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Abstract.
The Hilbert space of loop quantum gravity is usually described in terms of

cylindrical functionals of the gauge connection, the electric fluxes acting as non-
commuting derivation operators. It has long been believed that this non-commutativity
prevents a dual flux (or triad) representation of loop quantum gravity to exist. We show
here, instead, that such a representation can be explicitly defined, by means of a non-
commutative Fourier transform defined on the loop gravity state space. In this dual
representation, flux operators act by ?-multiplication and holonomy operators act by
translation. We describe the gauge invariant dual states and discuss their geometrical
meaning. Finally, we apply the construction to the simpler case of a U(1) gauge group
and compare the resulting flux representation with the triad representation used in
loop quantum cosmology.

Confidential: not for distribution. Submitted to IOP Publishing for peer review  6 June 2011



Non-commutative flux representation for loop quantum gravity 2

1. Introduction

Loop quantum gravity (LQG) [1, 2] is now a solid and promising candidate framework for

a quantum theory of gravity in four spacetime dimensions. It is based on the canonical

quantization of the phase space of general relativity in the Ashtekar formulation,

using rigorous functional techniques as well as ideas and tools from lattice gauge

theory. Diffeomorphism invariance of the classical theory is a crucial ingredient of the

construction, both conceptually and mathematically, and background independence is

the guiding principle inspiring it. The main achievement to date in this framework is

the complete definition of the kinematical space of (gauge and diffeomorphism invariant)

states of quantum geometry, based on the conjugate pair of variables given by holonomies

he[A] of the Ashtekar SU(2) connection A, and fluxes of the Ashtekar electric field E

(densitized triads) across 2-surfaces. These states are described in terms of so-called

cylindrical functionals Ψ[A] of the connection, which depend on A via holonomies

along graphs. Under suitable assumptions involving a requirement of diffeomorphism

invariance, the representation of the algebra generated by holonomies and fluxes, hence

the definition of the state space, is unique [3].

A crucial, and somewhat surprising fact is that the flux variables, even at the

classical level, do not (Poisson) commute [4, 5]. This non-commutativity is generic and

necessary, once holonomies of the Ashtekar connection are chosen as their conjugate

variables. In the simplest case, for a given fixed graph, fluxes across surfaces dual to a

single edge act as invariant vector fields on the group, and have the symplectic structure

of the su(2) Lie algebra. Thus, the phase space associated to a graph is a product over

the edges of cotangent bundles T ∗SU(2) ' SU(2) × su(2) on the gauge group. For this

case the Poisson structure for one edge e (variables associated to different edges will

commute) is simply given by

{h[A], h[A]} = 0

{Ei, h[A]} = τ ih[A]

{Ei, Ej} = − εijkEk. (1)

Here Ei is the flux through an elementary (i.e. dual to a single edge e) surface Se with

unit smearing function in a neighbourhood of the intersection point e ∩ Se‡. Recent

works have shown that the structure of this phase space can also be understood from a

simplicial geometric point of view [6, 7, 8].

The fact that non-commutative structures are at the very root of the loop quantum

gravity formalism is well-known for a long time[4]. However, to our knowledge, it has

not been built upon to any extent in the LQG literature, and the full implications of it,

as well as the consequent links between the loop quantum gravity approach and non-

commutative geometry ideas and tools, have remained unexplored. In fact, it is often

believed that non-commutativity of the fluxes implies that the framework has no flux

‡ Note that we are working with rescaled flux variables. Thus, the Immirzi parameter γ is implicitely
hidden in the relation between Ashtekar’s electric field and the triad through Ea

j = 1
γ

√
det qea

j .
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(or triad) representation (for earlier attempts, see for e.g [9]). The goal of this paper is

to show, instead, that this non-commutativity is naturally encoded in a definition of a

non-commutative Fourier transform and ?-product, and that these can be used to build

up a well-defined non-commutative flux representation for generic LQG states.

The idea if defining a non-commutative flux representation for LQG originates

from developments in the spin foam context [10, 11, 12], and especially in the context of

group field theory [13]. Much of the recent progress in spin foam models stemmed from

the use of a coherent state basis [14, 15, 16, 17, 18, 19, 20] to express both quantum

states and amplitudes. This basis has the advantage, as compared to the standard

spin-network basis in LQG, of a clearer and more direct geometric interpretation of the

labels that characterize it, in terms of metric variables. This allowed a more consistent

encoding of geometric constraints in the definition of the spin foam amplitudes, a nice

characterization of the corresponding boundary states and of the semi-classical limit

of the same amplitudes, relating them with simplicial gravity actions. The same aims

also motivated recent work attempting to introduce metric variables in the group field

theory framework [21, 22]. This line of research has resulted in a new representation

of group field theory in terms of non-commutative metric variables [23], which could

in fact be directly interpreted as discrete (smeared) triads (in the SU(2) case). In this

representation, where non-commutativity of metric variables is brought to the forefront

and used in the very definition of the group field theory model, the Feynman amplitudes

have the form of simplicial gravity path integrals in the same metric variables. These

results suggest to explore a similar metric representation for LQG states, since the group

field can be interpreted as the (2nd quantized) wave function for a LQG spin network

vertex. We exhibit such a representation here, and show that the whole construction of

the LQG Hilbert space can be performed in this new representation as well.

We expect this new non-commutative flux representation to be useful in many

respects. First of all it would help clarifying the quantum geometry of LQG states,

including the relation with simplicial geometry [6, 7]. Thanks to this, it may facilitate

the definition of the dynamics of the theory, both in the canonical (Hamiltonian or

Master constraint) [1] and covariant (spin foam or GFT) setting [23], and the coupling

of matter fields [24, 25, 26, 27, 28]. Further down the line, it offers a new handle

for tackling the issue of the semi-classical limit of the theory. All these advantages

of a metric representation are in fact shown already in the simpler context of Loop

Quantum Cosmology, where such a representation has been already developed and used

successfully [29, 30]. Obviously, the new representation brings loop quantum gravity

closer to the language and framework of non-commutative geometry [31], thus possibly

fostering further progress.

The paper is organized as follows. In section 2, in order to make this paper

self-contained, we review the standard construction of the kinematical Hilbert space

of loop quantum gravity in the connection representation. The careful mathematical

treatment of this review section will reveal useful for the rigorous construction of the

new representation.
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In section 3, we define the Fourier transform underlying the flux representation.

The key technical ingredient is a generalization of the group Fourier transform [32, 33]

to the whole LQG space of connections. In section 4, we describe further the new

representation: we give the action of the fundamental operators, we discuss properties

of the gauge invariant dual states, clarifying their geometric meaning and the relation

with the spin network basis. Finally, in section 5, we discuss the analogous construction

in the simpler case of U(1) and comment on its relation with the triad representation

used in Loop Quantum Cosmology. We conclude with a brief outlook on possible further

developments.

2. The Hilbert space of loop gravity

Kinematical (gauge covariant) states in loop quantum gravity are functions on a space

Ā of suitably generalized connections [34]. A cornerstone of the framework is the fact

that the state space H0 can be defined by induction from a family of Hilbert spaces

Hγ = L2(Aγ, dµγ), labeled by graphs embedded in the spatial manifold σ. For a given

graph γ with n edges, Aγ is a space of (distributional) connections on γ, naturally

identified with the product Gn of n copies of the gauge group; dµγ is the product Haar

measure on Gn. The construction stems from a characterization of Ā as a projective

limit of the spaces Aγ.

In this section we briefly recall this standard construction, as we will use it to define

the Fourier transform in section 3. We will assume G is any compact group, though

having in mind the cases G=SU(2) or SO(3) relevant to gravity. Further details can be

found in the original articles [35, 36, 37] or in the textbook [1].

2.1. Generalized connections

Given any smooth connection A on Σ, one can assign a group element Ae to each path e

in Σ, by considering the holonomy of A along e. This assignment respects composition

and inversion of paths:

Ae1◦e2 = Ae1Ae2, Ae−1 = A−1
e .

In other words, the connection gives a morphism from the groupoid of paths to the gauge

group G. The space Ā of ‘generalized connections’ is defined as the set Hom(P, G) of

all such morphisms. It contains the smooth connections, but also distributional ones.

Ā shows up as the quantum configuration space in loop quantum gravity.

An independent and very useful characterization of Ā makes use of projective

techniques [34], based on the set of embedded graphs. A graph γ = (e1, · · · , en) is a

finite set of analytic paths with 1 or 2-endpoint boundary, such that every two distinct

paths intersect only at one or two of their endpoints. The path components ei are called

the edges of γ; the endpoints of an edge are called vertices. The set of all graphs has

the structure of a partially ordered and directed set: we say γ′ is larger than γ, and we

write γ′ ≥ γ, when every edge of γ can be obtained from a sequence of edges in γ′ by
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Figure 1: Elementary moves relating ordered graphs

composition and/or orientation reversal; then for any two graphs γ1, γ2, there exists a

graph γ3 such that γ3 ≥ γ1, γ2.

For a given graph γ, let Aγ := Hom(γ̄, G) be the set of all morphisms from the

subgroupoid γ̄ ⊂ P generated by all the n edges of γ, to the group G. Aγ is naturally

identified with Gn, both set-theoretically and topologically. For any two graphs such

that γ′ ≥ γ, γ̄ is a subgroupoid of γ̄′: we thus have a natural projection pγγ′ :Aγ′ → Aγ,

restricting to γ any morphism in Aγ′ . These projections are surjective, and satisfy the

rule:

pγγ′ ◦ pγ′γ′′ = pγγ′′ , ∀γ′′ ≥ γ′ ≥ γ (2)

This defines a projective structure for the spaces Aγ. It can be shown [37] that the space

Ā coincides with the projective limit of the family (Aγ, pγγ′): namely, a generalized

connection can be viewed as one of those elements {Aγ}γ of the direct product ×γAγ

such that

pγγ′Aγ′ = Aγ, ∀γ′ ≥ γ.

Such a characterization allows to endow Ā with the topology of a compact Hausdorff

space.

Let us close this section with a property of the projections pγγ′ that will be useful

for us. Given any two ordered graphs γ′ ≥ γ, the larger one γ′ may be obtained

from the smaller one γ by a sequence of three elementary moves: (i) adding an edge

(ii) subdividing an edge by adding a new vertex (iii) inverting an edge (see figure 1).

Together with the consistency rule (2), this means that the projections pγγ′ can be

decomposed into the following elementary projections onto the space Ae of connections

on a single edge e:

padd:Ae,e′ → Ae; (g, g′) 7→ g

psub :Ae1,e2 → Ae; (g1, g2) 7→ g1g2

pinv :Ae → Ae; g 7→ g−1 (3)
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where we have used the identification Aγ :=(g1, · · ·gn) of Aγ with Gn.

2.2. Inductive structure of H0

Having understood the projective structure of the space of generalized connections:

Ā ' {{Aγ}γ ∈ ×γAγ : pγγ′Aγ′ = Aγ ∀γ′ ≥ γ},
we now illustrate how to define the LQG state space H0 by an appropriate ‘glueing’ of

the much more tractable spaces Hγ = L2(Aγ, dµγ). The idea is to define functions on

A as equivalence classes of elements in ∪γHγ for a certain equivalence relation which

reflects the projective structure of A.

Let us introduce the family of injective maps p∗γ′γ :Hγ → Hγ′ , γ′ ≥ γ, obtained by

pull back of the projections pγγ′ :Aγ′ → Aγ defined in section 2.1. Thus p∗γ′γ acts on

fγ ∈ Hγ as

p∗γ′γ :Hγ → Hγ′ , (p∗γ′γfγ)[Aγ′ ] = fγ[pγγ′Aγ′] (4)

These injective maps satisfy a rule analogous to (2):

p∗γ′′γ′ ◦ p∗γ′γ = p∗γ′′γ, ∀γ′′ ≥ γ′ ≥ γ (5)

Just as for the projections pγγ′ , the maps p∗γ′γ can be decomposed into three elementary

injections add := p∗add, sub := p∗sub and inv := p∗inv, which encode the transformation

of the functions when adding, subdividing, and inverting an edge of a graph. These

elementary injections act on the space He associated to a single edge as:

add:He → He,e′;

f(g) 7→ (add f)(g, g′) := f(g)

sub: He → He1,e2;

f(g) 7→ (sub f)(g1, g2) := f(g1g2)

inv: He → He;

f(g) 7→ (inv f)(g) := f(g−1) . (6)

where we have used once again the identification Aγ := (g1, · · ·gn) of Aγ with Gn.

Using these elementary maps, as well as the translation and inversion invariance and

the normalization of the Haar measure, it can be checked that the p∗γγ′ are isometric

embeddings Hγ ↪→ Hγ′ , namely injective maps preserving the inner product. This

expresses the fact that (Hγ , p
∗
γ′γ)γ′≥γ defines an inductive family of Hilbert spaces.

We now define an equivalence relation on ∪γHγ by setting

fγ1 ∼ fγ2 ⇐⇒ ∃ γ3 ≥ γ1, γ2, p∗γ3γ1
fγ1 = p∗γ3γ2

fγ2

The quotient space can be endowed with an inner product which naturally extends the

inner products 〈 , 〉γ of each Hγ. Let indeed fγ1 , fγ2 be two functions in ∪γHγ . The

set of graphs is directed, so we may pick a graph γ3 such that γ3 ≥ γ1, γ2. It can then

be easily shown using the rule (5) and the fact that the maps p∗γ′γ preserve the inner

products, that the quantity

〈fγ1 , fγ2〉 := 〈p∗γ3γ1
fγ1 , p∗γ3γ2

fγ2〉γ3
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does not depend on the chosen larger graph γ3, and is well-defined on the equivalence

classes f1 :=[fγ1 ] and f2 :=[fγ2 ]. Hence it defines an inner product on the quotient space

∪γHγ/∼. The completion of this quotient space with respect to the inner product is

called the inductive limit of the inductive family (Hγ, p
∗
γ′γ)γ′≥γ . It can be shown (see for

example [1]) that the limit

H0 = ∪γHγ/∼ (7)

coincides with the space L2(Ā, dµ0) of square integrable functions on Ā, with respect to

a gauge and diffeomorphism invariant measure – the so-called Ashtekar-Lewandowski

measure [37]. This is the kinematical (gauge covariant) state space of loop quantum

gravity.

2.3. Quantum theory on H0

Let us fix a graph γ=(e1, · · · , en), and identify Hγ with L2(Gn), where the L2-measure

is the product Haar measure. The fundamental operators arising from the quantization,

on Hγ , of a classical phase space given by a cotangent bundle T ∗Gn, act respectively by

multiplication by a smooth function ϕγ of Gn, and as generators of (right) actions of G

in (a dense subset of) Hγ :

(ϕ̂γ fγ)(g1, . . . , gn) := ϕγ(g1, . . . , gn)fγ(g1, . . . , gn) (8)

(L̂i
e fγ)(g1, . . . , gn) :=

d

dt
fγ(g1, . . . , gee

tτi , . . . , gn)

∣∣∣∣
t=0

(9)

where τ i is a basis of su(2), say i times the Pauli matrices, τi = iσi. L̂i
e is the left-

invariant vector field on the copy of G associated to the edge e. This provides the

quantum theory on the graph γ, with well-defined momenta operators, whose algebra

has the structure of su(2)n.

The action (8) can be easily extended to the quotient ∪γHγ/∼. For ϕγ1 and fγ2

associated to different graphs, pick a graph γ larger than both γ1 and γ2, and define

ϕ̂γ1 fγ2 as the equivalence class [ϕ̂γ fγ] of (8). This action does not depend on the

representatives chosen in the equivalence classes ϕ := [ϕγ1 ] and f := [fγ2 ]; it defines the

action of the holonomy operator ϕ̂ on generic states of H0. The operator (9) should

be interpreted as the flux Ei
Se

:= E(Se, τi) of the electric field across an ‘elementary’

surface§ Se cut by the edge e. More generally, the LQG flux operator across a surface

S acts on f = [fγ ] as a sum of left-invariant derivatives on fγ′ , where γ′ ≥ γ cuts S at

§ Actually there exist different proposals to which classical quantities the quantum flux operators
should correspond: In [5] it was shown that they can also be interpreted as quantum versions of a
different set of classical functions involving the holonomies and the triads. The construction performed
there is based on a family of graphs γ and dual graphs γ∗ and the classical continuum phase space is
understood as a certain generalized projective limit of graph–phase spaces of the form T ∗SU(2)n. In
section 4.2 we will see that this interpretation is also favored from the dual (Fourier transformed) point
of view.
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its vertices, with only outgoing edges, the sum being over all the intersection points of

γ′ ∩ S and their adjacent edges:

Êi
S fγ =

∑

v∈γ′∩S

∑

e⊃v

ε(S, e) L̂i
e fγ,

where ε(S, e)=± depends on the relative orientation of the edge and the surface.

One can also define, on each Hγ , operators ĝv generating gauge transformations at

each vertex of v ∈ γ. These act on a state fγ as

(ĝv fγ)(g1, · · · , gn) = fγ(g
-1
s1

g1gtn , · · · , g-1
sn

gngtn) (10)

where se, te denote source and target vertices of the oriented graph e. Gauge invariance

is thus imposed by acting with the gauge averaging operator

Pγ :=
⊗

v

∫
dgv ĝv

It can be checked that the action of such operators are well-defined on equivalence

classes.

Finally, the so called spin-network basis of H0 is a very convenient one for actual

computations. Such a basis is obtained by harmonic analysis on the gauge group:

using the Peter–Weyl theorem, a state fγ ∈ Hγ can be decomposed into a product of

Wigner functions Dje
mene

(ge) for each edge, labeled by irreducible representations of G

(j ∈ 1
2
N for G = SU(2) or j ∈ N for SO(3)), and magnetic numbers −je ≤ me ≤ je

and −je ≤ ne ≤ je. These quantum numbers are usually interpreted as encoding

geometric variables; in particular the spin j labels the eigenvalues of area operators. In

the next section, we define a Fourier transform on H0 that will provide an alternative

decomposition of the LQG states, into functions of continuous Lie algebra variables,

naturally interpreted as flux (triad) variables.

3. Fourier transform on the LQG state space

Here we define the non-commutative Fourier transform that will give the dual flux

representation. This transform generalizes the ‘group Fourier transform’ introduced in

[32, 33, 38] to theories of connections. We first recall the main features of the group

Fourier transform and use it to construct a family of Fourier transforms Fγ defined on

Hγ . We then show how this family extends to a transform F defined on the whole space

H0. We emphasize that, to avoid unnecessary complications, we will work from now on

with the gauge group G=SO(3). With more work, the construction can be extended to

the SU(2) case, using the SU(2) group Fourier transform spelled out in [38].

3.1. Group Fourier transform

The SO(3) Fourier transform F maps isometrically L2(SO(3), dµH), equipped with the

Haar measure dµH , onto a space L2
?(R3, dµ) of functions on su(2)∼R3 equipped with

a non-commutative ?-product, and the standard Lebesgue measure dµ. Just as for the
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standard Fourier transform on Rn, the construction of F stems from the definition of

plane waves:

eg: su(2)∼R3 → U(1), eg(x) = ei~pg ·~x

depending on a choice of coordinates ~pg on the group manifold. For a given choice of

such coordinates, F is defined on L2(SO(3)) as

F(f)(x) =

∫
dgf(g) eg(x) (11)

where dg is the normalized Haar measure on the group‖.
Let us fix our conventions and notations. In the sequel we will identify

functions of SO(3)' SU(2)/Z2 with functions of SU(2) which are invariant under the

transformation¶ g → −g. We denote by τi, i = 1, 2, 3 the generators of su(2) algebra,

chosen to be i times the (hermitian) Pauli matrices. They are normalized as (τi)
2 =−1

and satisfy [τi, τj]=−2εijkτk. We choose coordinates on SU(2) given by

~pg = −1

2
Tr(|g|~τ), |g| :=sign(Tr g)g

where ‘Tr’ is the trace in the fundamental representation. The presence of the factor

sign(Tr g) ensures that ~pg =~p-g. Using these conventions, writing x=~x · ~τ and g =eθ~n·~τ

with θ∈ [0, π] and ~n ∈ S2, the plane waves take the form

eg(x) = e−
i
2

Tr(|g|x) = eiεθ sin θ~n·~x (12)

with εθ = sign(cos θ). Note that we may identify SO(3) to the upper hemisphere of

SU(2)∼S3, parametrized by θ∈ [0, π/2] and ~n∈S2; on this hemisphere, we have εθ = 1.

The image of the Fourier transform (11) has a natural algebra structure inherited

from the addition and the convolution product in L2(SO(3)). The product is defined on

plane waves as

eg1 ? eg2 = eg1g2 ∀g1, g2 ∈ SU(2) (13)

and extended by linearity to the image of F . Using the following identity∫
d3x eg(x) = 4π[δSU(2)(g) + δSU(2)(−g)] := 8π δSO(3)(g) (14)

for the delta function on the group, with d3x being the standard Lebesgue measure on

R3, one may prove the inverse formula

f(g) =
1

8π

∫
d3x (F(f) ? eg-1)(x),

which shows that F is invertible. Next, let us denote by L2
?(R3) the image of F endowed

with the following Hermitian inner product:

〈u, v〉? :=
1

8π

∫
d3x(u ? v)(x) (15)

‖ Since SO(3) is compact L2(SO(3)) ⊂ L1(SO(3)). Therefore the Fourier transform is well defined.
¶ Here g is understood as an element of the fundamental representation of G. The transformation
g → −g := hπg can be understood as the action of an appropriate hπ, also an element of the fundamental
representation of G.
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Writing u=F(f), v=F(h), the quantity 〈u, v〉? can be written as:

〈F(f),F(h)〉? =

=
1

8π

∫
dg1dg2f(g1)h(g2)

∫
d3x(eg1 ? eg2)(x)

=
1

8π

∫
dg1dg2f(g1)h(g2)

∫
d3x eg-1

1 g2
(x)

=

∫
dgf(g)h(g)

where on the second line we used that eg(x) = eg-1(x) as well as the identity (14).

This establishes in one stroke that the inner product (15) is well defined, since f and

h are square integrable, and that the Fourier transform defines a unitary equivalence

L2(SO(3))'L2
?(R3).

There are alternative ways to characterize the image L2
?(R3) of the Fourier

transform. To do so, we may recast the transform (11) into a standard R3 Fourier

transform, in terms of the coordinates ~pg = sinθ~n, with θ ∈ [0, π/2]. Writing the Haar

measure as dg = 1
π

sin2θdθd2~n, where d2~n = 1
2
(∂i~n × ∂j~n, ~n)dxi ∧ dxj, (i, j ∈ {1, 2}) is

the normalized measure on the unit sphere S2, leads to the integral formula

F(f)(x) =
1

π

∫

|p|≤1

d3~p√
1 − p2

f(g(~p))ei~p·~x

We thus see that the map F hits functions of R3 that have bounded Fourier modes

|~pg| ≤ 1 for the standard R3 Fourier transform.

We also may think of elements of L2
?(R3) as equivalence classes of functions of

R3, for the relation identifying two functions with the same R3-Fourier coefficients for

(almost-every) low modes |~p| ≤ 1. Loosely speaking, this means that the elements of

L2
?(R3) ‘probe’ the space R3 with a finite resolution.

It is worth noting that the image of the Fourier transform has a discrete basis, as

shown by taking the Fourier transform of the Peter-Weyl formula:

f̂(x) =
∑

j,m,n

f j
mnD̂j

mn(x) (16)

expressed in terms of the matrix elements of the dual Wigner matrices D̂j(x) =∫
dgeg(x)Dj(g) in the SO(3) representation j.

3.2. Fourier transform on Hγ

The extension of the above construction to functions of several copies of the group is

straightforward, and gives the Fourier transform Fγ on the space Hγ ' L2(SO(3)n)

associated to any graph with n edges. Given g := (g1, · · · , gn) ∈ SO(3)n, we define the

plane waves E
(n)
g : su(2)n → U(1) as a product of SO(3) plane waves:

E(n)
g (x) :=

n∏

i=1

egi
(xi)
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The Fourier transform Fγ is defined on Hγ by

Fγ(f)(x) =

∫ n∏

i=1

dgif(g) E(n)
g (x)

The ?-product acts on plane waves as

(E(n)
g ? E

(n)
g′ )(x) := E

(n)
gg′(x) =

n∏

i=1

egig′i
(xi)

and is extended by linearity to the image of Fγ. This image, endowed with the inner

product

〈u, v〉?,γ =
1

(8π)n

∫ n∏

i=1

d3xi (u ? v)(x),

is a Hilbert space L2
?(R3)⊗n := H?,γ. The Fourier transform provides an unitary

equivalence between the Hilbert spaces Hγ and H?,γ .

3.3. Cylindrical consistency and Fourier transform on H0

We have defined a family of unitary equivalences Fγ:Hγ → H?,γ labelled by graphs γ.

In this section we show the key technical result of this paper: this family extends to a

map defined on the whole LQG state space

H0 = ∪γHγ/∼ .

defined in section IIB.

First, the family Fγ gives a map ∪γHγ → ∪γH?,γ. In order to project it onto a

well-defined map on the equivalence classes, we introduce the equivalence relation on

∪γH?,γ which is ‘pushed forward’ by Fγ :

∀uγi
∈ H?,γi

, uγ1 ∼ uγ2 ⇐⇒ F−1
γ1

(uγ1) ∼ F−1
γ2

(uγ2)

For simplicity, we use the same symbol ∼ for the equivalence relation in the source and

target space. We thus have a map F̃ making the following diagram commute:

∪γHγ
Fγ //

π

��

∪γH?,γ

π?

��
∪γHγ/∼

eF // ∪γH?,γ/∼

(17)

where π and π? are the canonical projections. Next, the quotient space ∪γH?,γ/∼ is

endowed with a Hermitian inner product inherited from the inner products 〈 , 〉?,γ on

each H?,γ . This is also the inner product which is ‘pushed forward’ by F̃ . The inner

product of two elements u, v of the quotient space with representatives uγ1 ∈H?,γ1 and

vγ2 ∈H?,γ2 is specified by choosing a graph γ3 ≥ γ1, γ2 and two elements uγ3 ∼ uγ1 and

vγ3 ∼vγ1 in H?,γ3 , and by setting:

〈u, v〉? := 〈uγ3, vγ3〉?,γ3 . (18)
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In fact, we know by unitarity of Fγ3 that the right-hand-side coincides with

〈F−1
γ3

(uγ1),F−1
γ3

(vγ2)〉, hence does not depend on the representatives uγ1 , vγ2 nor on the

graph γ3.

It is worth giving a more concrete characterization of the space ∪γH?,γ/∼, by

making the equivalence relation and the inner product more explicit without using

Fγ. As explained in section 2, there are three generators of equivalence classes in ∪γHγ ,

induced by the action on the set of graphs, consisting of adding, subdividing or changing

the orientation of an edge. These generators are encoded into the operators add, sub

and inv defined on L2(SO(3)). To characterize the equivalence classes in the target

space, we thus need to compute the dual action of these operators on L2
?(R3). We will

need to introduce the following family of functions:

δx(y) :=
1

8π

∫
dg eg-1(x)eg(y) (19)

These play the role of Dirac distributions in the non-commutative setting, in the sense

that ∫
d3y (δx ? f)(y) =

∫
d3y (f ? δx)(y) = f(x)

However, let us emphasize that δx(y), seen as a function of y∈R3, is not distributional;

this is a regular function+ peaked on y = x, with a non-zero width, normalized as∫
d3y δx(y)=1. We will denote by δ0 the function of this family obtained for the value

y=0.

Simple calculations show that the dual action of add, sub and inv is given by:

add:L2
?(R3) → L2

?(R3)⊗2

(add u)(x1, x2) := 8πu(x1) δ0(x2)

sub: L2
?(R3) → L2

?(R3)⊗2

(sub u)(x1, x2) := 8π(δx1 ? u)(x2)

inv: L2
?(R3) → L2

?(R3)

(inv u)(x) := u(−x) .

Thus, when adding an edge, the function depends on the additional Lie algebra variables

x2 via δ0(x2); taking the inner product of this function with any other function v(x1, x2)

of L2
?(R3)⊗2 will project it onto its value v(x1, 0). When subdividing an edge into two

parts, the two variables x1, x2 on the two sub-edges get identified (under inner product)

via the function δx1(x2). Finally, when changing the orientation of the edge, the sign of

the variable x is flipped.

These rules describe recursively all the elements equivalent to u. By an obvious

extension of these rules to functions on a graph with an arbitrary number of edges, they

generate all the equivalence classes in ∪γH?,γ . It is instructive to check directly that

the inner product given in (18) is well-defined on equivalence classes. This amounts

+ An explicit calculation using the expression (12) of the plane waves gives in fact δx(y)= 1
8π

J1(|x−y|)
|x−y|

where J1 is the Bessel function of the first kind Jn for n=1.
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to showing that the linear maps add, sub and inv acting on L2
?(R3) are unitary. For

example, writing the inner product in L2
?(R3)⊗2 as 〈 , 〉?,2, we easily check that, given

u, v ∈ L2
?(R3), we have

〈add u, add v〉?,2 =

=

∫
d3x1d

3x2 (u ? v)(x1)(δ0 ? δ0)(x2)

= 〈u, v〉? .

where the second equality follows from the fact that δ0 =δ0 is a ?-projector: δ0?δ0 = 1
8π

δ0,

normalized to 1. Analogous calculations show the unitarity of sub and inv.

Coming back to the construction (17), we now have a map F̃ between two pre-

Hilbert spaces, which, by construction, is invertible and unitary. Since ∪γHγ is dense

in its completion ∪γHγ , there is a unique linear extension of F̃ to a map

F : ∪γHγ/∼ −→ ∪γH?,γ/∼

between the completion of the two pre-Hilbert spaces. This defines our Fourier

transform. F is invertible and unitary, so that it gives a unitary equivalence between

the loop quantum gravity Hilbert space H0 = ∪γHγ/∼ and the Hilbert space H? =

∪γH?,γ/∼.

4. Flux representation

We now describe the representation obtained by applying the non–commutative Fourier

transform onto the LQG state space. We derive the dual action of holonomy– and flux–

operators, analyze the geometrical interpretation of this dual space and investigate its

relation to the standard spin network basis.

4.1. Dual action of holonomy and flux operators

For a given fixed graph γ, consider an elementary surface Se intersecting γ at a single

point of an edge e. The action of the flux operators Ei
Se

on Hγ coincides with the

action (9) of left or right –invariant vector fields L̂i, R̂i on SO(3), depending on the

respective orientation of e and Se (see for example [1]). They act dually on L2
?(R3) as

L̂i u :=F(L̂i f) and Ri u :=F(R̂i f), where u=F(f). Now, since

F(R̂i f)(x) =

∫
dg(R̂i f)(g)eg(x)

=

∫
dg

[
d

dt
f(etτ i

g)

]

t=0

eg(x)

=

∫
dgf(g)

[
d

dt
ee-tτig(x)

]

t=0

,

we only need to determine the action of the operators on the plane waves eg(x), for

almost every g. By definition of the ?-product, ee-tτig = ee-tτi ? eg(x). Thanks to the
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relation [
d

dt
ee-tτi (x)

]

t=0

= −1

2
Tr(xτ i) = −ixi,

we conclude that R̂i eg = −ix̂i ? eg, where x̂i(x)=−1
2
Tr(xτ i) is the coordinate function

on su(2). This shows that

F(R̂if)(x) = −ix̂i ? F(f) . (20)

There is an analogous formula for the left–invariant vector field, which acts by ?-

multiplication on the right. Thus, the invariant vector fields on SO(3), and hence the

elementary flux operator Ei
Se

act dually by ?-multiplication.

Next, we investigate the dual action of holonomy operators. We have seen that any

function ϕ(g) defines a multiplication operators ϕ̂ on L2(SO(3)). Let us consider the

elementary operators ê(a), labelled by Lie algebra variables a ∈ su(2), generated by the

plane waves g 7→ eg(a). Let u ∈ L2
?(R3), and assume u=F(f). The dual action of ê(a)

on u is given by:

(̂e(a) u)(x) := F (̂e(a) f)(x) =

∫
dg eg(a)f(g)eg(x)

Using the fact that eg(a)eg(x) = eg(x + a), we obtain:

(̂e(a) u)(x) = F(f)(x + a) = u(x + a)

Hence elementary holonomy operators act by translation on the states in the dual

representations. More generally, any function ϕ on the image L2
?(R3) of the Fourier

transform defines an operator ϕ̂ acting on f as

(ϕ̂ f)(x) =

∫
d3a(ϕ ?a fx)(a)

where fx(a) :=f(x + a).

As F : H0 → H? is a unitary transformation, it preserves the spectra of all

operators. In particular, geometrical quantities such as area or volume are quantized

the same way as in the standard representation of loop quantum gravity. For instance,

the area operator associated to an elementary surface Se is given by

Â[Se] := γ
√

δijx̂i ? x̂j?, (21)

where the coordinate operators under the square root act by ?-multiplication and where

the square root is defined via the spectral theorem. Note that, just as in the standard

representation, we have the quantization ambiguity associated to Immirzi’s parameter

γ.

4.2. Gauge invariant dual states

For a given graph γ, a gauge transformation at a vertex v generated by a group element

gv corresponds to the action of the operator ĝv on Hγ given by Equ. 10. Consider a
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dual state uγ =Fγ(fγ), Fourier transform of a function fγ . The dual action of ĝv on uγ

is defined as ĝv uγ :=Fγ(ĝv fγ) and read:

(ĝv uγ)(x1, . . . , xn) = uγ(g
-1
t1

x1gs1 , . . . , g
-1
tnxngsn)

Gauge invariance is imposed by acting with the gauge averaging operator Pγ :=⊗
v

∫
dgv ĝv. The averaging over gauge transformation at a vertex v, assuming it has

only outgoing edges, takes for the form:

(

∫
dgv ĝv uγ)(x) = (Ĉv ? u)(xi, · · ·xn)

where Ĉv is a ‘closure’ constraint at the vertex v:

Ĉv(xi) :=

∫
dg
∏

ei⊃v

eg(xi) = 8πδ0(
∑

ei⊃v

xi) .

As emphasized in the previous section, the functions δ0 act as Dirac distribution for the

?-product; in particular δ0 ? f =f ? δ0 =f(0)δ0. Hence gauge invariance corresponds to

a strong closure constraint for the su(2) variables xi of the edges incident at v.

More generally, the gauge invariant state Pγ uγ is obtained by ?-multiplication of

the function uγ with a product of closure constraints at each vertex Ĉv =8πδ0(
∑

ei⊃v

εi
vxi),

where εi
v =±1 depends on whether the edge i is ingoing or outgoing at v. A nice way to

write down a general expression for the gauge invariant states is the following. Consider

the graph γ′ ≥ γ obtained by (i) subdividing each edge i∈γ into two parts is, it, where

the sub-edge is meet the ‘source’ vertex si and it meet the ‘target’ vertex ti of i; and

(ii) by flipping the orientation of each it, so that the edges of the new graph γ′ are all

outgoing of the original vertices of γ. This procedure defines a new element uγ′ ∈ Hγ′

in the same equivalence class as uγ, given by

uγ′(x1s , x1t , · · ·xns , xnt) = (
∏

i

δxis
? uγ)(-xit) (22)

Then the projector onto gauge invariant states acts on uγ′ by left ?-multiplication by

the product of closure constraints Ĉv =8πδ0(
∑

iv⊃v xiv) at the vertices of γ:

Pγ u =

(⊗

v

Ĉv

)
? uγ′ . (23)

The action of the projectors Pγ is well defined on equivalence classes in ∪γHγ ; hence,

by construction, it is also well-defined on the equivalence classes in ∪γH?,γ. We may

also check, directly from the definition (23), that the action of Pγ commutes with the

action of add, sub and inv.

This only confirms the geometric interpretation of the Lie algebra variables xi as

fluxes associated to elementary surfaces dual to the edges of the graph γ, and closing

around vertices of the same graph to form elementary 3-cells∗. To be more precise,

it is useful to think of reference frames associated to the vertices of the graph γ. For

∗ Note that the construction does not depend on the valence of the graph and thus does not need a
simplicial setting for its geometric interpretation.
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a given state, the group Fourier variables gi associated to an oriented edge i should

be thought of as the parallel transport between the frames of the ‘source’ and ‘target’

vertices si, ti. The flux variable xis (resp. xit) in Equ. (22) is then naturally interpreted

as the flux across an elementary surface intersecting the edge i at a single point, and

then parallel-transported to the source vertex si (resp. to the target vertex ti). These

two flux variables, associated to the same edge, can then be identified with the relation

gixisg
−1
i . This relation is a consequence of the formula:

(δx ?y eg)(y) = eg ?x δgxg-1(y)

This geometrical interpretation is thus consistent with the action of plane waves and

encoded into the star product.

4.3. Relation with spin network basis

It is interesting to investigate the relation between the Lie algebra variables x and the

labels of the standard basis of states. Starting from the geometric interpretation of x as

flux (or triad) variables, one would thus deduce from direct calculation the geometric

interpretation of these labels. The relation with the usual spin-network basis is made

explicit using the Fourier transform of the Peter-Weyl theorem, see Equ. 16. This gives

a basis for the dual states on a graph γ given by a product over the edges of dual Wigner

functions:

D̂je
mene

(x) :=

∫
dg eg(x)Dje

mene
(g)

These functions, whose dependence upon the norm r= |x| of x goes as Jdj
(r)/r, where

Jdj
is the Bessel function of the first kind associated to the integer dj :=2j + 1 (see for

e.g [39]), are peaked on the value r=dj, thus relating the spin j to the norm of the flux.

The quantum labels corresponding to the direction variables of the fluxes may then be

identified using Perelomov group coherent states |j, ~n〉 = g~n|j, j〉, where ~n ∈ S2 and g~n

is an SU(2) element (say, the rotation with axis vector on the equator) mapping the

north pole (0, 0, 1) to ~n by natural action on the 2-sphere S2. In such (overcomplete)

coherent state basis, the dual Wigner functions

D̂j
~n~n′(x) := 〈j, ~n|D̂j(x)|j, ~n′〉

satisfy the property that

D̂j
~n~n′(x) = eg~ng-1

~n′
? D̂j

~n′~n′ = D̂j
~n~n ? eg-1

~n
g~n′

where the diagonal matrix elements are given by

D̂j
~n~n(x) =

∫
dg eg(g

−1
~n xg~n) Dj

jj(g) (24)

Now, the dependence of these function upon the directional part x̂ = ~x/|x| goes as

[x̂ · ~n]2j, and hence reaches its highest value for x̂=±~n.

These considerations suggest the identification ~x=j~n of flux variables and the labels

of the coherent states basis, which should hold true in a suitable semi-classical limit.
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This limit is the one where where both fluxes x and spins j are large while |x|/j remains

constant. Thus, for example, by rescaling x → x/κ, j → j/κ in (24), one can recast the

integrand of the right hand side of (24) as an oscillatory phase, subject to saddle point

analysis when κ → 0; and it can be shown that the existence of a saddle point requires

precisely that ~x = j~n. The calculation is very similar to the one performed in Sec. 3.2

of [14], so we do not repeat it here.

It worth noticing that, interestingly, the regime of large fluxes can be reached

using the commutative limit of the group Fourier transform. This commutative limit is

obtained [32] by introducing a deformation parameter κ in the definition of the plane

waves and the star product:

eκ
g(x)=e

i
κ

εθ sin θ~ng ·~x, eκ
g1

?κ eκ
g2

=eκ
g1g2

where notations are the same as in (12); and by taking κ → 0.

These results are thus consistent with the interpretation of the spin j as identifying

eigenvalues of the (square of the) flux operators, thus of their norm. In four dimensions,

this gives areas to the elementary surfaces to which the flux variables are associated. We

also see that, in the semi-classical limit, the coherent state parameters ~n behave like the

direction components of the flux variables ~x, and thus admit the same interpretation as

triad components ].

In general, therefore, we can expect that any function of the quantum numbers

j,~n will acquire, in a semi-classical approximation, a functional dependence on them

matching that of the function u(x) on the non-commutative triad variables x, in the

same approximation††.

5. The U(1) case

Here we shortly want to explain the Group Fourier transform for U(1) and comment

on the relation to the triad representation used in Loop Quantum Cosmology (see e.g.

[29, 30]). The U(1) case is in several respects simpler than the SU(2) case but it can

serve to understand the principle mechanisms. As for SU(2) we start by defining plane

waves

eφ(x) = e−iφx (25)

] This gives further support to the recent constructions in the spin foam setting [16, 19, 14, 15] based
on group coherent states and on their interpretation as metric variables; in particular, it suggests that
imposing geometric restrictions on them in the definition of the dynamical amplitudes will ensure that
such amplitudes will have nice geometric properties in a semi-classical regime, as confirmed by the
asymptotic analysis of [20].
††The asymptotic analysis of the new spin foam amplitudes [20], showing how they take the form of
a simplicial path integrals for gravity in the “triad variables”j~n can then be interpreted as suggesting
the existence (possibly beyond the semi-classical regime) of a simplicial path integral expression for
the same amplitudes in the non-commutative variables ~x. This interpretation is of course strongly
supported by the results of [23].
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where x ∈ R. The Fourier transform F of a function f(φ) on U(1) (with the convention

−π < φ ≤ π) is then defined as

F(f)(x) =

∫ π

−π

dφ f(φ) eφ(x) =

∫ π

−π

dφ f(φ)e−iφx (26)

Note the similarity with the usual Fourier transform which is obtained by just restricting

x from R to Z. The image ImF is a certain set of continuous functions on R, but certainly

not all functions in C(R) are hit by F .

ImF can be equipped with a ?–product, which is dual to the convolution product on

U(1). For plane waves, this product reads

(eφ ? eφ′)(x) := e[φ+φ′](x) , (27)

and extends to ImF by linearity. Here [φ + φ′] is the sum of the two angles modulus 2π

such that −π < [φ+φ′] ≤ π. In this way the star product is dual to group multiplication.

Next, we define an inner product on ImF via

〈u , v〉? :=

∫
dx (u ? v)(x) ∀u, v ∈ ImF . (28)

With this inner product one can check that F is a unitary transformation between

L2(U(1)) and ImF .

The peculiar class of functions which build up ImF also leads to a different

characterization of the ?–product: it turns out that 〈u, v〉? is entirely fixed by a discrete

set of values. This can be understood by comparing this Fourier transform with the

usual one which is obtained from (26) by restricting x to be integer, x ∈ Z. In this case

the inverse transformation is given by

f(φ) =
1

2π

∑

x∈Z

F(f)(x)eiφx . (29)

This formula indicates that for the function u(x) in the image of F , only the values

x ∈ Z are relevant. Indeed we will see below that the Lebesgue measure in x-space

(together with the ?–product) reduces to a counting measure with support in Z (and

the pointwise product) for functions u ∈ ImF .

Using the formula for the inverse Fourier transform (29), the star product between two

functions u1 =F(f1) and u2 = F(f2) can be evaluated to

u1 ? u2 (x) =

=

∫ π

−π

∫ π

−π

dφdφ′e−iφ′x f1(φ)f2(φ
′ − φ)

=
∑

x′,x′′∈Z

u1(x
′) u2(x

′′)
sin(π(x′ − x′′))

π(x′ − x′′)

sin(π(x′′ − x))

π(x′′ − x)

=
∑

x′∈Z

u1(x
′) u2(x

′)
sin(π(x′ − x))

π(x′ − x)
(30)

where for the last line we used that
sin(π(x′ − x′′))

π(x′ − x′′)
= δx′,x′′ (31)
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for x′, x′′ ∈ Z. The integral over x in sin(π(x′−x))
π(x′−x)

evaluates to one and therefore the inner

product (28) is given by

〈u , v〉? =

∫
dx (u ? v)(x) =

∑

x∈Z

u(x) v(x) . (32)

This agrees with the inner product for the usual Fourier transform. As mentioned

the Lebesgue measure (to be understood together with the star multiplication) in

the inner product (32) can be rewritten as a counting measure (together with point

multiplication) for functions u ∈ ImF which shows that we essentially have to deal with

the Hilbert space of square summable sequences, that is L̂2
?(R) ' `2. With this counting

measure there is a large class of functions with zero norm inducing an equivalence

relation between functions that differ only by terms of zero norm, that is functions

that are vanishing on all x ∈ Z. In every equivalence class one can define a standard

representative by

us(x) =
∑

x′∈Z

u(x′)
sin(π(x′ − x))

π(x′ − x)
. (33)

These standard representatives also span ImF , that is, the condition u ∈ ImF picks

a unique representative in the equivalence class. Furthermore formula (33) defines the

map that converts standard Fourier transformed functions to group Fourier transformed

functions and is in precise analogy to the SU(2) case where we can use the ‘dual’ Peter–

Weyl decomposition to show that functions in the image of F can be sampled by discrete

values.

On L2(U(1)) we have two elementary operators, the (left and right invariant)

derivative L = −i d
dφ

and the holonomy operator Tn := e−iφn, n ∈ Z, that act as a

multiplication operator. It is straightforward to check, that these operators act dually

as

L̂ u (x) = (x ? u) (x)

(T̂n u) (x) = u(x + n) (34)

In the same way as for SU(2) one can construct Hilbert spaces over graphs and can also

obtain cylindrical consistency of the group Fourier transform map.

In Loop Quantum Cosmology (LQC) [29, 30], a kind of mini–superspace reduction

of Loop Quantum Gravity, one uses also a representation in which the (symmetry

reduced) triad operator acts by multiplication and the holonomies act by translations.

The spectrum of the multiplication operator is R. Note that it is a discrete spectrum

in the sense that the associated eigenfunctions have finite norm. This is possible as the

Hilbert space used in LQC is non-separable. Note that the representation (34) used here

is different. The action of L̂ is via ?-multiplication and – as in L2(U(1)) – the spectrum

is given by Z.

The measure used in Loop Quantum Cosmology can be defined through the inner

product between two wave functions u and v in the following way. Such a wave function
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u can be understood as a map from a countable set {xi}i∈Iu ⊂ R for some index set Iu

of countable cardinality to C

u : xi → u(xi) . (35)

The union of two countable sets {xi}i∈Iu and {xi}i∈Iv defines another countable set

which contains both previous sets. In this way we obtain the structure of a partially

ordered set similar to full Loop Quantum Gravity. Now one can extend each of the

maps u, v to the union of the two sets by defining u(x) := 0 for all x /∈ {xi}i∈Iu and

similarly for v. The inner product is given by

〈u , v〉 =
∑

x∈{xi}i∈Iu∪{xi}i∈Iv

u(x) v(x) . (36)

Hence wave functions u ∈ ImF based on one copy of U(1) can be (isometrically)

embedded into the LQC Hilbert space, but the latter space is obviously much bigger.

6. Outlook

In this paper, we have used tools from non-commutative geometry, more precisely the

non-commutative group Fourier transform of [32, 33, 38], to define a new triad (flux)

representation of Loop Quantum Gravity, which takes into account the fundamental

non-commutativity of flux variables. We have shown first how this defines a unitary

equivalent representation for states defined on given graphs (cylindrical functions),

and then proven cylindrical consistency in this representation, thus defining the

continuum limit and the full LQG Hilbert space. As one would expect, the new

representation sees flux operators acting by ?-multiplication, while holonomies act as

(exponentiated) translation operator. We have then discussed further properties of

the new representation, including the triad counterpart of gauge invariance, clarifying

further its geometric meaning and the relation with the spin network basis (including the

case in which group coherent states are used). Finally, we have discussed the analogous

construction in the simpler case of U(1) emphasizing similarities and differences with

the triad representation commonly used in Loop Quantum Cosmology.

Let us conclude with a brief outlook on possible further developments. As we

mentioned in the text, our construction has been limited, for simplicity, to the case

of SO(3) states. The extension of the group Fourier transform to SU(2) has been

considered in [33, 38] and we expect the generalization of our construction of a LQG

triad representation to be straightforward, and probably most easily performed using

the plane waves augmented by polarization vectors (identifying the hemisphere in SU(2)

in which the plane wave eg(x) lives) defined in [38].

Perhaps more interesting is a fully covariant extension of the SU(2) structures

we used to SO(4) or SL(2, C) ones, depending on the spacetime signature. In fact,

we can think of our non-commutative triad vectors as identifying the self-dual or the

rotation sector of the SO(4) or SL(2, C) algebra, and similarly for the group elements

representing the conjugate connection. The SU(2) plane waves would then arise from
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SO(4) or SL(2, C) plane waves after imposition of suitable constraints corresponding to

the constraints that reduce the phase space of BF theory to that of gravity, in a Plebanski

formulation of 4d gravity as a constrained BF theory. It is at this level that the role of

the Immirzi parameter (absent in our contruction) will be crucial. In identifying this

covariant extension, one could take advantage of the detailed analysis of phase space

variables and geometric constraints in [6], in the simplicial context, and of the work

already done on simplicity constraints in the non-commutative metric representation of

GFTs in [23]. This extension will most likely involve an embedding of the spatial SU(2)

spin networks and cylindrical functions in spacetime obtained introducing unit vectors,

interpreted as normals to the spatial hypersurface, located at the vertices of the graphs.

The relevant structures would then be that of projected spin networks as studied in

[40, 41] (see also [23]).

As we mentioned in the text, our construction has identified the Hilbert space

of continuum Loop Quantum Gravity in the new triad representation, by means of

projective limits. It would be interesting, however, to obtain a better characterization

of the resulting space in terms of some functional space of generalized flux fields, as

we conjecture to be the case, in analogy to the usual construction of the L2 space over

generalized connections, endowed with the Ashtekar-Lewandowski measure. This will

involve the definition of the relevant non-commutative C∗-algebra and the application

of a generalization of the usual GNS construction (for some work in this direction, see

[42]).

The new representation we have defined for LQG can be an important mathematical

(and computational) tool for studying the semi-classical limit of the theory, using the

expansion of the ?-product of functions in the Planck length (see [32]). In particular,

this can be useful for a better understanding of quantum field theory for matter fields

on a quantum spacetime, following [24], and more generally for the definition of matter

coupling in LQG. This is indeed already facilitated by the very presence of explicit

triad (metric) variables in the quantum states of the theory, which is true in the new

representation.

Finally, the new triad representation brings the geometric meaning of the LQG

states to the forefront, and suggests a different avenue for the construction of coherent

states, on top of giving of course a new representation for the known ones. Both these

two facts can be relevant for tackling the issue of defining the quantum dynamics of the

theory in the canonical framework, for analyzing the relation to the one defined by the

new spin foam models [16, 17, 18, 19], and building up on the results of [23] in the group

field theory setting.
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