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Euclidean three-point function in loop and perturbative gravity

Carlo Rovelli* and Mingyi Zhang!
Centre de Physique Théorique de Luminy*, Case 907, F-13288 Marseille, EU
(Dated: July 5, 2011)

We compute the leading order of the three-point function in loop quantum gravity, using the vertex
expansion of the Euclidean version of the new spin foam dynamics, in the region of v < 1. We find
results consistent with Regge calculus in the limit v — 0, j — oco. We also compute the tree-level
three-point function of perturbative quantum general relativity in position space, and discuss the

possibility of directly comparing the two results.

PACS numbers: 04.60.Pp

I. INTRODUCTION

The difficulty of extracting physical predictions from a
background-independent theory is a well-known difficulty
of quantum gravity. A strategy to address the problem
has been developing in recent years, based on two ideas.
The first is to define n-point functions over a background
by storing the information about the background in the
boundary state [1]. In covariant loop gravity [2, 3], this
technique yields a definite expression for the theory’s n-
point functions. The second is to explore the expansion
of this expression order by order in the number of inter-
action vertices [4]. Although perhaps counter-intuitive,
this expansion has proven effective in certain regimes; for
details see [5, 6]. In particular, the low-energy limit of
the two-point function (the “graviton propagator”) ob-
tained in this way from the improved-Barrett-Crane spin
foam dynamics [7—12] (sometime denoted the EPRL/FK
model) correctly matches the graviton propagator of pure
gravity in a transverse radial gauge (harmonic gauge)
[13, 14]. This result has been possible thanks to the in-
troduction of the coherent intertwiner basis [15] and the
asymptotic analysis of vertex amplitude [16, 17].

The obvious next step is to compute the three-point
function. In this paper we begin the three-point function
analysis. We compute the three-point function from the
non-perturbative theory. As in [14], we work in the Eu-
clidean regime and with the Barbero-Immirzi parameter
0 < v < 1 where the amplitude defined in [11] and that
defined in [12] coincide.

Our main result is the following. We consider the limit,
introduced in [14, 18], where the Barbero-Immirzi param-
eter is taken to zero v — 0, and the spin of the bound-
ary state is taken to infinity j — oo, keeping the size
of the quantum geometry A ~ ~j finite and fixed. This
limit corresponds to neglecting Planck scale discreteness
effects, at large finite distances. In this limit, the three-
point function we obtain exactly matches the one ob-
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tained from Regge calculus [19].

This implies that the spin foam dynamics is consistent
with a discretization of general relativity, not just in the
quadratic approximation, but also to the first order in the
interaction terms. This result agrees with the recent one
in [18], where Magliaro and Perini show that in the y — 0
regime the partition function for a 2-complex takes the
form of a path integral over continuous Regge metrics.

The relation between the Regge and Loop three-point
function and the three-point function of the weak field
perturbation expansion of general relativity around flat
space, on the other hand, remains elusive. We compute
explicitly the perturbative three-point function in posi-
tion space in the transverse gauge (harmonic gauge), and
we discuss the technical difficulty of comparing this with
the Regge/Loop one.

The paper is organized as follow: in Section II, we re-
view the ingredients and the assumptions needed to to
define the n-point functions in loop gravity and we com-
pute the three-point function. In Section IIT we derive the
three-point function from perturbative field theory, and
discuss the relation between this and the Loop/Regge
one.

II. THREE-POINT FUNCTION IN LOOP
GRAVITY

In this section we compute the three-point function
of the spin foam amplitude in loop quantum gravity at
first order in the vertex expansion. We follow closely the
techniques developed for the two-point function in [5, 14]
and the calculation of the three-point function for the old
Barrett-Crane model in [20]. For previous work in this
direction, see also [13, 21, 22].

A. Boundary Formalism

The well known difficulty of defining n-point functions
in a general covariant quantum field theory can be il-
lustrated by the following (naive) argument. If the ac-
tion S[g] and the measure are invariant under coordinate



transformations, then

TN) ~ /Dg g(z1) - g(x

is formally independent from z,, (as long as the z,, are
distinct), because a change in z,, can be absorbed into a
change of coordinates that leaves the integral invariant.
This difficulty is circumvented in the weak field approxi-
mation as follows. If we want to study the theory around
flat space, we have to impose boundary conditions on
Eq.(1) demanding that g goes to flat space at infinity.
With this choice, the classical solution that dominates
the path integral in the weak field limit is flat spacetime.
In flat spacetime, we can choose preferred Cartesian co-
ordinates x, and write the field insertions in terms of
these preferred coordinates. Then Eq.(1) is well defined:
the coordinates x, are not generally covariant coordi-
nates, but rather Minkowski coordinates giving physical
distances and physical time intervals in the background
metric picked out by the boundary conditions of the field
at infinity. This is the way n-point functions are de-
fined for perturbative general relativity. In the full non-
perturbative theory, on the other hand, this strategy is
not viable, because the integral Eq.(1) has formally to
be taken over arbitrary geometries, where the notion of
preferred Cartesian coordinate loses meaning.

The idea for solving this difficulty was introduced in
[1] and is explained in detail in [5]. We give here a short
account of this formalism, but we urge the reader to look
at the original references for a detailed explanation of
the approach. Let us begin by picking a surface ¥ in
flat spacetime, bounding a compact region R, and ap-
proximate Eq.(1) by replacing S[g] outside R with the
linearized action. Then split Eq.(1) into three integrals:
the integral on the field variables in R, outside R, and
on Y. Let v be the value of the field on ¥. Let Wx[v] be
the result of the internal integration, at fixed value ~y of
the field on X

Web] = [ Dy oSl (2)
gls=v

Let Ux[y] be the result of the outside integral. Then we
can write

Wiz, ~) eiSldl (1)

W, ) ~ / Dy W] 7(z1)- () Usl]

= (Wsly(z1)..v(zn)[Ps) (3)

Now observe first that because of the (assumed) diff-
invariance of measure and action, Wx[y] is in fact in-
dependent from ¥. That is Wx = W. Second, since the
external integral is that of a free theory, U [v], will be the
vacuum state of the free theory on the surface . This
can be shown to be a Gaussian semiclassical state peaked
on the intrinsic and extrinsic geometry of ¥. Inserting
the proper normalization we write

Wh(z1). ~y(en)[¥s)
(W¥s)

Wz, .an) = (y(@1)-y(en)) =

(4)

where W is the formal functional integral on a compact
region, and ¥y is a semiclassical state peaked on a cer-
tain intrinsic and extrinsic geometry. This is the “bound-
ary formalism”. For a strictly related approach, see also
[23, 24]. The quantities appearing in the formal expres-
sion Eq.(4) are well defined in loop quantum gravity and
this expression can be taken as the starting point for
computing n-point functions from the background inde-
pendent theory.

B. The theory

The definition of the non perturbative quantum grav-
ity theory we use is given for instance in [3]. The Hilbert
space of the theory is spanned by spin network states
IT',4), where T" is a graph with L links [ and N nodes
n and v is in Hr = Lo[SU(2)%/SU(2)N]. A convenient
basis in Hr is given by the coherent states |j, 7) which
are the gauge invariant projections of SU(2) Bloch co-
herent states [8]. These are labeled by a spin j; per each
link of the graph, and a unit-norm 3-vector 7,,; for each
couple node-link of the graph. The dynamics of the the-
ory is determined by the amplitude W defined as a sum
over two-complexes, or, equivalently [25], as the limit for
o — oo over the two-complexes o bounded by I', of the
amplitude (we follow here [26] for the notation)

m=3 / dgue / dﬁefgdjf te[ TT Pos]

ecdf
(5)
where e € Of is the ordered sequence of the oriented
edges around the face f and

(WoL, 4,

Pep = g5, Y|js,ftes) (i, —iief|Y g, L. (6)

for an internal edge e. For an external edge e, namely an
edge hitting the boundary I of o,

Pef = <jl7 _ﬁnl|YTgt_€ia or Pef = gseeYUl; ﬁnl> (7)
according to whether the orientation of the edge is in-
coming or outgoing. Here [ is the link bounding the face
f and n is the node bounding the edge e. In all these
formulas, the notation g stands for the matrix elements
of the group element g in the appropriate representation.

Here we deal with the Euclidean theory. Then g, =
(92, 900) € Spin(4) ~ SU(2) x SU(2) and Y maps the
SU (2) representations j of into the highest weight SU(2)
irreducible of the SO(4) representation (5%, ), where
j* =1(1£+)j. The matrix elements of Y are the stan-
dard Clebsch-Gordan coefficients.

The amplitude can be written in the form of a path
integral by defining the action

S = ZSfthltr 11 Ps]- (8)

ecf



Then
<W0|Faj7n> = Z,u'/dgve/dﬁef eSa (9)
Jf

where 1 =} d;. This is the form which is suitable for
the asymptotic expansion that we use below.

Since the coherent states factorize under the Clebsch-
Gordan decomposition, and since the scalar product of
coherent states in the representation j is the j’s power of
that in the fundamental representation, we obtain S =
ST+ 57 with

S =" 2jF (sl (95) gl i) (10)
vf

where e and e’ are the two edges bounding f and v.

The last ingredient we need are the gravitational field
operators y(z) that enter in Eq.(4). The gravitational
field operator that corresponds to the metric is expressed
in loop quantum gravity by the Penrose operator [3]

Gt = B - B, (11)

where E} is the left invariant vector field acting on the
hiq variable of the state vector, namely the SU(2) group
element associated to the link a bounded by the node I.
The key technical observation of [14] is that

(w ‘G?b‘ L,j,n)= Zu/dgve /dnef g e (12)
Jr

where gf® = Ale . A and Ale = Alet 4 Ale~

-+ {
AP =i

<_nal|(9§)719lﬁ:|ﬁla> .

This is the insertion that we consider below.

C. Vertex expansion

The second idea for computing n-point functions is
the vertex expansion [4]. This is the idea of studying
the approximation to Eq.(4) given by the lowest order in
the 0 — oo limit, namely using small graphs and small
two-complexes. Here we only look at the first nontrivial
term. That is, we take a minimal two-complex, formed
by a single vertex. We consider for simplicity the theory
restricted to five-valent vertices and four-valent edges.
Then the lowest order is given by a two-complex formed
by a single five-valent vertex bounded by the complete
graph with 5 nodes I's. Labeling the nodes with in-
dices a,b,... = 1,...,5 the amplitude of this two-complex
for the boundary state |I's, jab, fab) (here jop = jba, but
Tlab 7 Tpa) reads simply

avw&%bﬁ@>=uo>/' dg eZev S (14)

SU(2)10

with

Su =Y 24 n{=iian|(97) g ) (15)
=+

The u(j) term comes from the face amplitude and the
measure (and cancels at the tree-level [20]).

The vertex expansion has appeared counterintuitive to
some, on the base of the intuition that the large distance
limit of quantum gravity could be reached only by states
defined on very fine graphs, and with very fine two-
complexes. We are not persuaded by this intuition (in
spite of the fact that one of the authors is quite responsi-
ble for propagandizing it [27-29]) for a number of reasons.
The main one is the following. It has been shown that
under appropriate conditions Eq.(9) can approximates a
Regge path integral for large spins [26, 30, 31]. Regge
calculus is an approximation to general relativity that is
good up to order O(I?/p?), where [ is the typical Regge
discretization length and p is the typical curvature ra-
dius. This implies that Regge theory on a coarse lattice
is good as long as we look at small curvatures scale. In
particular, it is obviously perfectly good on flat space,
where in fact it is exact, because the Regge simplices are
themselves flat, and is good as long as we look at weak
field perturbations of long wavelength. This is precisely
the limit in which we want to study the theory here. In
this limit, it is therefore reasonable to explore whether
the vertex expansion give any sensible result.

Reducing the theory to a single vertex is a drastic sim-
plification of the field theory, which reduce the calcula-
tion to one for a system with a finite number of degrees
of freedom. Is this reasonable? The answer is in noticing
that the same drastic simplification occurs in the analog
calculation in QED: at the lowest order, an n-point func-
tion involves only the Hilbert space of a finite number of
particles, which are described by a finite number of de-
grees of freedom in the classical theory. The genuine field
theoretical aspects of the problem, such as renormaliza-
tion, do not show up at the lowest order, of course.

If we regard the calculation from the perspective of
the triangulation dual to the two-complex, what is being
considered is a region of spacetime with the geometry
of a 4-simplex. In the approximation considered the re-
gion is flat, but this does not mean that there are no
degrees of freedom. In fact, the Hamilton function of
general relativity is a nontrivial function of the intrinsic
geometry of the boundary, whose variation gives equa-
tions that determine the extrinsic geometry as a func-
tion of the intrinsic geometry. This relation captures a
small finite-dimensional sector of the Einstein-equations
dynamics (for a simple example of this, see [32]). This is
precisely the component of the dynamics of general rel-
ativity captured in this limit. The three-point function
in this large wavelength limit describes the correlations
between the fluctuations of the boundary geometry of
the 4-simplex, governed by the quantum version of this
restricted Einstein dynamics.

Let us illustrate this dynamics a bit more in de-



tail, both in second order (metric) and first order
(tetrad/connection) variables. In metric variables, the in-
trinsic geometry of a boundary of a four-simplex (formed
by glued flat tetrahedra) is uniquely determined by the
10 areas Agp of their faces. The extrinsic geometry of
the boundary four-simplex is determined by the 10 an-
gles ®,;, between the 4d normals to the tetrahedra. The
Einstein equations reduce in the case of a single simplex
to the requirement that this is flat. If the four simplex is
flat, then the 10 angles ®,; are well-defined functions

(I)ab = (I)ab(Aab) (16)

of the 10 areas Ay, (for comparison, if the four-simplex
has constant curvature because of a cosmological con-
stant, then the same A,,’s determine different ®,;’s).
This dependence captures the restriction of the Einstein
equations to a single simplex. In first order variables, the
situation is more complicated. The variables g, 7 and 7
in Eq.(8) can be viewed as the discretized version of the
connection and the tetrad. The vanishing-torsion equa-
tion of the first order formalism, which relates the con-
nection to the tetrad, becomes in the discrete formalism
a gluing condition between normals to the faces parallel
transported by the group elements.

D. Boundary vacuum state

Following the general strategy described above, we
need a boundary state peaked on the intrinsic as well
as on the extrinsic geometry. This state cannot be the
state |T's, jab, lap) Which is an eigenvalue of boundary ar-
eas, and therefore is maximally spread in the extrinsic
curvature, namely in the 4d dihedral angle between two
boundary tetrahedra ®,; [33]. Rather, we need a state
which is also smeared over spins [34-36].

Following [36], we choose here a boundary state peaked
on the intrinsic and extrinsic geometry of a regular 4-
simplex, and defined as follow. The geometry of a flat
4-simplex is uniquely determined by the 10 areas Ag; of
its 10 faces. Let then 7i,,(Aqp) be the 20 normals deter-
mined up to arbitrary SO(3) rotations of each quadruplet
Taby , -+ Tab, Dy these areas. By this we mean the follow-
ing. The flat 4-simplex determined by the given areas is
bounded by five tetrahedra. For each such tetrahedron,
the four normals to its four faces in the 3-space deter-
mined by the tetrahedron determine, up to rotations)
the four unit vectors miap,, ..., ab,. Using this, we define
the boundary state as

|\IIZ> = |\Ilj0> = cho (jab)|F7jab;nab(jab)>

Jab

(17)

where the coefficients ¢;, (j) in the large j limit are given
by [36]

. L =3 (any (eqy vl (e Lab 0 Jed 0 i 57\ Boyjas
Cio Gab) = ~—e e Vio oo (ab)
N

(18)

The coefficients are also given in [4, 5. a(@®)(d jg

a 10 x 10 matrix that has the symmetries of the 4-
simplex, that is, it can be written in the form a(e)(c®) =

Dok akPéab)(Cd) where

Péab)(Cd) =1 if (ab)=(cd) and 0 otherwise,

Pl(ab)(cd) =1 if {a=¢,b+#d} ora permutation,

and 0 otherwise,

PQ(ab)(cd) =1 if (ab)# (cd) and 0 otherwise.

®y is the background value of the 4d dihedral angles
which give the extrinsic curvature of the boundary. jg
is the background value of all the areas. The state is
peaked on the areas j,;, = jo, which determine a regular
4-simplex. The dihedral angles of a flat tetrahedron is
@y = arccos(—1), and we fix @ to this value. As a con-
sequence |¥; ) is a semiclassical physical state, namely
it is peaked on values of intrinsic and extrinsic geometry
that satisfy the (Hamilton) equations of motion (16) of
the theory. See [4, 5, 14, 32| for more details.

E. Three-point function

Let us now choose the operator insertion. We are in-
terested in the connected component of the quantity

G’abcdef _ <G21b Gfg sz%

Ilmn

(19)

where Gfb is the Penrose operator associated to the node
l of T'5 and the two links of this node going from [ to a
and from [ to b respectively. The connected component
is

Gyredel = (Geb Ged G) + 2(Gt) (G (Ge )
— (GG Gl — (G (GRhaed)
S (esotenteny

(20)

We begin by studying the full three-point function
Eq.(19), before subtracting the disconnected compo-
nents. From Eq.(4) and Eq.(18), and simplifying a bit
the notation in a self explicatory way, this is

Grabedef _ e (WG G G| Ts, j,n)

= - - 21
b >, e G) W, j.n) 1
Using Eq.(12), this gives
. (7 d + ab ,cd efeS
Gabcdef o Z] (-7) f ga ql qm qn (22)

b >, c(d) [dgaeS

where the sum over spins is only given by the boundary
state, since there are no internal faces.

Define the total action as Siot = Inc(j) + 5. Because
we want to get the large j limit of the spin foam model,
we rescale the spins j,; and jo. Then the action goes to



Stot — ASiot and also q;‘b — )\qu;b. In large A limit, the
sum over j can be approximated to the integrals over j

Z /dgi ab )\Smt N/djdga/.//qab AStot (23)

where p is the product of the face amplitudes. Thus
(dropping the suffix tot from now on)
gabedes _ yo J 45495 pai” Parianl et (24)

Action, measure and insertions are invariant under a
SO(4) symmetry, therefore only four of the five dg* in-
tegrals are independent We can fix the gauge that one
of the group element g& = 1, and the integral reduced to
dg = Ha 1 dgtdg, . This gives the expression
Gabcdef fd]dg /MII Qm qefeAS
Imn fd]dg MGAS

(25)

We simplify the notation by writing this in the simple
form

- ¢ Jdidg plmner®

G=\
[ djdg pers

= (Imn) (26)

where | = ¢f*, m = ¢¢¢,n = ¢¢/ are functions of j and g.
The connected component reads then
(nl){m) — (mn){l)

(tm)(n) —
(27)

which is the point of departure for the saddle point ex-
pansion.

G = (Imn) + 2{I)(m){n) —

F. Saddle point expansion

To study the asymptotic behavior of Eq.(26), we use
the saddle point expansion[20, 37, 38]. For this, we need
the stationary point of the total action Sior = Ine(j)+.S.
Here we briefly review the works in [16] and [14]. They
discuss the behavior of the critical point and stationary
point of S = ST 4+ S~ and Siot. We invite readers to
read their articles for full detail discussion.

The critical point and stationary point of Re(S) coin-
cide with each other when v < 1. For the real part of
the action S, the critical points are the group element g*
satisfy the gluing condition

anab = ngtnba (28)
where RE = R(g¥) is the spin-1 irrep.of SU(2). This
means that at the critical point the geometry of space-
time goes to a classical one in which all tetrahedra glue
perfectly. There are 4 classes of critical points satisfy
the condition (28). At the critical points of Re(S), the
action S can be written as S = iA, where A is a real
function and reduces to Regge like actions. See [16] and

[14]. A unique class of critical points is then selected by
the stationary point behavior of Siot.

The stationary points of Re(S) are the critical points
of Re(S), because of the closure constraint, which is satis-
fied by the boundary state for large jo. We are interested
in the stationary points of Siot are not just with respect
to the group variables, but also with respect to the spin j
variables. The stationary point j,;, = jo also selects the
class of group stationary point. This is because at the
stationary point, S must satisfy

95(90)

—ivDqp +
a.7ab

=0 (29)

Therefore it means that only when S(go) = iSregge (With
a definite sign) this condition can be satisfied. This
condition picks the unique class of critical points gat of
Re(S), which makes S(go) = iSRegge-

We are thus interested in the saddle point expansion
of the integrals in Eq.(26) around the stationary points
(jo, gF) described above. According to the general the-
ory, the integral

F(\) = / da f (z)e @) (30)

can be expand for large A around the stationary points

as follows
FO) = Clan) (1o + 5 (3550007 + D) )

+o<;> (31)

where zg is the stationary point, f;; is the Jacobian ma-
trix of f, and J = H~! = (S"(x0))~"! is the inverse of
the Jacobian matrix of the action S. A straightforward
application of this formula to Eq.(27) shows that

600 (L) -

This in fact is not surprising, because we are comput-
ing a three point function, and this cannot be captured
only by the second order of the saddle point expansion.
The second order of the saddle point expansion sees only
the second derivatives of the action, while the connected
component of the three point function depends on the
third derivatives of the action. In fact, the 3rd deriva-
tive of the action term can be identified with a Feynman
vertex, the inverse of the second derivative as the propa-
gator and the insertions as the external legs of a Feynman
diagram. Then It is clear that to second order there is
no connected component.

Therefore we need the next order of the saddle point
expansion. From Eq.(30), this is given by

FQA) = C(xo) (f( )+%+%>+O<)\13)(33)



where
1 i L ik
F = _§fijJ + §fiJ JV R (34)
5 1
_ﬂfJ”J]kanRiijlmn + ngsz]lRijkl
and
5
= _fz]liUJkl f leJ]kaanmn
Efij J’kJﬂJm"Rmmn (35)
35 ’ .
+ EfijszJ]anoJl;DRmkoRnlp 4.
1 ) .
Here R(x) = S(z) — S — §Hij (x —x9)"(x — Z)?, all func-

tions are computed in xg, the stationary point of S(z)
and the indices indicate derivatives. In the last two equa-
tions we have left understood some symmetrization. For
instance the third term of the right hand side of Eq.(34)
should read .

% £ gim g g™ IR Rk Rimn (36)

G. Analytical expression

Eq.(37) indicates that we need to get the second and
third derivatives of the total action, and the first and
second derivative of the insertions. Here we compute
these terms.

We use Euler angles to parameterize the SU(2) group
elements goi around the stationary point

RE =" IiRE, (38)

where i = 1,2, 3, 6; are Euler angles, J; are the generators
of SU(2), R, stands for arbitrary irrep. of SU(2). There
are 34 independent variables, 10 areas j,; of triangles
in the 4 simplex, 24 group element parameters in which
12 for g+ and 12 for g~. Here we give only some steps
to get to the result. The whole results can be found in
the Appendix. The second order derivative of the total
action gives

and so on % — yaleed 0 SRegge (39)
Using this, and recalling that here f(z) = aéz;bsa]cd 0=0 v Joab\/Joed 3Jabajcd
l , bt to order O(<
w(x)l(z)m(x)n(x), we obtain, up to order O(5z), e Z b ( - ab) (n) )(40)
bed o j i lo=0 (ba)
Gimede! = 3 (= Rigglimun T T (37) ) .
ik 77 lft s at| = L (05— (”fb)z(”fb) i~ 1€ijk (”fb)k)
+(ligmgni + Lemagng +kalnij)JlkJ]l) 9077007 lo=g 2 !
(41)
The first term on the right hand side resembles the one
vertex diagram with three legs. The second term resem-
bles a 4-point function in which 2 points are identified. The third order derivative of the total action gives
|
aSStot o a SRegge (42)
ajabajcdajef 0=0 ajabajcdajef
228 1. + . + + +
69ai69aiaeai = Z EVY ]ab(gjk ( ) + 5’” ( ) + 5"] ( ) -3 (nab)i (nab)j (nab)k) (43)
k j i 10=0 b#a
i = O (1), + A (), 2 (), (), () (a1
09bi89ai89ai 0=0 = 4 Y Jab Ok ki \Map ab/ ab/j ab)

i (enit (), + 20t (1), ) (nF))



The first derivatives of the insertions

6ng _ 28(.jca.jcbnca : ncb) _ 26(jcajcb COs @cab) (46)
aje‘f aje‘f ajef
dqg’ Lo 4. + + , + +
aoq:ﬁ: |9fi=0 = _527 v Jnaj"b((nnb)i - (nna)i (nnb)j (nna)j + Zgijk (nnb)j (nna)k) (47)
é)ng _ 1 2+, + +
ggnE ot =0 = 3 nadns (05); + (1)) (1 = (1) ; () ;) (48)
The second derivatives of the insertions
O him = T sl (1), (05, + (05), (05, —2 (o), (), (05), (02, (49)
ae;}:ﬁ:ae;z:ﬁ: =0 — 47 T Inadnb\\Npp j Nna); b )i \Mna j Nnb)yr NMna )y \Mpa); \Mna j
—1 (nrilb)k (nfa)m <5kmj (n'rﬂz:a)i + Ekmi (n'rﬂz:a)j))
(50)

H. Numerical results

The derivatives over the spin js can be obtained nu-
merically. For simplicity, we only consider the situation
where the boundary is a regular 4-simplex. For the total
action S, the second derivatives
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Now, let us look at the dependence of these quantities



from v and 5 = jo. We obtain
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For the 3-valent term, the scaling is
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And for the “4”-point function terms,
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Consider now the limit which introduced by Bianchi,
Magliaro and Perini [14], i.e. v — 0, j — oo, with fixed
physical area vj = A. Then the only term that sur-
vives are Eq.(51) and Eq.(52). These terms are precisely
those appearing in the Regge calculus three-point func-
tion, given in [20].

Therefore, we can conclude that in the Bianchi-
Magliaro-Perini limit the 3 point function of loop quan-
tum gravity matches the Regge calculus one.

With an analogous “dimensional” analysis, we can
check that for 4-point function and 5-point function the
spin foam model give perturbative Regge calculus result
in the same limit. For 4-point function, the Regge part
has the scale of O(7° %), others have the scale of O(v*5°),
k > 5. For 4-point function, it is the same. The scale of
Regge part is O(7°5%).

It appears therefore that ~ scales the amplitude of the
“un-gluing” fluctuation. It also measures the difference
between area bivectors A’ and group generators J!7.
The v — 0 limit corresponds to JI/ = AT7[11][39].

III. THREE-POINT FUNCTION IN
PERTURBATIVE QUANTUM GRAVITY

In this section we give for completeness the analytic
expression of the three-point function in position space,
at tree level, in the harmonic gauge. We will briefly re-
view the main definitions and notations on perturbative
quantum general relativity, based on [37][40][41]. We
only show the result in this note. More details are in
the Appendix.

A. Definitions

perturbative quantum gravity describes the quantum
gravitational field as a tensor field in a flat background
spacetime. This is a weak field expansion that does not
address the problem of the full consistency of the theory,
but it gives nevertheless a credible approximation in the
very low energy regime. Therefore a consistent full theory
of quantum gravity should match the perturbative results
in the low energy limit.

Here we focus on the Euclidean spacetime and we take
background spacetime to be flat; i.e. the metric of the
background is d,,. The definition of gravitation field
hyw () is

Py (@) = guw (2) = Sy (53)

where g, () is the total metric,  is a cartesian coordi-
nate which covers the background spacetime manifold.

Since we use a path integral formalism to write the
quantum theory of perturbative gravitation field, we need
rewrite Einstein-Hilbert (EH) action (without cosmolog-
ical constant)

1

in terms of the field h,,(x). Under general coordinate
transform the gravitation field h,, has a gauge free-
dom, with a structure similar to the electromagnetic field
case. To compute the symmetric three-point function, we
choose the harmonic gauge

(54)

1
bt = 50"h (55)

where h = hl;. We only consider the pure gravity situ-
ation, without matter. In this case, the linearization of
the Einstein equations reads

1
0,0 hy = §5W8p8ph. (56)
Taking the trace for both side, we have
0,0°h =0, and 0,0°h,, =0 (57)

Using this and the gauge fixing, the EH action becomes
(only keeping the 3-valent terms)

Ss

/ da(h7P Dy h* 8 ,hy — 2h,50° R 0P hyy )
(58)
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B. Three-point function

The three-point function at the tree level leading order
is defined as follow
G/,L1/.L2V1V20’10’2(xl7x27x3) = (59)

1 o .
7 [ D1 185 s (1) B 22) P (2)

where Z = [ Dh exp (iS2) and

1
y = / d*2(0° PO, hg, — 50ph0°h). (60)

641G
The terms in S3 are quite analogous; let’s focus on the
first, namely h??0,h*"0,h,,. Using the Wick contrac-
tion method, we obtain

1
Gul;L2V1V20'10'2(x17x27x3) = 647G 7
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where k = V327G and D, po (@
gator in position space, which is

— y) is graviton propa-

)
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Since all the terms in Eq.(61) have a similar form, we
focus on the first one. This reads
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The difficulty is to solve the integral in Eq.(63). The

asymmetric form of the integral comes from the deriva-
tives in the perturbative EH action (58). Fortunately we
can change the derivative variables and take the deriva-
tives out of the integral, turning it into a three-point
function in A¢? theory. For Eq.(63), it turns into

g, 1%
A e AH,Vll/QAHVﬂTlO'? 8 8

SH1H2
2 (27)° 0z Ozt

GA¢3 (1’1, T2, 333) (64)
where
d*z

|z —x1|2 |z —x2|2 |z — x3]

GA¢3 (1'1,1'2,1'3) (65)

According to a theorem in [42], for a scalar three-point
function, which is rotation, translation and dilation co-
variant, must have the form G (z1, 9, 13) = CaSyhszd,
in general, where x;; = |z; — x;|, C is a constant. Then

c
z 2z 2
|21 — @2| |w2 — @3] |w3 — 21|
(66)
Then the derivatives outside of the integral give the fi-
nal results. Let us introduce some notations. Focus
on an equilateral 4-simplex. |z — 22| = |xo — x3]

Grgs (1,22, 23) =
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We do not write the non-connected terms because they
equal to zero by gauge symmetry. we have, for instance
4
Iy = CQLG (zhal + afay — 2252l — 228 a — baliay + Tal'xl + ahaf + dabal — bahah) (68)
and similarly for the other components. This allows us to write the three-point function explicitly:
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C. Comparison between the perturbative and loop
three-point functions

The comparison of the three-point function computed
here with the one computed in the previous section is
not easy. In order to compare the expectation values, we
need to identify the Penrose operators Gfb with the met-
ric field. The Penrose operator has a clear geometrical
interpretation [33]: it is the scalar product of the flux
operator across the boundary triangles a and b of the
boundary tetrahedron [ of a 4-simplex-like spacetime re-
gion. It can therefore immediately compared with quan-
tities well defined in Regge geometry: areas of triangles
and angles between triangles.

The direct comparison with the metric operator, on the
other hand, is tricky, since areas and angles of simplices
are nonlocal functions of the metric. In addition, the
n-point functions are computed in the linearized theory
in a certain gauge. The loop theory defines implicitly a
gauge in two steps. First, the boundary operators are
naturally defined in a “time” gauge, with respect to the
foliation defined by the boundary. Second, the remaining
gauge freedom is fixed by the boundary state [6, 43].

Tentatively, we may write

Gy = Ey - By = det(q)g” (a) N (2)Nj* (x)  (70)
where N is the normal one form to the triangle (n, a)
in the plane of the tetrahedron a, normalized to the co-
ordinate area of the triangle, in the background geome-
try, and g;; is the three metric induced on the boundary.
More precisely, we can use the two-form Bllfl, associated
to the (n,a) triangle and write

G = 29”7 g" BY BY,,. (71)

This is the way the loop operator was identified with the
perturbative gravitational field in [14]. The same simple
minded identification does not appear to work for the
three-point function, as shown by an explicit numerical
calculation given in the Appendix C, if we use the nu-
merical values for the boundary state found in [14]. Since
the loop calculation matches the Regge one, the inconsis-
tency is not related to the specific of the loop formalism,
and is therefore of secondary interest here.

The problem of the consistency between Regge calculus
[19] and continuum perturbative quantum gravity field
theory has been discussed in [44-46]. The consistency
between Regge calculus and continuum theory is based
on the relation between the Regge action Sgegge and EH
action Sgn. SRegge can be derived from Sgm [44], and
SRegge yields back Sgm with a correction in the order
O(1%/p?) [45], where [ is the typical length of a four sim-
plex and p is Gauss radius which stands for the intrinsic
curvature. In the limit { — 0 or p — 00, SRegge — SEH.
In our calculation, we use the limit p — oo, as we have
mentioned in Section IIC. Then we can use the regu-
lar way to calculate the graviton n-point function, i.e.
adding n h,,s into the path integral as insertions and
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change the action Sgy — Sgu + O(12/p?)[45]. Perturba-
tive Regge calculus is given by the strong coupling expan-
sion [46]. The expansion around the saddle point in loop
gravity corresponds to the strong coupling expansion in
Regge calculus.

We also point out here that in [4][5], the traceless gauge
hl; = 0 was assumed, but this may not be consistent with
the gauge choice implicit in the use of the Penrose field
operator. If we take this into account in the definition of
two-point function given in [14]

G =

(B - B, By, - By — By, - Ep By - Er) (72)

since E, is a densitized operator, we obtain

Gt :<det(g(fﬂm))gw(£ﬂm) det(g(zn))gpo (2n))
(N (N )Y (N5)P (N7
—(det(g(zm )Q;W(xm»<det(9(xn))gp<7(xn)>
(N )H (N )Y (NS)P (N7 (73)

Using (A1), we find at the order O(h?)
Gab“i <hhpa5a5 + h25p05a5 + hhag(spa + hpahag>

(N (NG )Y (NP (N + O(R?) - (74)

which is certainly not the standard two-point function.
For the three-point function case, the relation is even
more complicated.

An additional source of uncertainty in the relation be-
tween the flux variables F and g,,, is given by the correct
identification of the normals. Above we have assumed

BB, = det(9)gyu (x)N;i (z) Ny (2) (75)

where the normals N} are those of the background geom-
etry. But in the boundary state used N2 = j,,n%(j(h)),
where the normals are determined by the areas of the
entire 4-simplex. This gives an extra dependence on the
metric: det(g) g, ()N (7 (h())) Ny, (4 (h()))-

Because of these various technical complications a di-
rect comparison with the weak field expansion in g, re-
quires more work. On the other hand, it is not clear that
this work is of real interest, since the key result of the
consistency of the loop dynamics with the Regge one is
already established.

IV. CONCLUSION

We have computed the three-point function of loop
quantum gravity, starting from the background indepen-
dent spinfoam dynamics, at the lowest order in the vertex
expansion. We have shown that this is equivalent to the
one of perturbative Regge calculus in the limit v — 0,
j — oo and vj = A.

Given the good indications on the large distance limit
of the n-point functions for Euclidean quantum gravity,
we think the most urgent open problem is to extend these



results to the Lorentzian case, and to the theory with
matter [47, 48] and cosmological constant [49-51].

Among the problem that we leave open, are the follow-
ing. (i) We have computed the three-point function in po-
sition space from perturbative quantum gravity, treated
as a flat-space quantum field theory. We have found that
we cannot use here the techniques of [4, 5, 14, 21] to com-
pare this with the loop calculation, because of technical
complications in comparing the expansion. These can
be traced to the different gauges in which the calcula-
tions are performed, to the traceless condition h# = 0
which in general is not satisfied and to the fact that
the normals have a non-trivial relation with the field
Nf = N2(h). (ii) The boundary vacuum state and the
parameters a(*)(°?) introduced in Eq.(18) should be bet-
ter understood and checked. A possibility is to compute
them from the first principle, using the unitary condition
(W]¥.,) = 1.[56]. (iii) The gauge implicit in the use of
the loop formalism is not completely clear. In weak field
expansion, the De Donder-like (harmonic) gauge, turns
out to be consistent for the lattice graviton propagator
[46, 53], and with the radial structure of the loop calcu-
lation [54]. But the extension of this to higher n-point
functions in not clear.
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APPENDIX A: FROM EH ACTION TO EQ.(58)

We follow the work of Modesto [41] and Bianchi and
Modesto [55]. We split the total metric g, into the back-
ground metric J,,, and the fluctuation h,,, as in (53).
Form this we can get its inverse g"*” and square root of
its determinant \/|det (g)|

(A1)
(—ymlE+D)

(mff e (092) Jaaz

Because EH action contains Ricci scalar and Ricci scalar
contains Christopher symbol, we write the symbol based
on hy,.

|det (9)] =

g“”=§:
1l

1 = ni n o
Do =5 D0 ()™ (W) @by + Ok — Ophu)
ni 0

(A3)

9y ()P D)hyy

(h™)7" 05 Ophup)

81/ (hnz )UP 8pha;¢ (A4)

= dahayp)

Oalrp)

Before simplify the Lagrangian to Eq.(58), we emphasize that we use the harmonic gauge (55) and the Einstein
equation without matter field (57). We also assume that the integral over a total derivative vanishes. Under these
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assumptions, we find that the terms like h,, 0P?h#**0,h, hOPhO,h, ht0, b 0PV vanish after integration in the action.
We use h,, 0°h*0,h as and example to prove this.

/ d*xh,, 0P W 9,h / d%% (R OB Db + B 9P hy,, 0,h)
= /d%%aﬂ (huvh*) O,k

1
= f/d“:cghm,h“”apc?ph
=0

Now we can simplify Eq.(A4). For the three-point function, we just need the terms with the form hohoh. We
denote it Lz and simplify it case by case. For km =0

Then
L0 = o L b0, 0, by — 200 2 N0 )
For km =1
IT (3 Sl (09)") = Sl = 4o
k=1 \m=0 1(2) 2
Then
v = IG;G%h T Gdn Gha fruad h
For km = 2
11 ( - ((hk)i)m> G I ey
i1 m! (2k) 21(2) 11 (4)
= L Ly,
Then
LYY =0
Thus we can get L3
Ly = < (R0 h Qb — 200,13 0h + 2000 by s — W)
- 64er (BP0 h™ Dyhyy + WO O, — B Oy hduh + 217 0P hy 8 hyg) N
- ﬁ (—huuauhyﬁaﬁh _ %h"”@uhayh + BOP O hIY Db, + Qhwaahug@ﬁhw) (A5)
=5 41 5 (W77 061" Dby, — 2h,,50° W 0P hyo )

This is (58).
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APPENDIX B: THE TOTAL ANALYTICAL EXPRESSION OF THE DERIVATIVES IN SEC.IIG

The second order of the total action
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The second derivatives of the insertions
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APPENDIX C: NUMERICAL COMPARISON

Let us write some explicit terms of the loop three-point function.

3
Giaait = ~55 f A* (15183 + B3 (5042 — 817831) + Bo (147337 — 1832132 + 53233

— 95933 + 194432 8, — 1308152 + 312633)

14

(B14)

(B15)

(B16)

(B17)

(B18)

(B19)

(B20)



1
Gt — -~ AY(366755 + 52(1057832 — 2009961) + Bo (371613? — 39964 + 1084432
123 Wit (366755 + By ( B2 Br) + Bo ( Ibh f132 53) (C2)
— 224733 + 361383} B2 — 191163135 + 3264/33)
1 /3
G133%° = —E\/;A‘l(%ﬁg + B3 (4182 — 203B1) + 2060 (7167 + 1715182 — 11633) (3)

+ 6967 — 63957 32 + 6484153 — 19235)

Here the parameters [y, 31,02 are directly related to
the parameters «y, appearing in the boundary state (see
Eqs.(197-109) in [14]). If we use for these, as an example,
the values of these parameters given in [14]:

1 7
— 0, = -, = - 04
Bo B1 230473 B2 021673 (C4)
Then we obtain
Gidaaas 35v/5A"
123 391378894848
G444445 _ 5\/5144
123 195689447424
G444455 — 5\/5144
123 97844723712

On the other hand, from perturbation theory, we get

3
(444444 _ 8.
(Gras™ err 16384000

13
444445 _
(Grzs™"arr = Geeaenge ¢
11
444455 _
(Gr25™")err = Ter500C"

where C' is a constant. The ratios of the two give

I G L
G arr Gl ger 20

G o
CH orr Gl arr — 12

which do not match. The use of the values for the 3 coef-
ficients given in Eq.(C4) is of course rather questionable,
and should not be taken too seriously. The main pur-
pose of this computation is to show that the expectation
values can indeed be computed completely explicitly.
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