]

qMn ,2,2 Z[M ]/In+1(M)

and

M
ηM ,2 U(g(M)) = g(M)

αg(M)
,2 Z[g(M)]

q
g(M)
n ,2,2 Z[g(M)]/In+1(g(M))

and to successively use their respective universal properties. �

Remark 5.6. The isomorphism Mapn(Ug(M), A) ≃ Mapn(M,A) is the generalization
to the non-abelian setting of Lemma 8.1 in [2].

5.1.2. Generalization to algebraic theories. We introduce a generalized Passi functor PP
n

from algebras over any unitary set-operad P to abelian groups, and give a conceptual
interpretation which is new even in the classical case: it turns out that PP

n is the
polynomialization of degree ≤ n of the canonical reduced functor from P-algebras to
abelian groups. This is used in the next section to describe the category TnZ̄[P-alg] in
terms of the Passi functor, at least for “good” operads P.

For sets A1, . . . , Am recall the canonical isomorphism

Z[A1]⊗ . . .⊗ Z[Am]→ Z[A1 × . . .× Am] , a1 ⊗ . . .⊗ am 7→ (a1, . . . , am)

for ak ∈ Ak.

Definition 5.7. Let P be a unitary set-operad with composition operations γm;i1,...,im as
before. Then an operad Z[P] in Ab is defined by Z[P](m) = Z[P(m)] and composition
operations

γm;i1,...,im : Z[P(m)] ⊗ Z[P(i1)]⊗ . . .⊗ Z[P(im)]
∼= ,2 Z[P(m) ×P(i1)× . . .×P(im)]

Z[γm;i1,...,im
]

��

Z[P(i1 + . . .+ im)]

Similarly, if A is a P-algebra with operations µm : P(m) ×Sm A
m → A then Z[A] is a

Z[P]-algebra with operations

µm : Z[P(m)]⊗Sm Z[A]⊗m
∼= ,2 Z[P(m) ×Sm A

m]
Z[µm]

,2 Z[A]

For θ ∈ P(m) and xk ∈ Z[A] we write θ(x1 ⊗ . . . ⊗ xm) := µm(θ ⊗ x1 ⊗ . . . ⊗ xm).
The constant map 0: A→ ∗ into the trivial P-algebra gives rise to a Z[P]-algebra map
ǫ = Z[0] : Z[A]→ Z[∗] = Z; its kernel is an ideal denoted by I(A) and has the canonical
basis a− 1A, a ∈ A\{1A}. Let

InP(A) :=
∑

m≥n

µm(Z[P(m)]⊗Sm I(A)⊗m) =
∑

m≥n

∑

θ∈P(m)

θ(I(A)⊗m)
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PP
n (A) = I(A)/In+1

P (A) and qn : I(A) ,2,2 PP
n (A) .

Finally, PP
n is a functor from P-algebras to Ab such that the map pn : A → PP

n (A) is
natural.

Note that we do not decorate I(A) by an index P since, in contrast with In+1
P (A), it

does not depend on P.

Example 5.8. For P = Com and As, PP
n coincides with the Passi functor recalled

in section 5.1: we have InCom(A) =
∑

m≥n µm(Z[1] ⊗Sm I(A)⊗m) =
∑

m≥n I
m(A) =

In(A) since Im(A) ⊂ In(A) for m ≥ n, and similarly InAs(A) =
∑

m≥n µm(Z[Sm] ⊗Sm

I(A)⊗m) =
∑

m≥n I
m(A) = In(A).

In order to extend the above definitions to pointed algebraic categories we recall some
basic notions of universal algebra from the categorical viewpoint, cf. [5].

Definition 5.9. An algebraic theory is a category T with objects m, m ≥ 0, such that
m = 1m, i.e. m is the m-th cartesian power of 1. A T-model is a functor M : T→ Set
which preserves finite products. The models of T form a category T-Mod with morphisms
being the natural transformations.

Moreover, we say that T is pointed if the object 0 is a zero-object in T.

For a set X let FT(X) denote the free T-model generated by X , and F(T) be
the category with objects the sets m for m ≥ 0, and with morphisms F(T)(k, l) =
T-Mod(FT(k),FT(l)).

Remark 5.10. It is often useful to think of the product decompositions m = 1m as being
specified, i.e. of the corresponding projection maps pk : m→ 1, 1 ≤ k ≤ m, being fixed.

Any model M : T → Set takes the empty product 0 = 10 to an empty product in
Set, i.e. a one-point set. So if T is pointed the functor M naturally takes values in the
category of pointed sets Set∗: the basepoint of M(m) is the element M(0)(∗) where
0 : 0→ m is the zero morphism and ∗ is the unique element of M(0).

To any algebraic theory T one can associate a set-operad PT, as follows. Let PT(m) =
HomT(m, 1) with the right action of Sm induced by its natural left action on m. To
define the composition operation γ let m ≥ 1, i1, . . . , im ≥ 0, θ ∈ HomT(m, 1) and θk ∈
HomT(ik, 1) for 1 ≤ k ≤ m. Then first let pr

k
: i1 + . . .+ im → ik be the unique map

such that pl ◦prk = pi1+...+ik−1+l for 1 ≤ l ≤ k. Next let θ1× . . .×θm : i1 + . . .+ im → m

be the unique map such that pk(θ1× . . .× θm) = θkprk for 1 ≤ k ≤ m. So we can define

γ(θ; θ1, . . . , θm) = θ ◦ (θ1 × . . .× θm).

Moreover, we need the forgetful functor V PT-Alg
T-Mod : T-Mod → PT-Alg which is defined

by V PT-Alg
T-Mod (M) = M(1) as a set, endowed with the PT-algebra structure given by the

maps

µm : PT(m)×Sm M(1)m
∼= ,2 HomT(m, 1)×Sm M(m) ,2 M(1)

given by the isomorphism M(1)m ∼= M(m) coming from the fact that M preserves
products, and by the evaluation map (f, x) 7→M(f)(x) for (f, x) ∈ HomT(m, 1)×M(m).

So we can finally define the functor

P T
n := PPT

n ◦ V
PT-Alg
T-Mod : T-Mod→ Ab.

In the sequel, T always denotes a pointed algebraic theory; in this case the
operad PT is unitary.

It is less obvious than in the example 5.8 to see that for the theories of groups Gr and
of abelian groups Ab the functor PGr

n also coincides with Passi’s functor Pn in section
5.1.1: in fact, PGr(m) = FGr(m) since a theory is always isomorphic with the opposite
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category of the category of its finitely generated free models. For a solution of this
problem see Proposition 5.17 below.

For some letter a let a⊔k = a, . . . , a denote its k-fold repetition.

Lemma 5.11. Let A be a P-algebra. For p ≥ 0, q ≥ 1 let a1, . . . , ap ∈ A, x1, . . . , xq ∈
I(A) and θ ∈ P(p + q). Then

θ(a1 ⊗ . . .⊗ ap ⊗ x1 ⊗ . . .⊗ xq) ≡ γ(θ; 0⊔p
P , 1

⊔q
P )(x1 ⊗ . . .⊗ xq) mod Iq+1

P (A).

Proof. By induction on p, the case p = 0 being clear. For p ≥ 1,

θ(a1 ⊗ . . .⊗ ap ⊗ x1 ⊗ . . .⊗ xq) = θ(a1 ⊗ . . .⊗ ap−1 ⊗ (ap − 1A)⊗ x1 ⊗ . . .⊗ xq)

+ θ(a1 ⊗ . . .⊗ ap−1 ⊗ 1A ⊗ x1 ⊗ . . .⊗ xq)

≡ γ(θ; 0⊔p−1
P , 1⊔q+1

P )((ap − 1A)⊗ x1 ⊗ . . .⊗ xq)

+ γ(θ; 1⊔p−1
P , 0P , 1

⊔q
P )(a1 ⊗ . . .⊗ ap−1 ⊗ x1 ⊗ . . .⊗ xq)

mod Iq+2(A)

≡ γ(γ(θ; 1⊔p−1
P , 0P , 1

⊔q
P ), 0⊔p−1

P , 1⊔q
P )(x1 ⊗ . . .⊗ xq)

mod Iq+1(A)

≡ γ(θ; 0⊔p
P , 1

⊔q
P )(x1 ⊗ . . .⊗ xq)

by associativity of γ. �

Corollary 5.12. Let A be a P-algebra. For n ≥ 1 the subgroup InP(A) is an ideal of
Z[A]. Moreover, for θ ∈ P(p) and a1, . . . , ap ∈ A we have

θ(a1, . . . , ap)− 1A ≡ (θ1(a1)− 1A) + . . .+ (θp(ap)− 1A) mod I2P(A)

where θk = γ(θ; 0⊔k−1
P , 1P , 0

⊔p−k
P ).

Proof. For m ≥ n, a1, . . . , ap, b1, . . . , bq ∈ A, x1, . . . , xm ∈ I(A), ϑ ∈ P(m) and θ ∈
P(p + 1 + q), there is an obvious permutation σ such that

θ(a1 ⊗ . . .⊗ ap ⊗ ϑ(x1 ⊗ . . .⊗ xm)⊗ b1 ⊗ . . .⊗ bq)

= (θ.σ)(a1 ⊗ . . .⊗ ap ⊗ b1 ⊗ . . .⊗ bq ⊗ ϑ(x1 ⊗ . . .⊗ xm))

= γ(θ.σ; 1⊔p+q
P , ϑ)(a1 ⊗ . . .⊗ ap ⊗ b1 ⊗ . . .⊗ bq ⊗ x1 ⊗ . . .⊗ xm)

So the first assertion is immediate from Lemma 5.11. The second assertion is proved
by induction on p, the case p = 1 being clear. For p ≥ 1, we use Proposition 5.11 to see
that modulo I2P(A),

θ(a1, . . . , ap)− 1A = θ(a1 ⊗ . . .⊗ ap−1 ⊗ (ap − 1A)) + θ(a1, . . . , ap−1, 1A)− 1A

≡ (γ(θ; 0⊔p−1
P , 1P)(ap)− 1A) + γ(θ; 1⊔p−1

P , 0P)(a1, . . . , ap−1)− 1A

≡ (θp(ap)− 1A) +

p−1∑

k=1

(
γ(γ(θ; 1⊔p−1

P , 0P); 0⊔k−1
P , 1P , 0

⊔p−1−k
P )(ak)− 1A

)

≡ (θp(ap)− 1A) +

p−1∑

k=1

(θk(ak)− 1A)

�

Lemma 5.13. The functors PP
1 : P-Alg → Ab and P T

1 : T-Mod→ Ab are linear.
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Proof. Let A,B be P-algebras. Then A∨B consists of the elements θ(a1, . . . , ap, b1, . . . , bq)
with p, q ≥ 0, θ ∈ P(p + q), a1, . . . , ap ∈ A, b1, . . . , bq ∈ B. Hence by Corollary
5.12 we have I(A ∨ B) = I(A) + I(B) + I2(A ∨ B). It follows that the section

sA,B : PP
1 (A) ⊕ PP

1 (B) → PP
1 (A ∨ B), defined by sA,B = (PP

1 (i1), P
P
1 (i2)) of r̂P

P
1 is

surjective, whence an isomorphism. Hence r̂P
P
1 is an isomorphism, as desired. The

same argument works for P T
1 . �

Lemma 5.14. There is a natural exact sequence

(5.14.1) Z[P(n)]⊗ PP
1 (A)⊗n

νn ,2 PP
n (A)

qn−1 ,2 PP
n−1(A) ,2 0

of funtors on P-Alg where νn(θ⊗a1 − 1⊗· · ·⊗an − 1) = qn(θ((a1−1)⊗· · ·⊗(an−1)))
for θ ∈ P(n) and a1, . . . , an ∈ A.

Proof. By definition of PP
n we have an exact sequence

Z[P(n)]⊗ I(A)⊗n
µn ,2 PP

n (A)
qn−1 ,2 PP

n−1(A) ,2 0 .

So it suffices to show that µn factors through id⊗ q⊗n1 : Z[P(n)]⊗ I(A)⊗n → Z[P(n)]⊗
PP
1 (A)⊗n. But by right-exactness of the tensor product,

Ker(id⊗ q⊗n1 ) =

n∑

i=1

∑

j≥2

µn
(
Z[P(n)] ⊗ I(A)⊗i−1 ⊗ µj(Z[P(n)] ⊗ I(A)⊗j)⊗ I(A)⊗n−i

)

⊂
n∑

i=1

∑

j≥2

µn−1+j

(
Z[P(n− 1 + j)]⊗ I(A)⊗n−1+j

)

by associativity of µ, so µnKer(id⊗ q⊗n1 ) = 0 since n− 1 + j > n for j ≥ 2. �

Proposition 5.15. The functors PP
n : P-Alg → Ab and P T

n : T-Mod→ Ab are polyno-
mial of degree ≤ n.

Proof. By induction on n: By the Lemmas 5.13 and Proposition 2.20 the functor
Z[P(n)] ⊗ PP

1 (−)⊗n : P-Alg → Ab is polynomial of degree ≤ n, hence so is PP
n since

PP
n−1 is polynomial of degree ≤ n − 1 by induction and the category of polynomial

functors of degree ≤ n is thick. The same argument works for P T
n . �

Now we are ready to give a conceptual interpretation of the functors PP
n and P T

n .
Recall that a category C is concrete if there exists a faithful forgetful functor VC : C →
Set. Morally a concrete category is a category whose objects are sets endowed with
some structure and the morphisms are set maps compatible with this structure in some
suitable sense. If in addition C is pointed (with the one-point set being its null-object)
then VC naturally takes values in Set∗ (where Set∗ is the category of pointed sets). Thus
any pointed concrete category C admits a canonical reduced functor Z̄[−] ◦ VC : C →
Ab. Note that T-Mod is a pointed concrete category where VT-Mod(M) = M(1) with
basepoint 1M(1) = M(00,1)(∗), see Remark 5.10.

Theorem 5.16. There are canonical isomorphisms

ΞP
n : Tn(Z̄[−] ◦ VP-Alg)

∼= ,2 PP
n and ΞT

n : Tn(Z̄[−] ◦ VT-Mod)
∼= ,2 P T

n ◦ V
PT-Alg
T-Mod

of functors on P-Alg and on T-Mod, resp., sending ā and x̄ to qn(a− 1A) and qn(x−
1M(1)) where a ∈ A for A ∈ P-Alg and x ∈M(1) for M ∈ T-Mod, resp.

Proof. The natural isomorphisms ΞP : Z̄[A]
∼= ,2 I(A) and ΞT : Z̄[M(1)]

∼= ,2 I(M(1))

sending ā to a − 1A and x̄ to x − 1M(1) allow to replace the functors Z̄[−] ◦ VP-Alg
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and Z̄[−] ◦ VT-Mod with I and I ◦ V PT-Alg
T-Mod , resp. By Corollary 5.15 the functor PP

n

is polynomial of degree ≤ n, hence qn : I ,2,2 PP
n factors through tIn : I ,2,2 TnI ,

whence ΞP
n is well defined. To show that it has an inverse it suffices to show that

the map (tIn)A annihilates In+1
P (A) =

∑
m>n µm(Z[P(m)] ⊗ I(A)⊗m). For m > n con-

sider the multifunctor Mm : (P-Alg)m → Ab defined by (A1, . . . , Am) 7→ Z[P(m)] ⊗
I(A1)⊗ · · · ⊗ I(Am), which is multi-reduced. The morphism qnµm : Mm∆m → PP

n fac-

tors through tn : Mm∆m ,2,2 Tn(Mm∆m) since PP
n is polynomial of degree ≤ n, but

Tn(Mm∆m) = 0 by Lemma 2.19, as desired. For ΞT
n the same argument works. �

We now are ready to compare the functors P T
n for T being the theory of groups Gr

or of abelian groups Ab with the classical Passi functor of section 5.1.1.

Proposition 5.17. There are natural isomorphisms

Pn ∼= Tn(Z̄[−] ◦ VGr) ∼= PGr
n and Pn ∼= Tn(Z̄[−] ◦ VAb) ∼= PAb

n

of functors from Gr to Ab and from Ab to Ab, respectively.

Proof. The right-hand isomorphisms (invoking PGr
n and PAb

n ) were already established
in Theorem 5.16. Now the left-hand isomorphisms are obtained in exactly same way,
based on the well known exact sequence (Gab)⊗n → Pn(G) → Pn−1(G) → 0 (proved
exactly in the same way as sequence (5.14.1)) and the fact that P1(G) ∼= Gab for any
group G (see Proposition 5.3), whence the functor P1 from Gr and from Ab to Ab is
linear in each case. �

5.2. Polynomial maps on the morphism sets of a category. Let A be a small
additive category. In [22] the author defines a preadditive category PnA in the following
way: the objects of PnA are those of A and HomPnA(A,B) = Pn(HomA(A,B)). The
importance of this category lies on the following Proposition.

Proposition 5.18. [22] Let A be a small additive category. Then:

Poln(A, Ab) ≃ Lin(PnA, Ab).

In the next section, we extend this result from A to any category C having a null

object and finite sums (and from Ab to any abelian category).
In order to define a suitable analogue of the category PnC in this context we need to

define polynomial maps on the set of morphisms of C. We prove in Proposition 5.22
that for A a small additive category this definition is equivalent with the definition of
Passi polynomial maps.

Let C be a category having a null object and finite sums, and let n ≥ 1.

Definition 5.19. Let X, Y be objects in C, A be an abelian group and ϕ : HomC(X, Y )→
A be a normalized function, i.e. ϕ(0) = 0. We say that ϕ is polynomial of de-
gree ≤ n if its Z-linear extension ϕ̂ : UC

X(Y ) → A factors through the quotient map

tn : UC
X(Y ) ,2,2 TnU

C
X(Y ) .

It is clear from the definition that the map t′n : HomC(X, Y ) → TnU
C
X(Y ), t′n(f) =

tn(f), is the universal polynomial map of degree ≤ n on HomC(X, Y ).

Remark 5.20. The previous definition generalizes the definition of quadratic maps from
morphism sets of C to abelian groups given in [14] section 2.3.

Proposition 5.21. There exists a preadditive category TnZ̄[C] with the same objects as C
whose morphism sets are given by HomTnZ̄[C](X, Y ) = TnU

C
X(Y ) and whose composition

satisfies tng ◦ tnf = tn(g ◦ f).
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Proof. Consider the homomorphism γ : UC
Y (Z) ⊗ UC

X(Y ) → UC
X(Z) defined by γ(g ⊗

f) = g ◦ f for g ∈ HomP(Y, Z), f ∈ HomP(X, Y ). We must show that tn ◦ γ factors

through tn ⊗ tn : UC
Y (Z)⊗ UC

X(Y ) ,2,2 TnU
C
Y (Z)⊗ TnU

C
X(Y ) . First note that a map

f ∈ HomP(X, Y ) induces a natural transformation f ∗ : UC
Y → UC

X and hence another
natural transformation Tn(f ∗) : TnU

C
Y → TnU

C
X . Now consider the following diagram

UC
Y (Z)⊗ TnU

C
X(Y )

a ,2 TnU
C
X(Z)

UC
Y (Z)⊗ UC

X(Y )
γ

,2

1⊗tn

LR

tn⊗1
��

UC
X(Z)

tn

LRLR

tn
����

TnU
C
Y (Z)⊗ UC

X(Y )
b ,2 TnU

C
X(Z)

where a(g ⊗ tnf) = TnU
C
X(g)(tnf) = tn(gf) and b(tng ⊗ f) = Tn(f ∗)(tng) = tn(gf). As

the diagram commutes we have Ker(1⊗tn) ⊂ Ker(tnγ) ⊃ Ker(tn⊗1); but Ker(tn⊗tn) =
Ker(1⊗ tn) + Ker(tn⊗1) by right-exactness of the tensor product, so tnγ indeed factors
through tn ⊗ tn, as desired. �

We now exhibit a first case where the category TnZ̄[C] can be described in terms of
the Passi functor Pn; we generalize this to P-algebras in the next section.

Proposition 5.22. Suppose that C is an additive category. Then for X, Y ∈ C there is
an isomorphism TnU

C
X(Y ) ∼= Pn(HomC(X, Y )) natural in Y .

Proof. The functor UC
X factors as C

HomC(X,−)
,2 Ab

VAb ,2 Set∗
Z̄[−]

,2 Ab . Thus

TnU
C
X = Tn((Z̄[−] ◦ VAb) ◦ HomC(X,−))
∼= Tn(Tn(Z̄[−] ◦ VAb) ◦ HomC(X,−)) by Lemma 2.18
∼= Tn(Z̄[−] ◦ VAb) ◦ HomC(X,−) by Proposition 2.20
∼= Pn ◦ HomC(X,−) by Proposition 5.17

�

5.3. Characterization of polynomial functors. Polynomial maps on the set of mor-
phisms allow to characterize polynomial functors on pointed categories with finite sums,
in terms of their effect on morphisms instead of their effect on objects which is used to
define polynomiality of functors. Actually Theorem 5.23 generalizes the corresponding
one for polynomial functors between abelian categories due to Eilenberg and MacLane
[9]. As a consequence of this Theorem we obtain a description of polynomial functors
on C in terms of additive functors on TnZ̄[C] extending Proposition 5.18.

Theorem 5.23. Let A be an abelian category and F : C → A be a reduced functor.
Then the following are equivalent:

(1) F is polynomial of degree ≤ n.
(2) For all X, Y ∈ C the map FXY : HomC(X, Y ) → HomA(FX, FY ), FXY (f) =

F (f), is polynomial of degree ≤ n.

If A = Ab, (1) and (2) are equivalent with

(3) Any natural transformation UC
X → F factors through tn : UC

X
,2,2 TnU

C
X , so if

C is small the map t∗n : Hom(TnU
C
X , F )→ Hom(UC

X , F ) is an isomorphism.

The proof of this theorem relies on the following lemma.
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Lemma 5.24. Let C
F ,2 A

G ,2 B be functors where A and B are abelian categories
and F is reduced. Then:

(1) If G is additive there is a natural isomorphism G(F (X1| . . . |Xm)) ∼= (G ◦
F )(X1| . . . |Xm) for m ≥ 2 and X1, . . . , Xm ∈ C.

(2) Let A′ be a full subcategory of A containing all objects F (X1| . . . |Xm), m ≥ 1
and X1, . . . , Xm ∈ C. If G is additive and faithful on A′ then F is polynomial of
degree ≤ n iff G ◦ F is.

Proof. Let X, Y ∈ C. As F is reduced the exact sequence

0 ,2 F (X|Y )
ιFX,Y ,2 F (X ∨ Y )

r̂F ,2 F (X)⊕ F (Y ) ,2 0

is split by the section (F (i2
2̂
), F (i2

1̂
)) : F (X)⊕F (Y )→ F (X ∨Y ). Whence the sequence

0 ,2 G(F (X|Y ))
G(ιFX,Y )

,2 (GF )(X ∨ Y )
G(r̂F )

,2 G(F (X)⊕ F (Y )) ,2 0

is short exat since G is additive. But the composite map

GF (X ∨ Y )
G(r̂F )

,2 G(F (X)⊕ F (Y ))
(G(r2

2̂
),G(r2

1̂
))t

∼= ,2 GF (X)⊕GF (Y )

equals r̂GF , whence G(F (X|Y )) ∼= (GF )(X|Y ).
So we can assume that (1) holds by induction for m ≥ 2. Then for X1, . . . , Xm+1 ∈ C

we have natural isomorphisms

G(F (X1| . . . |Xm+1)) ∼= G(F (X1| . . . |Xm−1|−)(Xm|Xm+1)) by Definition 2.2
∼= (G ◦ F (X1| . . . |Xm−1|−))(Xm|Xm+1) by (1) in the case m = 2
∼= (G ◦ F )(X1| . . . |Xm−1|−)(Xm|Xm+1) by induction hypothesis
∼= (G ◦ F )(X1| . . . |Xm+1)

Now (2) follows from (1) and the fact that ∀A ∈ A′, G(A) = 0 iff G(1A) = G(0A) iff
1A = 0A since G is faithful. But the last equality is equivalent to A = 0. �

Proof of Theorem 5.23. Both (1) and (2) hold iff they hold for the restriction of F to
any small full subcategory C′ closed under finite sums. So we can suppose that C is
small.

In a first step we suppose that A = Ab. We start by proving that here the state-
ments (1) and (2) are both equivalent with (3). Clearly (1) implies (3) since Tn is
the left adjoint of the forgetful functor by Proposition 2.17, so let us prove the con-

verse. The Yoneda lemma provides an epimorphism of functors α :
⊕

X∈C

⊕
x∈FX U

C
X

,2,2 F . But the restriction of α to any component UC
X factors through TnU

C
X by

hypothesis, hence α factors through G =
⊕

X∈C

⊕
x∈FX TnU

C
X . Noting that crn+1G =⊕

X∈C

⊕
x∈FX crn+1TnU

C
X = 0, we conclude that G is polynomial of degree ≤ n, and

hence so is its quotient F .
Now let us prove the equivalence of (2) and (3). Recall that the Yoneda isomorphism

YX : FX
∼=
−→ Hom(UC

X , F ) is given by the composite map

YX(x)Y : UC
X(Y )

F̂XY ,2 HomAb(FX, FY )
evx ,2 FY

for x ∈ FX and Y ∈ C, where evx is the evaluation in x. Now the map ev : HomAb(FX, FY )
→
∏

x∈FX FY such that prxev = evx is injective, whence assertion (2) is equivalent with

saying that for all X, Y ∈ C and x ∈ FX the map YX(x)Y = evxF̂XY factors through

(tn)Y : UC
X(Y ) ,2,2 TnU

C
X(Y ). But this means that for all X ∈ C and x ∈ FX the
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natural transformation YX(x) factors through tn, or equivalently, that every natural
transformation from UC

X to F factors through tn, as claimed.
Now suppose that A is an arbitrary abelian category. In order to reduce A to a small

subcategory, we consider the set of objects:

O =
⋃

m≥1

{F (X1| . . . |Xm)|X1, . . . , Xm ∈ C}

and the full subcategory A′ of A with objects in O. Consider the additive functor
G : A →

∏
A∈O Ab such that prAA ◦ G = HomA(A,−). Then G is faithful on A′ since

a non-trivial map α : A → B in A′ is detected by the functor HomA(A,−). Thus
by Lemma 5.24 (2) F is polynomial of degree ≤ n iff G ◦ F is, which means that
FA = HomA(A,−) ◦ F : C → Ab is polynomial of degree ≤ n for all A ∈ O since
cross-effects of G ◦ F are formed factorwise.

On the other hand, let X, Y ∈ C. Then the map FX,Y is polynomial of degree ≤ n iff

F̂X,Y (Ker(tn)) = 0 iff GFX,FY F̂X,Y (Ker(tn)) = 0 iff for all A ∈ O, F̂A
X,Y (Ker(tn)) = 0 iff

for all A ∈ O, the map FA
X,Y is polynomial of degree ≤ n. But by the case A = Ab, the

functor FA is polynomial of degree ≤ n iff the map FA
X,Y is polynomial of degree ≤ n

for all X, Y ∈ C, whence (1) ⇔ (2), as desired. �

Note that there exists a functor

tn : C → TnZ̄[C]

such that tn(X) = X and tn(f) = tnf . Theorem 5.23 provides the following:

Corollary 5.25. For any abelian category A the functor tn induces an isomorphism of
categories

tn
∗ : Add(TnZ̄[C],A)

∼
−→ Poln(C,A).

Remark 5.26. Remark that strict polynomial functors of degree ≤ n are defined in the
same spirit, namely to be additive functors on a category ΓnC, formed by replacing
morphism sets in an additive category C enriched in K-modules by their images under
the functor Γn (see [25]).

5.4. Description of TnZ̄[P-alg] in terms of the generalized Passi functor. We
now show that for “good” operads P and algebraic theories T, the category TnZ̄[C] for
C being the category of finitely generated free P-algebras or T-models can be described
in terms of the functors PP

n or P T
n , respectively. But this description is only available if

cartesian products of P-algebras can be decomposed in terms of P-algebra operations,
as follows.

Let m ≥ 1 and A1, . . . , Am be P-algebras. For 1 ≤ k ≤ m let i×k : Ak → A1× . . .×Am
be the canonical injection, i.e. i×1 (a) = (a, 1A2, . . . , 1Am) etc. Note that i×k is a P-algebra
map since P(0) = {0P}.

Lemma 5.27. Suppose that P(2) contains an element θ2 for which 0P is a unit, i.e.
γ2;1,0(θ2; 1P , 0P) = 1P = γ2;0,1(θ2; 0P , 1P). Then there exists an operation θm ∈ P(m)
such that (a1, . . . , am) = θm(i×1 a1, . . . , i

×
mam) for (a1, . . . , am) ∈ A1 × . . .× Am.

Proof. By induction on m; the case m = 1 is clear by taking θ1 = 1P , and for
m = 2, we indeed have (a1, a2) = (θ2(a1, 1A1), θ2(1A2 , a2)) = θ2((a1, 1A2), (1A1, a2)) =
θ2(i

×
1 a1, i

×
2 a2). Suppose that the assertion holds for m − 1, m ≥ 3. Writing I×1 : A1 ×
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. . .× Am−1 → A1 × . . .×Am for the canonical injection we have

(a1, . . . , am) = θ2(I
×
1 (a1, . . . , am−1), i

×
mam)

= θ2(I
×
1 θm−1(i

×
1 a1, . . . , i

×
m−1am−1), i

×
mam) by induction hypothesis

= θ2(θm−1I1(i
×
1 a1, . . . , i

×
m−1am−1), i

×
mam) since I×1 is a P-algebra map

= θ2(θm−1(i
×
1 a1, . . . , i

×
m−1am−1), i

×
mam)

= γ2;m−1,1(θ2, θm−1, 1P)(i×1 a1, . . . , i
×
mam).

Hence the assertion also holds for m with θm = γ2;m−1,1(θ2, θm−1, 1P). �

In the sequel, it will be convenient to replace the category Free(P) by F(P), see
Remark 1.2. The coproducts in Free(P) and in T-Mod are given by: k ∐ l = k + l.

We also need the following elementary observation.

Proposition 5.28. For m ≥ 1 the functor HomP-Alg(FP(m),−) naturally takes val-
ues in the category of P-algebras such that for a P-algebra A the natural bijection
ev : HomP-Alg(FP-Alg(m), A) → Am, ev(f) = (f(1), . . . , f(m)), is an isomorphism of
P-algebras.

Proof. Let k ≥ 0, θ ∈ P(k) and f1, . . . , fk ∈ HomP-Alg(FP-Alg(m), A). As m is a basis
of FP-Alg(m) we may define θ(f1, . . . , fk) to be the unique map such that for i ∈ m,
θ(f1, . . . , fk)(i) = θ(f1(i), . . . , fk(i)) . �

Theorem 5.29. Suppose that P(2) contains an element θ2 for which 0P is a unit, and
the same for PT. Then for m ≥ 1 there are isomorphisms of functors

TnU
P-Alg

FP (m)
∼= PP

n ◦ HomP-Alg(FP(m),−)

on P-Alg and

TnU
T-Mod
FT(m)

∼= P T
n ◦ HomT-Mod(FT(m),−)

on T-Mod.

Proof. We have

TnU
P
FP-Alg(m) = Tn

(
(Z̄[−] ◦ VP-Alg) ◦ HomP-Alg(FP(m),−)

)
by definition of U

= Tn
(
Tn(Z̄[−] ◦ VP-Alg) ◦ HomP-Alg(FP(m),−)

)
by Lemma 2.18

= Tn
(
PP
n ◦ HomP-Alg(FP(m),−)

)
by Theorem 5.16.

So it suffices to show that the composite functor PP
n ◦HomP-Alg(FP(m),−) is polynomial

of degree ≤ n. By the same argument as in the proof of Proposition 5.15 it suffices
to prove this in the case n = 1. First observe that by combining Lemma 5.27 with
Lemma 5.12 we have PP

1 (Am) =
∑m

k=1 P
P
1 (i×k )PP

1 (A). Moreover, for A1, A2 ∈ P-Alg
the following diagram commutes for l = 1, 2:

Al
il ,2

i×
k

��

A1 ∨ A2

i×
k

��

(Al)
m

(il)
m

,2 (A1 ∨ A2)
m
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Combining these observations with Proposition 5.28 and the fact that PP
1 is linear by

Lemma 5.13, we obtain

PP
1 ((A ∨ B)m) =

m∑

k=1

PP
1 (i×k )PP

1 (A1 ∨ A2)

=
m∑

k=1

PP
1 (i×k )(PP

1 (i1)P
P
1 (A1) + PP

1 (i2)P
P
1 (A2)) since PP

1 is linear

= PP
1 ((i1)

m)

(
m∑

k=1

PP
1 (i×k )PP

1 (A1)

)
+ PP

1 ((i2)
m)

(
m∑

k=1

PP
1 (i×k )PP

1 (A2)

)

= PP
1 ((i1)

m)PP
1 ((A1)

m) + PP
1 ((i2)

m)PP
1 ((A1)

m).

Thus the section (PP
1 ((i1)

m), PP
1 ((i2)

m)) : PP
1 ((A1)

m) ⊕ PP
1 ((A2)

m) → PP
1 ((A1 ∨ A2)

m)

of r̂P
P
1 is surjective, hence an isomorphism. Consequently the functor A 7→ PP

1 (Am) is
linear, as desired. The same proof works in the case of T-algebras. �

In order to compute TnZ̄[F(P)] and TnZ̄[F(T)] we need the following definition.

Definition 5.30. The category PP
n F(P) is defined as follows: the objects are the sets

m, m ≥ 0, the morphism sets are HomPP
n F(P)(k, l) = PP

n

(
HomF(P)(FP(k),FP(l)

)
), and

the composition satisfies pn(g)◦pn(f) = pn(g◦f). The latter identity means that there is
a functor pP

n
: F(P)→ PP

n F(P) which is the identity on objects and sends a morphism

f in F(P) to pn(f).
The category P T

nF(T) is defined in an analogous way.

Corollary 5.31. For P as in Theorem 5.29 the category TnZ̄[F(P)] is isomorphic to
the category PP

n F(P).
Similarly, for T as in Theorem 5.29 the category TnZ̄[F(T)] is isomorphic to the

category P T
nF(T). �

Finally we wish to compare the categories PAs
n mon and PGr

n gr. For this we still
need the well known fact that the functor g preserves finite products. To make this
precise let M1, . . . ,Mm be monoids. As g is left adjoint to U the monoid morphism
ηM := ηM1 × . . .× ηMm : M1× . . .×Mm → g(M1)× . . .×g(Mm) induces a unique group
homomorphism η̂M : g(M1 × . . .×Mm)→ g(M1)× . . .× g(Mm). Then:

Proposition 5.32. The map η̂M is an isomorphism.

Theorem 5.33. The functor g : mon → gr induces an isomorphism of preadditive
categories Png : PAs

n mon→ PGr
n gr such that Png ◦ p

As
n = pGrn ◦ g.

Proof. First of all, we may replace both of the functors PAs
n and PGr

n in the definition of
the categories PAs

n mon and PGr
n gr by Passi’s functor Pn, according to Example 5.8 and

Proposition 5.17; we denote the resulting categories by Pnmon and Pngr. In the sequel
we freely use the basic fact that by definition Pn(G) = Pn(U(G)) for any group G.

Now let k, l ≥ 1 and consider the following diagram of plain arrows where the map η̂k

renders the left-hand triangle commutative and is an isomorphism by Proposition 5.32.

FMon(l)k

η
s{nnn

nn
nn
nn
nn
n

ηk

��

mon(k, l)∼=

evlr

gk,l

��

pn ,2 Pn(mon(k, l))

Pn(gk,l)

��

g(FMon(l)k)
η̂k

#+PP
PP

PP
PP

PP
PP

g(FMon(l))k gr(k, l)∼=

evlr
pn ,2 Pn(gr(k, l))
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The left-hand square commutes since for f ∈ mon(k, l) and i ∈ k, pri◦η
k◦ev(f) = ηf(i)

while

pri ◦ ev ◦ gk,l(f) = g(f)(i)

= g(f)η(i)

= η(f(i)) by naturality of η.

It follows that the map gk,l is a morphism of monoids since ev and ηk are. Applying
the functor Pn we deduce that the dotted arrow Pn(gk,l) exists, is a homomorphism
of abelian groups and renders the right-hand square commutative. We claim that
Png : Pnmon → Pngr defined by Png(m) = m and (Png)k,l = Pn(gk,l) is an isomor-

phism of additive categories. To show that Png is a functor let k
f

,2 l
g

,2 m . Then

Pn(gk,m)(pn(g) ◦ pn(f)) = Pn(gk,m)(pn(gf)) by definition of Pnmon

= pn(gk,m(gf)) by definition of Pn(gk,m)

= pn(gl,m(g) ◦ gk,l(f)) since g is a functor

= pn(gl,m(g)) ◦ pn(gk,l(f)) by definition of Pngr

= Pn(gl,m)(pn(g)) ◦ Pn(gk,l)(pn(f))

It follows that Png is a functor since the composition in Pnmon and Pngr is bilinear
and Pn(mon(k, l)) is generated by the elements pn(f), f ∈ mon(k, l).

It remains to prove that Pn(gk,l) is an isomorphism for all k, l ≥ 1. To see this apply
the functor Pn to the left-hand triangle and square of the above diagram: as Pn(η) is
an isomorphism by Lemma 5.5 so is Pn(ηk) and hence Pn(gk,l). �

We now can state the main application of the results of this section:

Corollary 5.34. There is an isomorphism of categories Poln(gr, Ab) ∼= Poln(mon,Ab).

Proof. We have:

Poln(gr, Ab) ∼= Add(TnZ[gr], Ab) ∼= Add(PGr
n gr, Ab) ∼= Add(PAs

n mon,Ab)

∼= Add(TnZ[mon], Ab) ∼= Poln(mon,Ab)

where the first and fifth equivalences follow from Corollary 5.25, the second and fourth
equivalences follow from Corollary 5.31 and the third equivalence is given by Theorem
5.33. �

6. Application: polynomial functors from abelian groups and from

groups

In this section we apply Theorem 4.1 and results of section 5 to the cases P = Com
and P = As. In the first case we recover the results of [2].

6.1. Polynomial functors from abelian groups. Applying Theorem 4.1 for P =
Com we obtain a natural equivalence of categories

Func(Free(Com), Ab) ≃ PMack(Ω(Com), Ab).

Since Ω(Com) = Ω by Example 1.13 and Free(Com) = common by 1.3, we obtain:

(6.0.1) Func(common,Ab) ≃ PMack(Ω, Ab)

which is the Theorem 0.2 of [2]. Furthermore, we have:

Theorem 6.1 ([2] section 8). Let n ∈ N, there is an equivalence of categories

Poln(common,Ab) ≃ Poln(ab, Ab).
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This theorem is generalized to the non-commutative setting in Corollary 5.34. In the
sequel, we briefly recall the proof of Theorem 6.1 sketched in [2] in order to explain
clearly why it can’t be adapted to the non-commutative setting.

The proof sketched in [2] consists in constructing a functor:

−̃ : Poln(common,Ab)→ Poln(ab, Ab)

which induces an equivalence of categories. A crucial tool in defining −̃ is Lemma
8.1 in [2] asserting the equivalence between polynomial maps of degree ≤ n from a
commutative monoid M to an abelian group A and polynomial maps of degree ≤ n from
the commutative group gr(M) to A where gr is the group completion. (We generalize
this result to the non-commutative setting in Proposition 5.4).

For F ∈ Poln(common,Ab) the functor F̃ : ab→ Ab is obtained in the following way:

• For n ∈ ab, F̃ (n) = F (n);
• for the morphisms: the map ψ : Homab(l, m) → HomAb(F (l), F (m)) is the

unique polynomial map of degree n corresponding, by Lemma 8.1 in [2] to the
polynomial map of degree n: Homcommon(l, m)→ HomAb(F (l), F (m)) given by
the polynomiality of the functor F ;
• to prove that F̃ is a functor we have to prove the commutativity of the following

diagram:

Homab(l, m)×Homab(m, k)

φ

��

ψ×ψ
,2 HomAb(F (l), F (m))×HomAb(F (m), F (k))

φ

��

Homab(l, k)
ψ

,2 HomAb(F (l), F (k))

In this diagram the composition map φ is bilinear since we are in the commuta-
tive case. By composition, ψ◦φ is bipolynomial of degree n in each variable. This
map corresponds to the unique bipolynomial map of degree n in each variable
associated to the map sending (f, g) ∈ Homcommon(l, m)×Homcommon(m, k) to
F (g ◦ f), by Lemma 8.1 in [2]. The other composition is also bipolynomial of
degree n in each variable and corresponds, by Lemma 8.1 in [2] to the unique
bipolynomial map of degree n in each variable associated to the map sending
(f, g) to F (g) ◦ F (f). Since F is a functor we deduce that F̃ is a functor.

In the case of non-commutative monoids and non-commutative groups, the map corre-
sponding to φ in the previous diagram is no more bilinear (in fact we have f(g + g′) =
fg + fg′ but in general (f + f ′)g 6= fg + f ′g). Consequently the composition ψφ, a
priori, has no reason to be bipolynomial of degree n in each variable and we can’t prove
as above that a similar extension to gr of a functor from mon indeed defines a functor
from gr to Ab.

We deduce from (6.0.1) and Theorem 6.1:

Theorem 6.2 ([2] Theorem 6.1). Let n ∈ N, there is an equivalence of categories

Poln(ab, Ab) ≃ (PMack(Ω, Ab))≤n

where (PMack(Ω, Ab))≤n is the full subcategory of PMack(Ω, Ab) having as objects the
functors which vanish on the sets X such that | X |> n and on 0.

6.2. Polynomial functors from groups. Applying Theorem 4.1 for P = As we
obtain a natural equivalence of categories

Func(Free(As), Ab) ≃ PMack(Ω(As), Ab).
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Since Free(As) = mon by 1.3, we obtain:

Func(mon,Ab) ≃ PMack(Ω(As), Ab).

By Corollary 5.34 we obtain.

Theorem 6.3. Let n ∈ N, there is an equivalence of categories

Poln(gr, Ab) ≃ (PMack(Ω(As), Ab))≤n

where (PMack(Ω(As), Ab))≤n is the full subcategory of PMack(Ω(As), Ab) having as
objects the functors which vanish on 0 and on the sets m such that m > n.

7. Presentation of polynomial functors

The aim of this section is to give a presentation of polynomial functors from Free(P)
to Ab in terms of minimal data.

First we give the generators of the category Ω(P)2.

7.1. Generators of Ω(P)2.

7.1.1. Horizontal maps. Since (Ω(P)2)
h = Ω, the horizontal generators of Ω(P)2 are

given in [2].
For all i ∈ N such that 1 ≤ i < n we consider:

• sni : n→ n− 1 the unique surjection preserving the natural order and such that:

sni (i) = sni (i + 1) = i;

• τni : n→ n the transposition of Sn which exchanges i and i + 1.

Lemma 7.1 (Lemme 9.5 in [2]). The category Ω is generated by {sni , τ
n
i | 1 ≤ i < n}

submitted to the relations of the symmetric group Sn and to the following conditions:

(1) sn−1
i snj = sn−1

j−1s
n
i for i < j

(2) sni τ
n
i = sni

(3) τn−1
k snj =





snj τ
n
k for k < j − 1

snj−1τ
n
j τ

n
j−1 for k = j − 1

snj+1τ
n
j τ

n
j+1 for k = j

snj τ
n
k+1 for k > j.

7.1.2. Vertical maps. We have (Ω(P)2)
v = Ω(P).

For all k ∈ N such that 1 ≤ k < n and for all i ∈ N such that 1 ≤ i ≤ n − k we
consider:

• sn,n−ki : n → n− k the unique surjection preserving the natural order and such
that:

sn,n−ki (i) = sn,n−ki (i + 1) = . . . = sn,n−ki (i+ k) = i

∀ω ∈ P(k + 1) we obtain a morphism in Ω(P):

(sn,n−ki , (1
×(i−1)
P , ω, 1

×(n−k−i)
P )) : n→ n− k;

in the sequel, this morphism will be denoted by (sn,n−ki , ω) for simplicity;
• (τni , 1

×n
P ∈ P(1)×n) : n→ n where τni is the transposition of Sn which exchanges

i and i+ 1;
• (Idn, (α1, . . . , αn)) : n→ n where ∀i ∈ {1, . . . , n}, αi ∈ P(1).

Lemma 7.2. The category Ω(P) is generated by the morphisms (sn,n−ki , ω ∈ P(k+ 1)),
(τnk , 1

×n
P ∈ P(1)×n) and (Idn, (α1, . . . , αn) ∈ P(1)×n) submitted to the relations of the

symmetric group Sn and to the following conditions:

(1) (Idn, (ω1, . . . , ωn))(Idn, (α1, . . . , αn)) = (Idn, (γ(ω1, α1), . . . , γ(ωn, αn)))
(2) (Idn, (ω1, . . . , ωn))(τnk , 1

×n
P ) = (τnk , 1

×n
P )(Idn, (ω1, . . . , ωk−1, ωk+1, ωk, ωk+2, . . . , ωn));
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(3) (Idn−k, ω1, . . . , ωn−k)(s
n,n−k
i , ω) = (sn,n−ki , γ(ωi, ω))(Idn, ω1, . . . , ωi−1, 1

×(k+1)
P , ωi+1, . . . , ωn−k)

(4) (sn,n−ki , ω)(Idn, ω1, . . . , ωn)

= (Idn−k, ω1, . . . , ωi−1, 1P , ωi+k+1, . . . , ωn)(sn,n−ki , γ(ω;ωi, ωi+1, . . . , ωi+k))

(5) (sn−k,n−k−pi , ω ∈ P(p + 1))(sn,n−kj , α ∈ P(k + 1))

=





(sn,n−k−pi , γ(ω; 1
×(j−i)
P , α, 1

×(p−j+i)
P ) ∈ P(k + p+ 1)) for i ≤ j ≤ i + p

(sn−p,n−k−pj , α)(sn,n−pi+k , ω) for j < i

(sn−p,n−k−pj−p , α)(sn,n−pi , ω) for j > i+ p

(6) (τn−pk , 1
×(n−p)
P ∈ P(1)×n−p)(sn,n−pj , α ∈ P(p + 1))

=





(sn,n−pj , α)(τnk , 1
×n
P ) for k < j − 1

(sn,n−pj−1 , α)(τnj+p−1, 1
×n
P )(τnj+p−2, 1

×n
P ) . . . (τnj , 1

×n
P )(τnj−1, 1

×n
P ) for k = j − 1

(sn,n−pj+1 , α)(τnj , 1
×n
P )(τnj+1, 1

×n
P ) . . . (τnj+p−1, 1

×n
P )(τnj+p, 1

×n
P ) for k = j

(sn,n−pj , α)(τnk+p, 1
×n
P ) for k > j.

(7) (sn,n−pj , α ∈ P(p+ 1))(τnk , 1
×n
P ∈ P(1)×n)

=

{
(sn,n−pj , α.τk−j+1) for j ≤ k ≤ j + p− 1

(τnk−p, 1
×n
P )(sn,n−pj , α) for k > j + p or k < j − 1.

Remark: For k = j + p and k = j − 1 there are no relation.

7.1.3. The role of the generators. The following proposition allows us to reduce the
number of conditions to be verified to prove that a Janus functor is a pseudo-Mackey
functor.

Proposition 7.3. , Let M be a Janus functor; M is a pseudo-Mackey functor iff
conditions (1) and (2) in Definition 1.28 are satisfied for horizontal (resp. vertical)
generators h (resp. (v, ωv)) of Ω(P)2.

The proof of this proposition relies on the following lemma which corresponds to
Lemma 9.2 in [2].

Lemma 7.4. Let M = (M∗,M
∗) : Ω(P)2 → Ab be a Janus functor. For two squares in

Ω(P)2

A

(φ3,ωφ3 )
��
�

�

�

g1 ,2 B

(φ2,ωφ2 )
��
�

�

�

g2 ,2 C

(φ1,ωφ1 )
��
�

�

�

D
f1

,2 E
f2

,2 F

if

M∗(φ1, ω
φ1)M∗(f2) =

∑

B′∈Adm(B)

M∗(g2B′)M∗((φ2, ω
φ2)B′)

and

M∗(φ2, ω
φ2)M∗(f1) =

∑

A′∈Adm(A)

M∗(g1A′)M∗((φ3, ω
φ3)A′)

then

M∗(φ1, ω
φ1)M∗(f2 ◦ f1) =

∑

A′∈Adm(A)

M∗((g2 ◦ g1)A′)M
∗((φ3, ω

φ3)A′).
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For two squares in Ω(P)2

A

(ψ1,ω
ψ1)

��
�

�

�

g
,2 B

(φ1,ωφ1 )
��
�

�

�

D
f

,2

(ψ2,ω
ψ2)

��
�

�

�
E

(φ2,ωφ2 )
��
�

�

�

G
e

,2 H

if

M∗(φ1, ω
φ1)M∗(f) =

∑

A′∈Adm(A)

M∗(gA′)M∗((ψ1, ω
ψ1)A′)

and

M∗(φ2, ω
φ2)M∗(e) =

∑

D′∈Adm(D)

M∗(fD′)M∗((ψ2, ω
ψ2)D′)

then

M∗((φ2, ω
φ2)(φ1, ω

φ1))M∗(e) =
∑

A′∈Adm(A)

M∗(gA′)M∗(((ψ2, ω
ψ2)(ψ1, ω

ψ1))A′).

Proof. [2] We have:

M∗(φ1, ω
φ1)M∗(f2◦f1) =

(
M∗(φ1, ω

φ1)M∗(f2)
)
M∗(f1) =

∑

B′∈Adm(B)

M∗(g2B′)M∗((φ2, ω
φ2)B′)M∗(f1).

Let

A′

(φ3,ωφ3 )A′

��
�

�

�

g1A′
,2 B′

(φ2,ωφ2 )B′

��
�

�

�

D
f1

,2 E

be the unique square of Ω(P)2 associated to (f1, (φ2, ω
φ2)B′) we have:

∑

B′∈Adm(B)

M∗(g2B′)M∗((φ2, ω
φ2)B′)M∗(f1) =

∑

B′∈Adm(B)

M∗(g2B′)
∑

A′′∈Adm(A′)

M∗(g1A′′)M∗(φ3, ω
φ3)A′′

=
∑

B′∈Adm(B)

∑

A′′∈Adm(A′)

M∗(g2B′g1A′′)M∗((φ3, ω
φ3)A′′)

=
∑

B′∈Adm(B)

∑

A′′∈Adm(A′)

M∗((g2 ◦ g1)A′′)M∗((φ3, ω
φ3)A′′)

=
∑

A′′∈Adm(A)

M∗((g2 ◦ g1)A′′)M∗((φ3, ω
φ3)A′′)

The proof of the second part of the lemma is similar. �

Proof of Proposition 7.3. The proposition is a direct consequence of the previous lemma
applied to a decomposition of horizontal and vertical maps into a product of the gener-
ators. �
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7.2. Presentation of polynomial functors. Let (M∗,M
∗) be a Janus functor Ω(P)2 →

Ab. We put:

Iα1,...,αn
n := M∗(Idn, (α1, . . . , αn)) : M(n)→M(n)

T nk := M∗(τ
n
k ) : M(n)→M(n)

P n
i := M∗(s

n
i ) : M(n)→M(n− 1)

H
(n,n−p) ω
i := M∗(sn,n−pi , ω) : M(n− p)→M(n) for ω ∈ P(p + 1).

Proposition 7.5. Let M = (M∗,M
∗) be a Janus functor Ω(P)2 → Ab, M is a pseudo-

Mackey functor iff the following relations are satisfied:

T ni = (M∗(τni , 1
×n
P ))−1 for 1 ≤ i ≤ n− 1;(7.5.1)

I
α1,...αn−1

n−1 P n
i = P n

i I
α1,...,αi−1,αi,αi,...,αn
n for 1 ≤ i ≤ n;(7.5.2)

H
(n+k−1,n−1) α
j P n

i = P n+k
i H

(n+k,n) α
j+1(7.5.3)

for 1 ≤ i < j < n, 1 ≤ k < n and α ∈ P(k + 1);

H
(n+k−1,n−1) α
j P n

i = P n+k
k+i H

(n+k,n) α
j(7.5.4)

for 1 ≤ j < i < n, 1 ≤ k < n and α ∈ P(k + 1);

(7.5.5) H
(n+k−1,n−1) α
i P n

i = P n+k
i+k P

n+k+1
i+k−1 . . . P n+2k

i M∗(σ)H
(n+2k,n+k) α
i H

(n+k,n) α
i+1

+

k+1∑

β=1

∑

i≤u1<...<uβ≤i+k

P n+k
i+k . . . P̂uβ . . . P̂u1 . . . P

n+2k−β
i

∑

ǫ1,...,ǫβ∈J

M∗(σu1+ǫ1(k+1),...,uβ+ǫβ(k+1))

H
(n+2k−β,n+k−ǫ1−...−ǫβ) γ(α;ω1,...,ωk+1)
i H

(n+k−ǫ1−...−ǫβ ,n) γ(α;ω
′
1,...,ω

′
k+1)

i+1

for 1 ≤ i < n, 1 ≤ k ≤ n and α ∈ P(k + 1);

where J = {(ǫ1, . . . , ǫβ) ∈ {0, 1}β | β − k ≤ ǫ1 + . . .+ ǫβ ≤ k}, for l ∈ {1, . . . , k + 1}:

ωl =

{
0P for l ∈ {(1 + ǫ1)(u1 − i + 1), . . . , (1 + ǫβ)(uβ − i + 1)} \ {0}
1P otherwise

where x is the class modulo 2 of x and

ω′
l =

{
0P for l ∈ {ǫ1(u1 − i+ 1), . . . , ǫβ(uβ − i + 1)} \ {0}
1P otherwise

σ is the permutation of n+ 2k letters such that Supp(σ) = {i + 1, . . . , i + 2k} and for
I = {i, i+ 1, . . . , i+ 2k, i+ 2k + 1} we have:

σ|I =

(
i i + 1 i + 2 . . . i+ k i + k + 1 i+ k + 2 . . . i+ 2k + 1
i i + 2 i + 4 . . . i + 2k i+ 1 i+ 3 . . . i+ 2k + 1

)
.

and σu1+ǫ1(k+1),...,uβ+ǫβ(k+1) is the permutation obtained from σ removing the columns(
u1 + ǫ1(k + 1)

. . .

) (
u2 + ǫ2(k + 1)

. . .

)
. . .

(
uβ + ǫβ(k + 1)

. . .

)
and reindexing in order

to have a permutation of n+ 2k − β.

Remark 7.6. In the last family of equations we take the convention that

H(m,m) ω
p = I

1×p−1
P , ω, 1×m−p

P
m for 1 ≤ p ≤ m and ω ∈ P(1).
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Remark 7.7. The last family of equations which decomposes H
(n+k−1,n−1) α
i P n

i as a sum
of (3k+1 − 2)-terms is the generalization of the equation (M4) in Proposition 9.6 in [2],
which decomposes Hn

i P
n
i as a sum of 7-terms. In fact, in [2], we have k = 1. It is a

consequence of the fact that Com is an operad generated by Com(2) which is a situation
studied in the next section.

Proof of Proposition 7.5. According Proposition 7.3, it is sufficient to verify conditions
(1) and (2) in Definition 1.28 on horizontal and vertical generators.

According Lemma 1.20, double isomorphisms in Ω(P)2 are pairs (f, (f, 1×n
P )) where

f is an isomorphism of n. Condition (1) in Definition 1.28 applied to the double iso-
morphism (τni , (τ

n
i , 1

×n
P )) becomes

(7.7.1) T ni = (M∗(τni , 1
×n
P ))−1.

Condition (1) in Definition 1.28 applied to the double isomorphism (Idn, (Idn, 1
×n
P ))

gives the condition:

I1P ,...,1Pn = IdM(n)

which is a consequence of (7.7.1) since:

I1P ,...,1Pn = M∗(Idn, 1
×n
P ) = M∗(τni , 1

×n
P )M∗(τni , 1

×n
P ) = M∗(τ

n
i )−1M∗(τ

n
i )−1 = (M∗(Idn))−1 = IdM(n).

For condition (2) in Definition 1.28, we consider the pairs (h, v) of horizontal and
vertical generators of Ω(P)2 having the same target and the corresponding unique square
in Ω(P)2.

• Let (f, ωf) : n+ p → n (for p ∈ N) be a vertical generator of Ω(P)2. The pair

(h, v) = (τni , (f, ω
f)) corresponds to the unique square in Ω(P)2:

n + p

(f̃ ,ωf̃ )
��
�

�

�

g
,2 n+ p

(f,ωf )
��
�

�

�

n
τni

,2 n

where g is a bijection. This square is equivalent, up to double isomorphisms, to
the square:

D =

n + p

(f̃ ,ωf̃ )◦(g−1,1
×(n+p)
P )

��
�

�

�

Id ,2 n+ p

(τni ,1
×n
P )◦(f,ωf )

��
�

�

�

n
Id

,2 n.

We have Adm(D) = {n + p}. So, in this case condition (2) in Definition 1.28
becomes:

(7.7.2) M∗
(
(τni , 1

×n
P ) ◦ (f, ωf)

)
= M∗

(
(f̃ , ωf̃) ◦ (g−1, 1

×(n+p)
P )

)
.

By Lemma 1.21 the square associated to the pair (Id, (τni , 1
×n
P ) ◦ (f, ωf)) is

unique up to double isomorphism so we have the following equality of vertical
maps in Ω(P)2:

(f̃ , ωf̃) ◦ (g−1, 1
×(n+p)
P ) = (τni , 1

×n
P ) ◦ (f, ωf).

We deduce that relation (7.7.2) is a consequence of the functoriality of M∗.
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• The pair (h, v) =
(
sni , (Idn−1, (α1, . . . , αn−1))

)
corresponds to the unique square

in (Ω(P))2:

D =

n
(
Idn,(α1,...,αi−1,αi,αi,αi+1,...,αn−1)

)
��
�

�

�

sni ,2 n− 1
(
Idn−1,(α1,...,αi−1,αi,αi+1,...,αn−1)

)
��
�

�

�

n
sni

,2 n− 1

We have Adm(D) = {n}. So, in this case condition (2) in Definition 1.28
becomes:

I
α1,...αn−1

n−1 P n
i = P n

i I
α1,...,αi−1,αi,αi,...,αn
n

• The pair (h, v) =
(
sni , (τ

n−1
j , 1P

n)
)

corresponds to the unique square in (Ω(P))2:

n

(g,1×nP )

��
�

�

�

k ,2 n− 1

(τn−1
j ,1P

n)

��
�

�

�

n
sni

,2 n− 1

where g is a bijection. This square is equivalent, up to double isomorphisms, to
the square:

D =

n

(Id,1×nP )

��
�

�

�

k◦g−1

,2 n− 1

(Id,1P
n)

��
�

�

�

n
τn−1
j ◦sni

,2 n− 1.

Using a similar argument that for the pair (τ in, (f, ω
f)) we deduce that the rela-

tion obtained from this diagram is a consequence of the functoriality of M∗.
• For i < j, the pair (h, v) = (sni , (s

n+k−1,n−1
j , α)) corresponds to the unique square

in (Ω(P))2:

D =

n + k

(sn+k,nj+1 ,α)

��
�

�

�

sn+ki ,2 n+ k − 1

(sn+k−1,n−1
j ,α)

��
�

�

�

n
sni

,2 n− 1

We have Adm(D) = {n+ k}. So, in this case condition (2) in Definition 1.28
becomes:

H
(n+k−1,n−1) α
j P n

i = P n+k
i H

(n+k,n) α
j+1

• For i > j, the pair (h, v) = (sni , (s
n+k−1,n−1
j , α)) corresponds to the unique square

in (Ω(P))2:

D =

n + k

(sn+k,nj ,α)

��
�

�

�

sn+kk+i ,2 n+ k − 1

(sn+k−1,n−1
j ,α)

��
�

�

�

n
sni

,2 n− 1

We have Adm(D) = {n+ k}. So, in this case condition (2) in Definition 1.28
becomes:

H
(n+k−1,n−1) α
j P n

i = P n+k
k+i H

(n+k,n) α
j
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• For i = j, the pair (h, v) = (sni , (s
n+k−1,n−1
i , α)) corresponds to the unique square

in (Ω(P))2:

D =

n+ 2k

p1

��
�

�

�

p2 ,2 n+ k − 1

(sn+k−1,n−1
i ,α)

��
�

�

�

n
sni

,2 n− 1

where
p1 = (sn+k,ni+1 , α)(sn+2k,n+k

i , α)

and

p2 = sn+k,n+k−1
i+k sn+k−1,n+k−2

i+k−1 . . . sn+2k−1,n+2k−2
i+1 sn+2k,n+2k−1

i σ

where σ is the permutation of n+2k letters such that Supp(σ) = {i+1, . . . , i+2k}
and for I = {i, i+ 1, . . . , i+ 2k, i+ 2k + 1} we have:

σ|I =

(
i i + 1 i + 2 . . . i+ k i + k + 1 i+ k + 2 . . . i+ 2k + 1
i i + 2 i + 4 . . . i + 2k i+ 1 i+ 3 . . . i+ 2k + 1

)
.

In the square D we have:

n + 2k ≃ {(1, 1), . . . , (i−1, i−1), (i, i), (i, i+1), . . . , (i, i+k), (i+1, i), (i+1, i+1), . . . , (i+1, i+k),

(i+ 2, i+ k + 1), (i+ 3, i+ k + 2), . . . , (n, n+ k − 1)}

so we have Card(Adm(D)) = Σk+1
l=0

(
k+1
l

)
2k+1−l − 2 = 3k+1 − 2.

There are 2(k+1) D−admissible subsets of n+ 2k having n+2k−1 elements
which are:

A{i+p} = n+ 2k − {i+ p} for p ∈ {0, . . . , 2k + 1}.

For p ∈ {0, . . . , k}, we have:

p1|A{i+p} = (sn+k,ni+1 , α)(sn+2k−1,n+k
i , γ(α; 1×p

P , 0P , 1
×k−p
P ))

with the convention that (sm,mi , ω) = (Idm, (1
×i−1
P , ω, 1×m−i

P )) for 1 ≤ i < m and
ω ∈ P(1) and

p2|A{i+p} = sn+k,n+k−1
i+k . . . s

n+2k−(p+1),n+2k−(p+2)
i+p+1 s

n+2k−p,n+2k−(p+1)
i+p−1 . . . sn+2k,n+2k−1

i σp

where σp is the permutation of n+ 2k − 1 letters obtained from σ removing the

columns

(
i+ p
. . .

)
in σ|I and reindexing.

For p ∈ {k + 1, . . . , 2k + 1}, we have:

p1|A{i+p} = (sn+k−1,n
i+1 , γ(α; 1

×p−(k+1)
P , 0P , 1

×2k+1−p
P ))(sn+2k−1,n+k−1

i , α)

with the convention that (sm,mi+1 , ω) = (Idm, (1
×i
P , ω, 1

×m−i−1
P )) for 1 ≤ i < m and

ω ∈ P(1) and

p2|A{i+p}1 = sn+k,n+k−1
i+k . . . s

n+2k−(p+1),n+2k−(p+2)
i+p+1 s

n+2k−p,n+2k−(p+1)
i+p−1 . . . sn+2k,n+2k−1

i σp

where σp is the permutation of n+ 2k− 1 letters obtained from σ removing the

column

(
i + p
. . .

)
in σ|I and reindexing.

More generally, for β ∈ {1, . . . , k+ 1}, {u1, . . . , uβ} ⊂ {i, . . . , i+ k} such that
i ≤ u1 < . . . < uβ ≤ i + k and ι ∈ J = {(ǫ1, . . . , ǫβ) ∈ {0, 1}×β | β − k ≤
ǫ1 + . . .+ ǫβ ≤ k} we consider the set:

U ι = {(i + ǫ1, u1), (i+ ǫ2, u2), . . . , (i+ ǫβ , uβ)}.
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Therefore, for β ≤ k (resp. β = k + 1) there are
(
k+1
β

)
2β (resp. 2k+1 − 2)

D-admissible subsets of n + 2k having n+ 2k − β elements which are

AU
ι

= n+ 2k − U ι.

We have:

p1|AUι = (s
n+k−Σβi=1ǫi,n

i+1 , γ(α;ω′
1, . . . , ω

′
k+1))(s

n+2k−β,n+k−Σβi=1ǫi
i , γ(α;ω1, . . . , ωk+1))

with the convention that (sm,mj , ω) = (Idm, (1
×j−1
P , ω, 1×m−j

P )) for 1 ≤ j ≤ m and
ω ∈ P(1) and

p2|AUι = sn+k,n+k−1
i+k . . . ˆsuβ . . . ŝu1 . . . s

n+2k,n+2k−1
i σu1+ǫ1(k+1),...,uβ+ǫβ(k+1)

where, for l ∈ {1, . . . , k + 1},

ωl =

{
0P for l ∈ {(1 + ǫ1)(u1 − i+ 1), . . . , (1 + ǫβ)(uβ − i + 1)} \ {0}
1P otherwise

where x is the class modulo 2 of x and

ω′
l =

{
0P for l ∈ {ǫ1(u1 − i + 1), . . . , ǫβ(uβ − i+ 1)} \ {0}
1P otherwise

and σu1+ǫ1(k+1),...,uβ+ǫβ(k+1) is the permutation of n+2k−β letters obtained from

σ removing the columns

(
u1 + ǫ1(k + 1)

. . .

)(
u2 + ǫ2(k + 1)

. . .

)
. . .

(
uβ + ǫβ(k + 1)

. . .

)

and reindexing in order to have a permutation of n+ 2k − β. So, in this case
condition (2) in Definition 1.28 becomes:

(7.7.3) H
(n+k−1,n−1) α
i P n

i = P n+k
i+k P

n+k+1
i+k−1 . . . P n+2k

i M∗(σ)H
(n+2k,n+k) α
i H

(n+k,n) α
i+1

+

k+1∑

β=1

∑

i≤u1<...<uβ≤i+k

P n+k
i+k . . . P̂uβ . . . P̂u1 . . . P

n+2k−β
i

∑

ǫ1,...,ǫβ∈J

M∗(σu1+ǫ1(k+1),...,uβ+ǫβ(k+1))

H
(n+2k−β,n+k−ǫ1−...−ǫβ) γ(α;ω1,...,ωk+1)
i H

(n+k−ǫ1−...−ǫβ ,n) γ(α;ω
′
1,...,ω

′
k+1)

i+1

�

7.3. Examples. In this section we present several applications of Proposition 7.5. We
give the presentation of polynomial functors from P − alg for an operad P generated
by binary operations and the presentation of linear and quadratic functors.

7.3.1. Presentation of polynomial functors from P − alg for an operad P generated by
binary operations. We suppose, in this section, that P is generated by binary operations.
For example, Com and As are such operads. In this case, we have to consider less
generators for Ω(P). For all i ∈ N such that 1 ≤ i ≤ n− 1 we consider:

• (Idn, α1, . . . , αn) : n→ n where ∀i ∈ {1, . . . , n}, αi ∈ P(1).
• sn,n−1

i : n → n− 1 the unique surjection preserving the natural order and such
that:

sn,n−1
i (i) = sn,n−1

i (i+ 1) = i

∀ω ∈ P(2) we obtain a morphism in Ω(P):

(sn,n−1
i , ω) : n→ n− 1;

• (τni , 1
×n
P ∈ P(1)×n) : n→ n where τni is the transposition of Sn which exchanges

i and i+ 1.

By an easy computation we obtain the following simplification of Proposition 7.5:
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Proposition 7.8. Let P be an operad generated by binary operations andM = (M∗,M
∗)

be a Janus functor Ω(P)2 → Ab, M is a pseudo-Mackey functor iff the following rela-
tions are satisfied:

T ni = (M∗(τni , 1
×n
P ))−1 for 1 ≤ i ≤ n;(7.8.1)

I
α1,...αn−1

n−1 P n
i = P n

i I
α1,...,αi−1,αi,αi,...,αn
n for 1 ≤ i ≤ n;(7.8.2)

H
(n,n−1) α
j P n

i = P n+1
i H

(n+1,n) α
j+1 for 1 ≤ i < j < n and α ∈ P(2);(7.8.3)

H
(n,n−1) α
j P n

i = P n+1
1+i H

(n+1,n) α
j for 1 ≤ j < i < n and α ∈ P(2);(7.8.4)

(7.8.5) H
(n,n−1) α
i P n

i = P n+1
i+1 P

n+2
i T n+2

i+1 H
(n+2,n+1) α
i H

(n+1,n) α
i+1 + P n+1

i+1 T
n+1
i H

(n+1,n) α
i+1

+P n+1
i+1 H

(n+1,n) α
i + P n+1

i H
(n+1,n) α
i+1 + P n+1

i T n+1
i+1 H

(n+1,n) α
i

+I
1
×(i−1)
P ,γ(α;1P ,0P ),γ(α;0P ,1P ),1

×(n−i−1)
P

n + T ni I
1
×(i−1)
P ,γ(α;0P ,1P ),γ(α;1P ,0P ),1

×(n−i−1)
P

n

for 1 ≤ i < n and α ∈ P(2).

Remark 7.9. In this case, the last family of equations decomposes H
(n,n−1)α
i P n

i as a sum
of 7 terms. For P = Com, since Com(1) = Com(2) = 1 we recover the relation given in
[2]. For P = As, since As(1) = 1 the last family of equations becomes:

(7.9.1) H
(n,n−1) α
i P n

i = P n+1
i+1 P

n+2
i T n+2

i+1 H
(n+2,n+1) α
i H

(n+1,n) α
i+1 + P n+1

i+1 T
n+1
i H

(n+1,n) α
i+1

+P n+1
i+1 H

(n+1,n) α
i + P n+1

i H
(n+1,n) α
i+1 + P n+1

i T n+1
i+1 H

(n+1,n) α
i + IdM(n) + T ni

for 1 ≤ i < n and α ∈ As(2) = S2.

7.3.2. Presentation of linear functors.

Proposition 7.10. There is an equivalence of categories between Lin(Free(P), Ab) and
the category of diagrams:

P(1)×Me

Ie
��

Me

where

• Me is an abelian group;
• ∀ω ∈ P(1); Iωe := Ie(ω,−) : Me → Me is a group morphism;

satisfying the following relations ∀ω ∈ P(1), ∀ω′ ∈ P(1)

(1) I1Pe = IdMe;

(2) Iω
′

e I
ω
e = I

γ(ω;ω′)
e .

Proof. According Corollary 4.9, Lin(Free(P), Ab) is naturally equivalent to the cate-
gory of pseudo-Mackey functors from Ω(P) to Ab which have zero values on 0 and on sets
of cardinality > 1. So, it is sufficient to consider horizontal generator: Id : 1 → 1 and
vertical generators (Id, ω ∈ P(1)) : 1→ 1 in Ω(P)2. Let M = (M∗,M

∗) : Ω(P)2 → Ab
be a Janus functor which has zero values on 0 and on sets of cardinality > 1. In the
statement we replace M(1) by Me and Iω1 by Iωe for ω ∈ P(1). M is a Janus functor iff
we have the following relations:

M∗(Id, ω′)M∗(Id, ω) = M∗((Id, ω)(Id, ω′)) i.e. Iω
′

e I
ω
e = Iγ(ω

′,ω);



POLYNOMIAL FUNCTORS FROM ALGEBRAS OVER A SET-OPERAD 55

M is a pseudo-Mackey functor iff

M∗(Id, 1P) = Id i.e. I1Pe = IdMe.

(the other conditions obtained in Proposition 7.5 are empty). �

Remark 7.11. Using the description of linear functors recalled in [14] we have: Lin(Free(P), Ab) ≃
T1UFP (1)(FP(1))-mod ≃ Z[P(1)]-mod where UFP (1) is the reduced projective functor as-
sociated to FP(1). We verify easily that this description coincide with that given in the
last proposition.

7.3.3. Presentation of quadratic functors.

Proposition 7.12. There is an equivalence of categories between Quad(Free(P), Ab)
and the category of diagrams:

P(1)× P(1)×Mee

Iee
��

P(1)×Me

Ie
��

Mee

T
'.

P
,2 Me

P(2)×Me

H

dlRRRRRRRRRRRRRRRR

where

• Me and Mee are abelian groups;
• ∀ω ∈ P(1); Iωe := Ie(ω,−) : Me → Me is a group morphism;
• ∀ω ∈ P(1), ω′ ∈ P(1); Iω,ω

′

ee := Iee(ω, ω
′,−) : Mee →Mee is a group morphism;

• ∀ω ∈ P(2); Hω := H(ω,−) : Me →Mee is a group morphism;
• P and T are group morphisms;

satisfying the following relations ∀(ω, ω′, ω1, ω
′
1) ∈ P(1)×4, ∀α ∈ P(2), ∀α′ ∈ P(2)

(1) T.T = IdMee;
(2) PT = P ;

(3) Iω
′

e I
ω
e = I

γ(ω;ω′)
e ;

(4) Iω,ω
′

ee I
ω1,ω

′
1

ee = I
γ(ω1,ω),γ(ω′

1,ω
′)

ee ;
(5) Iω,ω

′

ee T = TIω
′,ω

ee ;
(6) HαIωe = Hγ(ω,α)

(7) Iω,ω
′

ee Hα = Hγ(α;ω,ω′);
(8) THα = Hα.τ where τ is the transposition of S2 exchanging 1 and 2;
(9) T = (M∗(τ, (1P , 1P)))−1

(10) Iωe P = PIω,ωee

(11) HαP = I
γ(α;1P ,0P ),γ(α;0P ,1P )
ee + TI

γ(α;0P ,1P ),γ(α;1P ,0P )
ee .

Proof. According Corollary 4.9, Quad(Free(P), Ab) is naturally equivalent to the cat-
egory of pseudo-Mackey functors from Ω(P) to Ab which have zero values on 0 and on
sets of cardinality > 2. So, it is sufficient to consider horizontal generators:

s21 : 2→ 1

τ 21 : 2→ 2

and vertical generators
(Id, ω ∈ P(1)) : 1→ 1

(Id, (ω, ω′) ∈ P(1)×2) : 2→ 2

(s2,11 , ω ∈ P(2)) : 2→ 1

(τ 21 , (1P , 1P)) : 2→ 2
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in Ω(P)2. Let M = (M∗,M
∗) : Ω(P)2 → Ab be a Janus functor which has zero values

on 0 and on sets of cardinality > 2. In the statement we replace M(1) by Me, M(2) by

Mee, I
ω
1 by Iωe for ω ∈ P(1), Iω,ω

′

2 by Iω,ω
′

ee for ω ∈ P(1) and ω′ ∈ P(1), H
(2,1)ω
1 by Hω

for ω ∈ P(2), P 2
1 by P and T 2

1 by T .
The conditions given in Lemma 7.1 imply that M∗ is a covariant functor iff conditions

(1) and (2) in the statement are satisfied.
The conditions given in Lemma 7.2 imply that M∗ is a contravariant functor iff

conditions (3),(4), (5), (6), (7) and (8) in the statement are satisfied.
The conditions given in Proposition 7.5 imply that M is a pseudo-Mackey functor iff

conditions (9), (10) and (11) are satisfied. �

In the particular case P(1) = {1P} we obtain the following simplification of the
previous proposition:

Corollary 7.13. For P an unitary set operad such that P(1) = {1P}, there is an
equivalence of categories between Quad(Free(P), Ab) and the category of diagrams:

Mee
P

,2 Me

P(2)×Me

H

`iKKKKKKKKKK

where

• Me and Mee are abelian groups;
• ∀ω ∈ P(2); Hω := H(ω,−) : Me →Mee is a group morphism;
• P is a group morphism;

satisfying the following relations ∀α ∈ P(2), ∀α′ ∈ P(2)

(1) PHαP = 2P ;
(2) HαPHα′

= Hα′
+Hα′.τ where τ is the transposition of S2 exchanging 1 and 2.

Proof. If P(1) = {1P} the conditions (3), (4), (5), (6), (7) and (10) of the previous
proposition are trivial.

Condition (11) becomes T = HαP − IdMee. So, we deduce that T is determined by
the other data.

Condition (2) becomes PHαP = 2P ; condition (8) becomes HαPHα′
= Hα′

+ Hα′.τ

where τ is the transposition of S2 exchanging 1 and 2 and condition (1) is a consequence
of condition (2). �

For P = Com, since Com(2) = 1 we recover the equivalence between Quad(ab, Ab)
and quadratic Z-module obtained by Baues in [1]. Recall that a quadratic Z-module is
a diagram of abelian groups

Me
H
−→Mee

P
−→Me

satisfying PHP = 2P and HPH = 2H .
For P = As, since As(2) = S2 = {1, τ}, we have two group morphisms from Me to

Mee: H
1 and Hτ . Relation (1) in the corollary becomes:

(1-1) PH1P = 2P

(1-2) PHτP = 2P

and relation (2) becomes:

(2-1) H1PH1 = H1 +Hτ

(2-2) HτPH1 = H1 +Hτ

(2-3) H1PHτ = H1 +Hτ
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(2-4) HτPHτ = H1 +Hτ .

We deduce from relation (2-1) that Hτ is determined by the other data. Then conditions
(1-2), (2-2), (2-3) and (2-4) are consequences of relation (1-1)

So, we recover the equivalence between Quad(gr,Ab) and abelian square groups ob-
tained by Baues and Pirashvili in [3]. Recall that an abelian square group is a diagram
of abelian groups

Me
H
−→Mee

P
−→Me

satisfying PHP = 2P .
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16. Igor Kř́ıž and J. P. May, Operads, algebras, modules and motives, Astérisque (1995), no. 233,
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27. I. Schur, Über eine Klasse von Matrizen, die sich einer gegebenen Matrix zuordnen lassen., Ph.D.
thesis, Diss. Berlin. 76 S , 1901.
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