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Nonparametric estimation of the local Hurst function of multifractional Gaussian processes

An athletic example... The fractional Brownian motion 

Other definitions of FBM

Harmonizable representation:

B H t = C 1 (H) σ 2 R e itξ -1 |ξ| 2H+1 W (dξ) t ∈ R
Temporal representation: 

B H t = C 2 (H) σ 2 R (t -u) H-1/2 + -(-u) H-1/2 + W (du) t ∈ R Jean-Marc Bardet, SAMM, Université

First definition

For t 0 ∈ (0, 1) and α ∈ (0, 1), define:

H (IR) n,α (t 0 ) := Λ -1 1 2n 1-α [nt0+n 1-α ] k=[nt0-n 1-α ] ∆ k n X + ∆ k+1 n X ∆ k n X + ∆ k+1 n X with ∆ k n X = X k+2 n -2X k+1 n + X k n Λ(h) = E |∆ 0 1 B h + ∆ 1 1 B h | |∆ 0 1 B h | + |∆ 1 1 B h | for h ∈ (0, 1) = 1 π arccos(-ρ 2 (h)) + 1 π 1+ρ 2 (h) 1-ρ 2 (h) log 2 1+ρ 2 (h) with ρ 2 (h) = -3 2h +2 2h+2 -7 8-2 2h+1 .
Limit theorems for multifractional Gaussian processes Theorem Under Assumptions (A) κ and (B) α , for all t 0 ∈ (0, 1),

• If 0 < α < γ-2θ 2(γ-θ) , H (IR) n,α (t 0 ) a.s. -→ n→∞ H(t 0 ). • If κ ≥ µ and 2γ-2θ 3γ-2θ+4γ(η∧2) ≤ α < 2γ-2θ 3γ-2θ then for any ǫ > 0 sup ǫ<t<1-ǫ H (IR) n,α (t) -H(t) = O p (n -µ ). • If κ ≥ µ 1 and γ-2θ 3γ-2θ+4γ(η∧2) ≤ α < γ-2θ 3γ-2θ then for any ǫ > 0, δ > 0 sup ǫ<t<1-ǫ H (IR) n,α (t) -H(t) = O(n -(µ1-δ) ) a.s.

Central Limit theorem for multifractional Gaussian processes

Theorem Let Z = (Z (t)) t∈(0,1) be a zero-mean Gaussian process satisfying (A) κ and (B) α , with α >

1 1+2(η∧2) , κ ≥ 1-α 2 and θ = 0. Then for 0 < t 1 < • • • < t u < 1, √ 2n 1-α H (IR) n,α (t i ) -H(t i ) 1≤i≤u D -→ n→∞ W (IR) (t i ) 1≤i≤u , where W (IR) (t i ), i = 1, • • • , u are inedependent centered Gaussian r.v.'s such as E[W (IR) (t i )] 2 := ∂ ∂x (Λ 2 ) -1 (Λ 2 (H(t i ))) 2 σ 2 (H(t i ))
where σ 2 (H) := Theorem

Then with σ 2 = 1 0 dτ j∈Z E φτ (W τ (0)) φτ (W τ (j)) < ∞, n -1/2 n k=1 fk,n (Y n (k)) D -→ n→∞ N 0, σ 2 .
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Second definition (end)

Let Γ := Γ( H

(IR) n,α ).
A new nonparametric estimator of H(•) using Pseudo-Generalized least squares:

H (IR) n,α (t 0 ) := 1 1 ′ p Γ -1 1 1 p -1 1 1 ′ p Γ -1 H (IR)
n,α,j (t 0 ) 1≤j≤p .

Theorem

Under Assumptions (A) κ and (B) α , for all t 0 ∈ (0, 1), and Taqqu, 2006) On pose

n (1-α)/2 H (IR) n,α (t 0 ) -H(t 0 ) D -→ n→∞ N 0 , 1 1 ′ p Γ -1 (H)1 1 p Definition (Stoev
Y (a + ,a -) (t) := K (H(t)) R e itx -1 |x| H(t)+ 1 2 U (a + ,a -) (H(t), x) W (dx),
with for h ∈ (0, 1)

U (a + ,a -) (h, x) := a + e -i sign(x)(h+ 1 2 ) π 2 + a -e i sign(x)(h+ 1 2 ) π 2 (a + ) 2 + (a -) 2 -2a + a -sin(π h) 1/2
.

Estimation of H(•)

Theorem For a trajectory of the process 

(Y (a + ,a -) (t)) t , If max(0, 1 -4((η ∧ 2) -H(t))) < α < 1 2 , H (IR) n,α (t 0 ) a.s. -→ n→∞ H(t 0 ) If max 1 1 + 2(η ∧ 2) , 1 -4 η ∧ 2 -H(t 0 ) < α < 1, n (1-α)/2 H (IR) n,α (t 0 ) -H(t 0 ) D -→

Figure :

 : Figure: Trajectories of FBM with H = 0.3 (left) and H = 0.9 (right)
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 : Figure:Examples of MBM trajectories (up, H ∈ C η-with η = 0.6, down H(t) = 0.1 + 0.8(1t) sin 2 (10t))
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Multifractional Brownian motion

Two first versions:

Harmonizable representation (Benassi et al., 1997):

Temporal representation (Peltier et Lévy-Véhel, 1995):

Nonparametric estimation of the local Hurst function

Aims

From an observed trajectory X 1 n , X 2 n , . . . , X 1 ,

Define a new non-parametric estimator H(•);

Asymptotic properties of this estimator.

Compare this estimator with the well-known quadratic variations estimator.
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Multifractional Gaussian processes?

Assumptions: X = (X t ) t is a centered Gaussian process such as:

(A) κ There exist η-Hölderian functions 0 < H(t) < 1 and c(t) > 0 for t ∈ (0, 1) such that for any 0 < ε < 1/2 and j ∈ Z, Let (Y n (k)) 1≤k≤n,n∈N be a triangular array of standard Gaussian R ν -vectors.

For m ≥ 1, there exists ρ : N → R such as for 1 ≤ p, q ≤ ν,

For τ ∈ [0, 1] and J ∈ N * , with (W τ (j)) j∈Z a stationary Gaussian process
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Second definition

For t, α ∈ (0, 1) and j = 1, . . . , p,

Theorem

Under Assumptions (A) κ and (B) α , for all t 0 ∈ (0, 1), 

Generalized quadratic variations estimator of H(•)

Define (see Istas and Lang, 1994, Benassi et al., 1998, Coeurjolly, 2005):