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Polynomial-time sortable stacks of burnt pancakes

Anthony Labarre, Josef Cibulka!

Department of Applied Mathematics, Charles University, Malostranské nam. 25, 118 00
Prague, Czech Republic.

Abstract

Pancake flipping, a famous open problem in computer science, can be formalised
as the problem of sorting a permutation of positive integers using as few prefix
reversals as possible. In that context, a prefix reversal of length k reverses the
order of the first k£ elements of the permutation. The burnt variant of pancake
flipping involves permutations of signed integers, and reversals in that case not
only reverse the order of elements but also invert their signs. Although three
decades have now passed since the first works on these problems, neither their
computational complexity nor the maximal number of prefix reversals needed
to sort a permutation is yet known. In this work, we prove a new lower bound
for sorting burnt pancakes, and show that an important class of permutations,
known as “simple permutations”, can be optimally sorted in polynomial time.

Key words:  Algorithms, Combinatorial problems, Interconnection networks,

Sorting, Permutations

1. Introduction

The pancake flipping problem [1] consists in finding the minimum number of
flips required to rearrange a stack of pancakes that all come in different sizes so
that the smallest ends up on top and the largest lies at the bottom. The problem
can be more formally stated as follows: given an ordering of {1,2,...,n}, what

is the minimum number of prefiz reversals required to sort these numbers in
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increasing order (where a prefix reversal of length k reverses the order of the
first k elements)? A variant of the problem, known as the burnt pancake flipping
problem, is concerned with rearranging stacks of pancakes that are burnt on one
side, in such a way that the pancakes not only end up rearranged in increasing
sizes but also with their burnt side down. Again, a more formal description of
the problem is to sort orderings of {£1,42,...,£n} using as few prefix signed
reversals (which not only reverse the order of the first k elements but also invert
their signs) as possible.

Gates and Papadimitriou [2] and Gyori and Turén [3] proved the first re-
sults on pancake flipping three decades ago, focusing on the number of prefix
reversals needed in the worst case (i.e. the maximum number of steps required
to sort a stack of size n), and a tremendous amount of work (see next paragraph
for more details) has since been devoted to the study of both variants of the
problem. However, the computational complexity of the sorting problems or
merely computing the minimum number of required steps remains open, as well
as that of determining the maximum number of prefix (signed) reversals needed
to sort a permutation. The best known approximation ratio is 2, both in the
unsigned case (see Fischer and Ginzinger [4]) and in the signed case (see Cohen
and Blum [5], according to Fischer and Ginzinger [4]). A very interesting and
original solution to the burnt pancake flipping problem was recently proposed
by Haynes et al. [6], who use bacteria to represent permutations, which even-
tually become antibiotic resistant when they are sorted. However, their model
obviously does not yield any combinatorial or algorithmic insight on pancake
flipping, and seems therefore of little theoretical help.

Although pancake flipping was introduced as a game, it is worth noting that
it has since found applications in parallel computing, leading to the famous
“(burnt) pancake network” topology which is the Cayley graph of a permuta-
tion group generated by prefix (signed) reversals (see Lakshmivarahan et al. [7]
for a thorough survey on the use of Cayley graphs as interconnection networks).
Another major application of pancake flipping, which has received considerable

attention, is in the field of computational biology, where permutations model



genomes and reversals correspond to actual mutations by which those genomes
evolve. In that setting, reversals are no longer restricted to the prefix of the
permutation: they can act on any of its segments. Interestingly enough, more
is known about these seemingly more challenging versions than on the original
pancake flipping problems: Caprara [8] proved that sorting unsigned permuta-
tions by arbitrary reversals was NP-hard, but quite surprisingly, Hannenhalli
and Pevzner [9] proved that the signed version of this problem could be solved
in polynomial time. For an extensive survey of the mathematical aspects of
genome comparisons by means of large-scale mutations, known as genome rear-
rangements, see for instance Fertin et al. [10].

In this paper, we use ideas introduced in a previous paper [11] to prove a new
tight lower bound on the minimum number of prefix signed reversals required to
sort a permutation, which is also referred to as their distance. We also examine
an important class of signed permutations, known as “simple permutations”,
which proved crucial in solving the problem of sorting permutations by unre-
stricted signed reversals in polynomial time (see Hannenhalli and Pevzner [9]),
and give a polynomial-time algorithm for sorting these permutations optimally,

as well as a formula for computing their distance in polynomial time.

2. Background
2.1. Permutations

Let us start with a quick reminder of basic notions on permutations (for
more details, see e.g. Bjorner and Brenti [12] and Wielandt [13]).
Definition 1. A permutation of {1,2,...,n} is a bijective application of {1, 2,
..., n} onto itself.

The symmetric group S,, is the set of all permutations of {1,2,...,n}, to-
gether with the usual function composition o, applied from right to left. We use
lower case Greek letters to denote permutations, typically 7 = (m o -+ 7p),

with 7m; = 7(4), and in particular write the identity permutation as¢ = (12 --- n).

Definition 2. The graph T'(7) of a permutation 7 has vertex set {1,2,..., n},
and contains an arc (4, j) whenever m; = j.



As Figure 1 shows, I'(m) decomposes in a unique way into disjoint cycles (up
to the ordering of cycles and of elements within each cycle), leading to another
notation for 7 based on its disjoint cycle decomposition. For instance, when
m=(4162573), the disjoint cycle notation is 7 = (1,4,2)(3,6,7)(5) (notice

the parentheses and the commas).
[Figure 1 about here.]

The number of cycles in I'() is denoted by ¢(I'(7)), and the length of a cycle

is the number of elements it contains. A k-cycle in I'() is a cycle of length k.

Definition 3. A signed permutation is a permutation of {1,2,...,n} where
each element has an additional “4” or “—” sign.

The hyperoctahedral group S;= is the set of all signed permutations of n
elements with the usual function composition (the usual convention is that w_; =
—m;). It is not mandatory for a signed permutation to have negative elements,
s0 S, C S since each permutation in S,, can be viewed as a signed permutation
without negative elements in S. To lighten the presentation, we will conform

to the tradition of omitting “+” signs when elements are positive.

2.2. Operations on permutations

We now review a number of operations on permutations, which are them-

selves modelled as permutations.

Definition 4. An ezchange £(i,j) with 1 < i < j < n is a permutation that
swaps elements in positions ¢ and j:

@it e e
e(i, j) = 1.“2._11-_,_1...3'_13'-1-1...” .

Definition 5. A reversal p(i,j) with 1 < i < j < n is a permutation that
reverses the order of elements between positions i and j:

o 1-vi—1di+1--j—15j+1--mn
p(i,j) = :

1ovi—1jj—1--i+1ij+1--n



Definition 6. A signed reversal p(i,j) with 1 < i < j < n is a permutation
that reverses both the order and the signs of elements between positions ¢ and

J:

o 1ei—1 i i+l e j=1 j j41-n
p“’”‘(l---i—l —j —G-1) - —(i+1) —i j+1---n )"

Each operation o transforms a permutation 7 into a permutation moo. Set-
ting ¢ = 1 in the above definitions turns those operations into prefix operations,
i.e. operations whose action is restricted to the initial segment of the permu-
tation. It can be easily seen that the effect of any operation can be mimicked
by at most three prefix operations of the same kind. We are interested in the

following two problems on permutations.

Definition 7. Given a permutation 7 in S;¥ and a set X C SF of allowed
transformations, the problem of sorting m by X is that of finding a minimum-
length sequence of elements of X that transforms 7 into ¢. The distance of 7
(with respect to X) is the length of such a sequence.

The operations we have presented give rise to the exchange distance (de-
noted by ed(r)), the reversal distance (denoted by rd(7)) and the signed reversal
distance (denoted by srd(m)), respectively, as well as the corresponding prefix
variants (namely ped(r), prd(w) and psrd(w)). Table 1 summarises a selected
portion of the current state of knowledge about these distances and the corre-

sponding sorting problems.

[Table 1 about here.]

2.3. The breakpoint graph

Bafna and Pevzner [14] introduced the following graph, which turned out to

be an extremely useful tool to sort permutations by (possibly signed) reversals.

Definition 8. Given a signed permutation 7 in S;¥, transform it into an un-
signed permutation 7/ in Sy, by mapping m; onto the sequence (2m; — 1,2m;)
if 7 > 0, or (2|m],2|m;| — 1) if m; < O, for 1 < i < n. The breakpoint
graph of 7’ is the undirected bicoloured graph BG(w) with ordered vertex set
(1 = 0,74, Ty, ..., o, Ty, 1 = 2n + 1) and whose edge set consists of:

e black edges {mh;, mh;, } for 0 <i < m;

o grey edges {mh;, mh, + 1} for 0 <i < n.



Figure 2 shows an example of a breakpoint graph. Since each vertex in that
graph has degree two, the breakpoint graph decomposes in a single way into
alternating cycles, i.e. cycles that alternate black and grey edges. It can be
easily seen that the breakpoint graph shown in Figure 2 decomposes into two

such cycles.

[Figure 2 about here.]

Definition 9. [15] The support of a grey edge {m}, 7}, with i < j, is the

interval of 7’ delimited by ¢ and j, endpoints included. A grey edge is oriented
if its support contains an odd number of elements, and nonoriented otherwise.
A cycle in BG(rw) is oriented if it contains an oriented edge, and nonoriented
otherwise.

For example, the grey edge that connects 0 and 1 in Figure 2 is oriented,
while the one that connects 4 and 5 is nonoriented. The length of a cycle in a
breakpoint graph is the number of black edges it contains, and a k-cycle is a
cycle of length k. A k-cycle is called trivial if k = 1, and nontrivial otherwise.

Definition 10. A signed reversal p(4, j) is said to act on black edges {7};_,,
g1} and {my;, m; 4} of BG(m). Likewise, it is said to act on one cycle (resp.
on two cycles) if both black edges on which 5(i, j) acts belong to the same cycle
(resp. to two distinct cycles) in BG(7).

3. A new lower bound for sorting burnt pancakes

We exploit a connection between the effect of exchanges on I'(w) and that
of signed reversals on BG(w) to derive a new lower bound on the prefix signed
reversal distance of any permutation. We will need the following result by Akers
et al. [16] on computing the prefix exchange distance.

Theorem 1. [16] For any 7 in Sy, we have

ped(r) = n+ () - 200 — { § Db

where ¢1(T'(m)) denotes the number of 1-cycles in T'().

Theorem 2. For any 7 in Si, we have

0 ifﬂlzl,

2 otherwise,

psrd(m) > n+ 14 ¢(BG(w)) — 2¢1(BG(m)) — {

where c1(BG(m)) denotes the number of 1-cycles in BG(m).



Proof. The key observation is that the action of signed reversals on the cycles
of the breakpoint graph is analogous to the action of exchanges on the cycles
of (the graph of) a permutation: both involve at most two distinct cycles, and
can create at most one new cycle in the graph on which they act, as Figure 3
shows.

[Figure 3 about here.]

The analogy obviously still holds under the prefix restriction, and the proof
then follows from Theorem 1. O

Note that, as observed by Hannenhalli and Pevzner [9] and as shown in
Figure 3 (c), it is not always possible to split a cycle in BG(r) using a signed
reversal, whereas it is always possible to split a cycle in I'(7) using an exchange

(hence the lower bound instead of an equality).

4. Sorting simple permutations in polynomial time

We now turn our attention to an important class of signed permutations,
which proved crucial in solving the signed version of sorting by unrestricted
reversals in polynomial time (see Hannenhalli and Pevzner [9]), and show how

to sort those permutations by prefix signed reversals in polynomial time.

Definition 11. A signed permutation 7 is simple if BG(w) contains only cycles
of length at most 2.

Our analysis is based exclusively on simple permutations; therefore, we need
to ensure that the sequences of prefix signed reversals we use will transform any

given simple permutation into another simple permutation.

Definition 12. A sequence of signed reversals applied to a simple permutation
7 is conservative if it transforms 7 into a simple permutation o.

We wish to stress that we only require ¢ to be simple: we allow intermediate
permutations obtained in the process of transforming 7 into ¢ not to be simple.
Definition 13. Let g(w) denote the right-hand side of lower bound (1); an

(x,y)-sequence is a sequence of = prefix signed reversals transforming a permu-
tation 7 into a permutation o with g(7) — g(o) = y. It is optimal if z = y.



4.1. Components of the breakpoint graph

We will need the following definitions and results of Hannenhalli and Pevzner
[9].

Definition 14. Two distinct grey edges in the breakpoint graph interleave if
their supports overlap but do not contain each other. Likewise, two distinct
cycles in the breakpoint graph interleave if either cycle contains a grey edge
that interleaves with a grey edge of the other cycle.

Definition 15. Let H(w) be the graph whose vertices are the cycles in BG(7)
and whose edges connect two vertices if the corresponding cycles interleave.
A component of BG(r) is a connected component of H(r); it is oriented if a
vertex of that component in H(7) corresponds to an oriented cycle in BG(w),
and nonoriented otherwise.

Lemma 1. [9] A signed reversal acting on a given cycle C' in BG(w) changes
the orientation of every cycle in BG(w) that interleaves with C (i.e. it trans-
form every nonoriented (resp. nonoriented) cycle that interleaves with C into a
nonoriented (resp. oriented) cycle).

Lemma 2. [9] Every grey edge of a nontrivial cycle in BG(r) interleaves with
another grey edge.

Lemma 2 implies in particular that if 7 is a simple permutation, then every
nontrivial nonoriented cycle in BG(7) interleaves with another nontrivial cycle.
In the following, we sometimes abuse language by saying that we sort a cycle or
a component, which actually means that we transform a k-cycle or a component

involving k black edges in BG(w) into a collection of k 1-cycles.

4.2. Preliminary results

In the following, we will refer to the cycle in BG(7) that contains black edge
{m{, 7} as the leftmost cycle, and to the component that contains the leftmost

cycle as the leftmost component.
Definition 16. A signed reversal is proper if it increases the number of cycles
in BG(w) by one.

The following observation will be crucial.

Lemma 3. For any simple permutation m, any minimal sequence of prefix re-
versals that mimics a proper reversal is both conservative and optimal.



Proof. A proper reversal p(i,j) on m splits a 2-cycle into two 1-cycles; if i = 1,
then the resulting permutation o now fixes 1, and lower bound (1) has decreased
by 1. Otherwise, the status of the first element in 7 and o is the same, and
there is a sequence of three prefix reversals which mimics the effect of p(4, 5)
and decreases lower bound (1) by 3. Therefore, the resulting sequence of prefix
reversals is optimal, and clearly conservative. O

As a result, if BG(m) contains an oriented component, then we can sort
that component optimally in polynomial time (see Tannier et al. [17] for more
details). Therefore, the only remaining cases we need to examine are the cases
where 7 admits no proper reversal, or equivalently where BG(w) contains no

oriented cycle, distinguishing between the case where 71 # 1 and m; = 1.

Lemma 4. Let m be a simple permutation; if 71 # 1 and BG(w) contains no
oriented cycle, then m admits a conservative (1,0)-sequence.

Proof. A prefix signed reversal acting on the leftmost cycle will flip the orienta-
tion of any cycle it interleaves (Lemma 1), thereby guaranteeing the creation of
at least one oriented cycle in BG(w) and in particular transforming the leftmost
component into an oriented component. Note that lower bound (1) is unaffected
by that move. O

Lemma 5. Let m be a simple permutation; if 1 = 1 and BG(w) contains no
oriented cycle, then © admits a conservative (2,2)-sequence.

Proof. If m; = 1 and BG(w) contains no oriented 2-cycle, then any nonoriented
component BG(7) contains can be transformed into an oriented leftmost com-
ponent as follows. Pick the leftmost cycle C in any nonoriented component; by
Lemma 2, C] interleaves with another nonoriented cycle, say Cs. If C5 contains
black edges {my; 5, m); ;} and {my, o, 7y, ;}, then applying p(1, j—1) followed
by p(1,¢ — 1) transforms 7 into another simple permutation with an oriented
leftmost component, as Figure 4 shows.

[Figure 4 about here.]

Neither the number of cycles nor the number of 1-cycles in the breakpoint
graph is affected, but the resulting permutation no longer fixes 1, so lower
bound (1) decreases by 2. O

4.8. Computing psrd for simple permutations

We have proved the existence of optimal conservative sequences for every
simple permutation, except in the case where 71 # 1 and the leftmost component

is nonoriented. In this section, we prove that the strategy proposed in Lemma 4



is optimal (Lemma 8), and derive a formula for computing the prefix signed
reversal distance of simple permutations (Theorem 3).

We will refer to prefix signed reversals that act on two nontrivial cycles of
the breakpoint graph as merging moves, and to those that split the leftmost
cycle into two cycles, at least one of which is trivial, as splitting moves. It can
be easily seen from Theorem 2 that any sequence of prefix signed reversals that
is to outperform the strategy proposed in Lemma 4 must consist solely of these
types of moves, and eventually lead to an oriented leftmost 2-cycle, a step that
must precede the creation of two new trivial cycles. Therefore, our proof will
consist in showing that this strategy will fail to orient the leftmost component.

We have already defined orientation for grey edges (Definition 9 page 6). We
will also need an analogous definition for black edges by Tannier and Sagot [18].

Definition 17. [18] A black edge {m5;, 75, ,,} in BG(r) is oriented if m; and
mi+1 have opposite signs, and nonoriented otherwise.

Definition 18. [9] The smallest interval that contains the leftmost and right-
most elements of a given component ¢ in BG(7) is denoted by

Extent(¢) = | min min ¢, max max j
Cet meC Ce€nleC

Components can be ordered by inclusion based on their extent. We will be

interested mainly in minimal components, defined below.

Definition 19. [9] A component & of BG(7) is minimal if every cycle C' with
support(C) C Extent(€) belongs to €.

Graphically speaking, a minimal component is an “innermost” one. Tannier
and Sagot [18] note that BG(7~1) can be obtained from BG(r) by exchanging
positions and elements in 7" as well as edge colours (i.e. black (resp. grey) edges
in BG(7) become grey (resp. black) edges in BG(w~!)). As a consequence,
cycles in BG(rw) and in BG(w~!) are in one-to-one correspondence, and we
denote C~! the cycle in BG(r~!) onto which a given cycle C' in BG(w) is
mapped. We show below that this mapping extends to whole components of

the breakpoint graph.
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Lemma 6. A cycle C belongs to a component € in BG(w) if and only if C~*
belongs to €~ in BG(n~1).

Proof. We examine components by their inclusion order, starting with minimal
ones and removing them as we go to proceed by induction.

We refer to the pairs {m}; _;,75;} for 1 < i < n as white edges, which form
the same set in both BG(r) and BG(7~1). The alternating path made of white
and grey (resp. black) edges in BG(7) will be referred to as the WG-path (resp.
WB-path), which when starting with the leftmost vertex of BG(w) visits the
vertices of BG(w) in the natural order (resp. in the order in which they appear
in 7).

We now show that a minimal component ¢ in BG(w) corresponds to a
minimal component ¢! in BG(n~!). If Extent(¢) = [i,j], then vertices
{75+, my;_ } induce a sub-path of the WG-path in BG(7), which is mapped
onto a WB-path in BG(n~!) and implies that cycles of ¢! do not interleave
with cycles outside ¥~ !. To see that the cycles we obtain in that way belong
to the same connected component in BG(7~!), assume on the contrary that
some cycles were mapped onto an additional minimal component, say %”, in
BG(n71). By the above argument, cycles in 4’~! do not interleave with other
cycles in BG((r1)~!) = BG(r), a contradiction. O

The following result will also be useful.

Lemma 7. A component € in BG(7) is oriented if and only if it contains an
oriented black edge.

Proof. As in the proof of Lemma 6, we examine components by their inclusion
order, starting with minimal ones and removing them as we go to proceed by
induction. Recall (Definition 15 page 8) that & is oriented if it contains an
oriented grey edge, which corresponds to a pair of elements of opposite signs in
w. If ¥ is minimal, then it contains two elements of opposite signs in 7 if and
only if it contains a pair of adjacent elements of opposite signs, which themselves
correspond to an oriented black edge (Definition 17).

As observed by Bergeron et al. [19], the elements of 7 that “frame” € (i.e.
;2 and (1) /2, if Extent(€) = [i, j]) have the same sign. We can then remove
% from BG(7), renumber the elements appropriately, and handle the remaining
components in the same way. O

Since oriented black (resp. grey) edges in BG(m) become oriented grey (resp.
black) edges in BG(r~1), Lemma 7 implies that the orientation of components
in BG(r) is also preserved in BG(7~1).

Lemma 8. Let w be simple permutation which does not fix 1 and whose left-
most component is nonoriented. If a sequence of merging and splitting moves
transforms w into a permutation o whose leftmost cycle is a 2-cycle, then o is
simple and the leftmost component of BG(c) is nonoriented.

11



Proof. Splitting moves extract 1-cycles from the leftmost cycle, while merging
moves merge it with 2-cycles, so clearly o is simple. To prove that its leftmost
component is nonoriented, we first show that the sets of black edges in BG(w)
and in BG(o) differ only in the black edges that belonged to 2-cycles in BG()
and became 1-cycles in BG(0).

Grey edges in BG(0~1) connect pairs of elements that appear at the same
positions as in BG(7~!), except for edges that originally belonged to 2-cycles
that were turned into 1-cycles. Each 2-cycle in BG(o~!) corresponds to a 2-cycle
in BG(r~!) on the same quadruple of positions (since by the transformation
described right after Definition 19, black and grey edges are exchanged in the
process of transforming BG(w) into BG(w~!) and conversely). The orientation
of any 2-cycle in BG(o~!) is the same as the orientation of the corresponding 2-
cycle in BG(7~1), and there is no new pair of interleaving 2-cycles in BG(a™1).
This together with Lemma 7 implies that the leftmost component of BG(o) is
nonoriented. o

We now have everything we need to prove a formula for computing the prefix

signed reversal distance of simple permutations.

Theorem 3. For every simple permutation 7 in S, we have:

B 0 ifm=1
psrd(m) =n+ 1+ ¢(BG(w)) — 2¢1(BG(7)) + t(mw) — { 9 otherwise
where t(m) = 1 if m1 # 1 and the leftmost component of BG(w) is nonoriented,
and 0 otherwise.

Proof. The upper bound follows from the fact that there exists an optimal
conservative sequence for dealing with every simple permutation, except when
m1 # 1 and BG(w) contains no oriented cycle; however, a single prefix signed
reversal turns the leftmost component into an oriented component (Lemma 4).
This situation cannot occur more than once in the sorting process, since once
the leftmost component has been sorted, either the resulting permutation is ¢
or we can sort every remaining oriented component of BG(w) optimally — or
create a leftmost oriented component in BG(w) if no oriented component exists
(Lemma 5).

Finally, if 71 # 1 and the leftmost component of BG(7) is nonoriented, then
no sorting sequence can outperform the strategy proposed in Lemma 4 (see
Lemma 8), which implies the desired lower bound and completes the proof. [

4.4. The sorting algorithm

Algorithm 4.1 outlines how to sort simple permutations by prefix signed re-
versals in polynomial time. Tannier et al. [17] cover step 3 in details (they sort

oriented components using arbitrary signed reversals, but as we have seen these

12



can be mimicked by optimal sequences of prefix signed reversals (Lemma 3)),
while step 5 can be achieved either by applying a reversal on the leftmost cy-
cle, if D is the leftmost component (Lemma 4), or by applying the 2-move
sequence proposed in Lemma 5. The algorithm can be implemented so as to
run in O(n?/?) time (see Tannier et al. [17], Han [20]), while the distance can

be computed in O(n) time (see Bader et al. [21]).

Algorithm 4.1 SIMPLEBURNTPANCAKEFLIPPING (7)

Input: a simple permutation 7
Output: the identity permutation

1: while 7 # ¢ do

2:  if BG(w) contains an oriented component C then
3 sort C;

4:  else

5 orient any nonoriented component D;

6: end if

7: end while

5. Conclusions

We proved a new lower bound on the minimum number of prefix signed
reversals needed to sort any signed permutation of n elements, whereas the
exact computation of that number remains an open problem. Using this lower
bound, we were able to show that an important class of permutations, known
as “simple permutations”, could be sorted in polynomial time, and proposed
both a sorting algorithm and a formula for computing the minimum number of
required operations.

Hannenhalli and Pevzner [9] proved that every permutation 7 could be trans-
formed into a simple permutation 7 in such a way that srd(w) = srd(7) (see
Gog and Bader [22] for a O(n) time algorithm for transforming 7 into 7, and
a O(nlogn) time algorithm for recovering the original permutation). Unfortu-
nately, the transformation does not preserve the prefix signed reversal distance,
as shown by the following counter-example: if 7 = (2 1), then the correspond-

ing simple permutation is # = (3 2 1), but it can be verified that psrd(r) = 3

13



and psrd(7w) = 5. Therefore, Algorithm 4.1 cannot immediately be used to
sort an arbitrary permutation, but since every sequence of signed reversals on
a simple permutation can be used to sort the original permutation [9], we have
psrd(m) < psrd(7). Moreover, we believe that our contributions should be useful
for designing improved approximation or exact algorithms for solving the burnt
pancake flipping problem, as well as for getting insight into its computational
complexity. The unsigned version of sorting by prefix reversals (i.e. the original
pancake flipping problem) may also benefit from our results, since both variants

are strongly connected (see Hannenhalli and Pevzner [23] for more details).
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Figure 4: An optimal conservative sequence of prefix signed reversals that transforms a nonori-
ented component into an oriented leftmost component.
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Operation Sorting | Distance | Best approximation
exchange O(n) [24] 1
reversal NP-hard [8] 11/8 [25]
signed reversal | O(n*/?) [20] | O(n) [21] 1

e exchange O(n) [16] 1

o | reversal ? ? 2 [4]

S| signed reversal ? ? 2 [5]

Table 1: Some results on sorting permutations using various operations.
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