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Abstract 

Recent experiments of Ross, Kodambaka et al. proved the possibility of a mononuclear 

regime with heterogeneous nucleation as well as jerky growth in the VLS process for silicon 

nanowires. In this work, a theoretical model is presented which incorporates the effects of (i) 

mononuclear regime with layer by layer growth, (i) heterogeneous nucleation of each new 

layer at the edge of Au-Si droplet, (iii) drop of supersaturation after each successful 

nucleation and respective fast layer growth, (iv) time-dependent nucleation barrier during 

each new waiting period and (v) correlation between subsequent waiting periods (non-

Markovian sequence of waiting periods). 

 

Keywords: nucleation, nanowires, modeling, thermodynamics, growth, step-flow kinetics 

 

1. Introduction 

Development of nanotechnologies provides new problems to the theory of phase 

transformations - nucleation, growth and coarsening in open nanosystems.  

Step-flow kinetics is one of the newest experimentally investigated features of 

nanowire’s growth [1-3] by VLS method. Nanowires grow by rapid increasing (few 

milliseconds) of the nanowire’s height by the value of height of one monoatomic layer with 

great incubation time (several seconds) between these increases. It is shown for the II-VI or 

III-V compounds where solubility of one component in the liquid alloy is very low that 

nucleation statistics is self-regulated and corresponds to sub - Poissonian distribution of 

waiting times between nucleation events [3] (similar idea was also suggested in [4]). In 

contrast, the solubility of Si in Au is very high and one would expect that self-regulation 

mechanism will not work in such systems. Yet, nature may not meet these expectations (see 

below). 

Growth of sufficiently thin nanowires takes place in the mononuclear regime: for the 

growth of one atomic layer of the nanowire it is necessary for one nucleus to appear [5]. So, 

here we will limit ourselves with nanosystems in which the nucleation events proceed one by 

one and probability of simultaneous nucleation and of coexistence of several nuclei is 

negligible. Experimental results show that nucleus appears on the edge of the nanowire, on 

the junction of three phases: liquid, solid and vapor [2]. For the Si nanowires grown in 

atmosphere of low pressure of disilane it is shown that growth rate is diameter independent 

[6]. In this case, adsorption processes on the surface of the liquid droplet make the main 

contribution to the growth rate. 

The following peculiarities should be taken into account in this case:  

1) “Feedback” via depletion: in nanovolume even one successful nucleation and 

subsequent monolayer growth may cause significant depletion of whole 

nanosystem with one of components [7], changing the conditions (driving force) for 

next nucleation. In other words, system should “recover” from a previous 

nucleation before trying the next one. 

2) Each new nucleation event proceeds in non-steady-state conditions, under rising 

concentration of solute supplied by external flux. So, the time dependence of the 

driving force should be taken into account [8].  
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3) Time correlation. The random nucleation process is not markovian. Each new 

waiting time is correlated with previous one [3]. Indeed, if previous waiting time 

was longer than the average one, the total number of incoming solute atoms was 

large, and even after consuming atoms necessary for new atomic layer, system will 

still have larger concentration than the average one. So, one might expect that the 

necessary supersaturation (for nucleation) will be reached earlier so that the next 

waiting time will be shorter than the average one. Thus, one might expect the 

negative time correlation between the nearest waiting times. Such negative time 

correlation should make the waiting times distribution narrower than for common 

markovian process without memory. We will investigate this phenomenon in detail 

below. 

There are at least two experimental situations providing such kind of nucleation process. 

First is the just discovered point contact reactions between nanowires of Si and metallic (Ni, 

Co, Pt) nanowires or nanodots, leading to jerky (stop-and-go) epitaxial growth of silicide 

along the silicon nanowire, each stop meaning the waiting period for nucleation of 2d island 

of new silicide atomic layer [9-12]. After works of Ross, Kodambaka et al. we know that the 

same situation may be real for VLS [1,2]. 

Aim of this paper is just to suggest a simple model incorporating the all above 

mentioned peculiarities (mononuclear regime, depletion of the droplet by each nucleation 

event, stop-and-go kinetics and time correlation). 

In the section II we present a simple model of heterogeneous nucleation of 2D island at 

the triple junction droplet-wire-vapor. Namely, in sub-section II.1 we find the optimal shape 

as a function of nucleus size (number of atoms) under the conditions of mechanical 

equilibrium. In sub-section II.2 we describe thermodynamics of 2D island nucleation at the 

bottom of the gold droplet with account of depletion caused by nucleation. At that we will 

take into account the depletion of the nanodroplet which can be significant even at the 

nucleation stage [7] and modify the Gibbs-Thomson relations for the case of complex nucleus 

shape. In sub-section II.3 the main equations of nucleation kinetics and lateral growth of 

crystalline phase are described using simple modification of Zeldovich theory. Finally, 

parameters of our model are presented. 

In section III the results of computer experiment are presented and discussed: 

distribution of waiting times, time dependence of silicon concentration in liquid droplet, time 

correlation between subsequent waiting periods, dependence of average frequency and of 

average supersaturation on the flux intensity. 

 

 

2. Model 

Our main aim was to describe the process of layer by layer growth of nanowhisker 

with help of classical nucleation theory [13], at least for the realistic case of mononuclear 

regime. Successful nucleation of 2D islands to the new layer needs sufficient supersaturation 

of gold with silicon. On the other hand, after successful nucleation the new layer grows fast 

and takes several thousands of silicon atoms causing substantial depletion of gold droplet with 

silicon. (We will see below that "depletion" actually means just decrease of supersaturation, 

making the nucleation barrier too high for immediate next nucleation). If one takes liquid 

droplet as a hemisphere of radius R, then change of concentration ∆cmax (molar fraction of 

silicon) due to attachment of one monolayer of atoms is about 
R

h

2

3

R)3/2(

R
c

3

2

max −=−=
π
π

∆ . 

Since monolayer thickness h is typically few Angstroms, the concentration change can be up 

to 2 percents (for R of about 20 nm). “To recover” after depletion and to make a new 

successful nucleation attempt, the system needs time during which whisker stands still and 

droplet is gradually saturated by depositing atoms. 
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Figure 1 here 

 

Actually, theoretical scheme should depend on the hierarchy of characteristic times 

[14]. The total flux J related to deposition flux density j
dep

 just by J= j
dep

2πR
2
. First of all, 

one should compare the time between arrivals of new Si atoms to the droplet, τflux=1/J=1/( 

j
dep

2πR
2
), characteristic time of Si diffusion across the liquid golden droplet, τdif=R

2
/D, and 

time of atomic layer growth covering all surface after successful nucleation of 2D island, 

τlayer. If τflux >> τdif, then we can apply thermodynamics for system “droplet plus 2D island” 

at fixed number of both Au and Si atoms considering Si concentration as uniform in the 

droplet. For nanowire (NW) radius about 20 nm and diffusivity of Si in liquid (Au,Si) alloy 

D about 10
-9

m
2
.s

-1
, the critical value of depositing flux density is jcrit

dep
 ≈ 10

21
 at·m

-2
s

-1
. 

We consider the possibility of stoichiometric 2D island nucleation (Fig.1) (with 

concentration ci = 1 for the case of pure Si nanowire growth) from the supersaturated liquid 

solution with average Si concentration c.  For this we calculate the Gibbs free energy of the 

system G(x) at different fixed number NSi of Si atoms in the droplet with NAu gold atoms (or 

fixed average concentration c=NSi/(NAu+NSi)) and look for minimum of this dependence 

(Fig. 4a). There x is a single parameter that characterizes size of the nuclei, nucleus shape is 

determined, as usual, by mechanical equilibrium of surface tensions and by the place of 

nucleation (details will be shown below). 

 

 

2.1. Nucleus shape 

In our model we consider heterogeneous nucleation with the nucleus that appears on 

the edge of the nanowire (Fig.2). There O is the center of the nanowire’s upper base, O1 and 

O2 are the centers of the internal and external curvatures of the nucleus. 

 

Figure 2 here 

 

The shape of the nucleus corresponds to the contour TMPK, which is determined by 

the mechanical equilibrium: 

1 2

1 2

cos sin 0
.

sin cos 0

i

i

i

i

α

α

γ θ γ θ

γ γ θ γ θα

− =


+ − =         (1) 

γi, γα are the surface tensions of silicon (i) and Au-Si liquid phase (α) and γiα is the interfacial 

tension between silicon and liquid phase. 

From (1) we can find values of the angles θ1 and θ2 for known values of γi, γα and γiα 









=










 −−
=

1
i

i
2

i

22
i

2
i

1

cosarcsin

2
arcsin

θ
γ

γ
θ

γγ
γγγ

θ

α

αα

αα

        (1’) 

No experimental data appear to have been published on the surface tension of solid 

silicon (γi). The evaluation of γi by Eustathopoulos et al. [15], γi = 1,08 J.m
-2

, is in good 

agreement with the evaluation done elsewhere by Naidich et al [16].  

Naidich et al. [17] have measured the surface tension of liquid (Au,Si) alloys in the 

temperature range 364 to about 1700°C. From their measurements, the surface tension of 

liquid alloys at T = 823K can be given approximately by the relation γα = 1 - 0,4cSi. For a Si-

saturated liquid solution at 823K (cSi ≈ 0,26) the surface tension is γα ≈ 0,9 J.m
-2

. 

In another work, Naidich et al. [16] have studied the wetting of solid silicon by liquid 

Si-saturated (Au-Si) alloys in the temperature range 637 - 1573K. Their measurements show 
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that solid silicon is well wetted by liquid (Au,Si) alloys, the wetting contact angle (θ) being 

lower than about 50° whatever the temperature and the alloy composition. By analogy with 

liquid (Au,Ge)/solid-Ge system (known surface tension of solid Ge), they took the ratio γi/γα 

= 1,24. This assumption allows the authors to calculate interfacial tension γiα between solid 

silicon and Si-saturated (Au,Si) alloys from experimental values of contact angle (θ) and 

surface tension of (Au,Si) alloys (γα) as a function of temperature. At T = 823K, the 

interfacial tension is γiα ≈ 0,4 J.m
-2

. 

Note moreover that, in a study of anisotropy of solid Si-liquid (Al,Si) interfacial 

tension, Sens et al [18] have shown that the maximum anisotropy γiα(001)/γiα (111) is about 

10%. For this reason and for sake of simplicity, in the following we will use constant values 

of interfacial tensions at T = 823K: 

γα ≈ 0,9 J.m
-2

 , γi = 1,08 J.m
-2 

, and γiα ≈ 0,4 J.m
-2

.  

In our model we vary the value of HL = x which allows us to fix the both edges of the internal 

l1 (contour TMP) and the external l2 (contour TKP) curvatures of the nucleus. We denote the 

origin curvature of the nanowire bounded by these edges as l (contour TLP). For the small 

values of x in comparison with the radius of the nanowire R we can evaluate the length of all 

curvatures and the area of the nucleus: 

Rxl 22= ,  x << R         (2)
 

( )
1

1
1

cos

22/2

θ
θπ Rx

l
−

=
,
        (3) 

2

2
2

sin

22

θ
θ Rx

l = ,         (4)
 

εRx2S =
,
          (5) 

when ε depends only on θ1 and θ2: 
( ) ( )

2
2

222

1
2

111

sin

cossin

cos

cossin2/

θ
θθθ

θ
θθθπ

ε
−

+
−−

=      (6)

 

Now we can write the dependence between x and the number of atoms in the nucleus n  

(from eq. (5) and S = nΩ/h): 

ε
Ω

Rh2

n
x =           (7) 

here Ω – is the atom volume. 

A calculation for reasonable parameters shows that radius O1M of internal boundary l1 

increases more rapidly than radius O2K of external boundary l2, so for the small nucleus 

(consisting of few tens of silicon atoms) we can neglect the deviation of external boundary 

from initial circle, and, respectively, neglect the distortion of the droplet surface in the vicinity 

of the nucleation site. 

 

2.2. Thermodynamics of nucleation and depletion in nanodroplet 

 

a) Driving forces. 

Change of Gibbs potential of the system at conditions of epitaxy can be defined as: 

∆G = n∆g
bulk 

+ ∆G
surf

 = n∆g
bulk 

+ γiαl1h + γil2h - γαlh,     (8) 

here h is the height of the monolayer, ∆g
bulk  

is the bulk driving force per one atom of the 

nucleus (it is negative). 

∆g
bulk

 = N/n[g(c – ∆c) - g(c)] + gi - g(c – ∆c),     (9) 

here g(c) is the Gibbs free energy per one atom of the liquid phase (α) with concentration c, gi  
is the Gibbs free energy per one atom of the solid phase with concentration ci = 1 (pure 
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silicon), ∆c is the concentration depletion after nucleus appearing, N – total amount of the 

atoms in droplet. 

Here we use experimental data and thermodynamic assessment of Au-Si system [19,20] 

(see Fig.3 for the phase diagram). The Au-Si  solution is modelled as liquid solution, in which 

the Gibbs energies are expressed as 
0

, ,

ln
E

i i i i
i Au Si i Au Si

G c G RT c c G
= =

= + +∑ ∑ , where 0

iG - is 

the Gibbs energies of pure element of Au and Si at each temperature from [19] (which are 

reference states for Au and Si), E
G - is the excess Gibbs energy, expressed by model of 

subregular solution [20]. In particular, at T = 823K, the expression of G is given by the 

following equation: 

G [J/mole] = 6702.37·c – 36320.01·(1-c) + 6842.42·{c·ln(c) + (1-c)·ln(1-c)}  

- c·(1-c) {36562.56 + 28464.63·(1-2c)} 

 

Figure 3 here 

 

b) Equilibrium conditions. 

We take into account the possible depletion of the droplet by the very process of 2D-

nucleation. In our conditions heterogeneous nucleation occurs in volume of metastable phase 

of gold-silicon liquid solution. Depending on the number of Si atoms in the droplet the 

following situations are possible, typical for nanoparticles and nanosize diffusion zones, see 

for example [7,21,22]:  

1) At sufficiently small number of Si atoms (relatively small c) Gibbs’s free energy of 

the droplet has only one minimum corresponding to zero (curve (1) at Fig. 4b); 

2) At larger number of Si atoms dependence G(x) becomes non-monotonic with 

second metastable minimum (curve (2) at Fig. 4b); 

3) At some critical number of Si atoms second minimum becomes stable (curve (3) at 

Fig. 4b); 

After this the formation of new monolayer becomes thermodynamically favoured but 

kinetically it depends on the height of nucleation barrier. This height becomes smaller and 

smaller with arriving of new silicon atoms inside droplet. It means that to predict the growth 

characteristics we must modify Zeldovich steady-state nucleation model [13] for the case of 

non-stationary driving force. 

 

Figure 4 here 

 

c) Capillary effects 

Capillary effects are usually treated in terms of curvature dependent Laplace pressure. 

It is appropriate in case of spherical or cylindrical surface of the nucleus, otherwise direct 

calculation of Laplace pressure near curved interfaces may be misleading. Actually, the 

capillary effect will cause the size dependence of Gibbs energy, chemical potential and of 

corresponding equilibrium composition. It is convenient instead of introducing individual 

curvatures for the different sides of the nucleus to use a single effective curvature kef
 = 1/R

ef, 

R
ef
 is the effective radius of curvature which will be introduced below. 

Stable or unstable equilibrium (including saddle-point at the nucleation barrier) is 

determined by the condition of zero derivative of change of Gibbs energy ∆G (see eq. (8)): 








 −++=








 −++=+=

dx

dl

dx

dl

dx

dl

dn

dx
hg

dn

dl

dn

dl

dn

dl
hg

dn

Gd
g

dx

Gd

2
i

1
i

bulk

2
i

1
i

bulk
surf

bulk

αα

αα

γγγ∆

γγγ∆
∆

∆
∆

   (10)
 

here γ
ef
 - is the effective surface energy coefficient (combination of γiα, γi and γα, see below). 

We can find derivatives from (2-4) and (7): 
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2
,

dl R

dx x
=  

( )
xcos

R22/

dx

dl

1

11

θ
θπ −

=
,
 2 2

2

2
,

sin

dl R

dx x

θ

θ
=  

 ε
Ω
Rh2dn

dx
=   (11)

 

Hence, 

)n(gg
n

const
g

Rx2
g

dx

Gd
capillar

bulkbulkefbulk +=+=+= ∆∆γ
ε

Ω
∆

∆
   (12) 

 

with 
( )

αα γγ
θ

θ
γ

θ
θπ

γ −+
−

= i

2

2
i

1

1ef

sincos

2/

.
      (13) 

Here 
)n(Rn

G
)n(g

ef

efsurf

capillar

Ωγ∆
=

∂
∂

=        (14) 

with εRx2)n(Ref =   

Thus the concentration of silicon in the droplet in equilibrium with 2D island of size n 

at the edge of nanowire surface may be found using standard common tangent construction 

(Fig. 4b) with rising the Gibbs energy gi of the pure silicon by “Laplace term” gcapillar(n). 

The change of the value of equilibrium composition δc = ceq(n) - ceq (here ceq 

corresponds to equilibrium composition on the planar boundary) due to the appearing of 

curvatures on the nucleus shape should be found by using of common tangent rule (Fig.4b) is: 

"g)c1(

)n(g
c)n(cc

capillar

eqeq −
=−=δ        (15) 

here g"
 
is the curvature of the dependence gα(с) in point ceq. 

From (15) we obtain: 

"g)c1(

1

Rx2"g)c1(

)n(g
c)n(cc

ef
capillar

eqeq −
=

−
=−=

ε
Ωγ

δ      (16) 

 

2.3. Kinetics 

Let’s consider kinetic model of nucleation and lateral growth of nanowhisker taking 

into account deposition flux j
dep

 of silicon atoms (in atoms of Si per m
2
 of liquid surface) from 

disilane gas [23]: 

diss

dep

m 

kT8

kT4

P
j

π
=          (17) 

here P is the disilane pressure, mdiss is the mass of disilane molecule (Si2H6). 

In the following the molar fraction of silicon cSi = NSi/(NSi + NAu) will be noted by c. 

Conservation law for silicon atoms in the droplet before nucleation gives: 

2depSi Rj2
dt

dN
π=          (18) 

The rate of change of mean concentration of silicon in the droplet before the next 

nucleation event is approximately equal to: 

( ) ( ) depSi

AuSi

j
R

3
)t(c1

dt

dN

NN

)t(c1

dt

)t(dc Ω
−=

+
−

=       (19) 

We can represent change of mean concentration of Si discretely: 

( ) dep
j

R

3
)t(c1)t(c)dtt(c

Ω
−+=+        (20) 

Nucleation frequency can be defined as:  

RxGsetv cr

t πτ 2),()( */ ⋅⋅= −         (21) 

here τ is a lag-time, necessary to reach the critical size by random walk in the size space 

without influence of nucleation barrier, s – steady-state flux in the size space (number of 
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islands intersecting critical size per unit time per unit length of liquid/solid/vapor junction 

with the total length 2πR) is taken from Zeldovich theory modified for time-dependent 

nucleation on the one-dimensional contour, nucleus size being determined by characteristic 

length x at Fig.2: 

)x(B)x(f
kT

"G
s crcr

eq

π
∆−

=        (22) 

here 

crxx

2

2

dx

Gd
"G

=








=

∆
∆ - is the curvature of the nucleation barrier, f(xcr) - equilibrium size 

distribution, and diffusivity of nucleus in the size space near critical size B(xcr) is given by: 

crxx

crxx

dx

Gd

dt

dx

kT)x(B

→

→

















−=
∆

        (23) 








 −
=

kT

)x(G
exp . const)x(f cr

cr
eq ∆

       (24) 

here *G)x(G cr ∆∆ =  is a nucleation barrier which previously (in Zeldovich theory) was 

treated as constant in time.  

As we have a nucleus of pure silicon, hence, each silicon atom on the triple junction 

could be the centre of nucleation. So, the value of const in eq.(19) can be found according to 

receipt [24]: 

dx

dnc
const

3/1Ω
=          (25) 

Indeed, if the nucleus size is characterized by number of atoms then f(n = 1) is the 

number of silicon atoms at the perimeter 2πR, equal to c·(2πR/Ω
1/3

), divided by the length of 

that perimeter. 

3/1

eq c
)1n(f

Ω
== . 

If, instead of n, nucleus size is characterized by length x then, the distribution 

functions are transformed in the standard way: 

)n(f
dx

dn
)x(f =  

which immediately gives eq. (25). 

 

Determination of “diffusivity in size space”  B(xcr)  

a) Calculation of 

crxxdt

dx

→








 

In this paper we will limit ourselves to diffusion-controlled nucleation. Interface 

controlled nucleation will be considered elsewhere. Critical radius (typically about 1 nm) is 

assumed to be much smaller than the nanowire radius (typically ten nanometers or more), so 

that 2D shape of nucleus does not prevent concentration distribution to be almost spherically 

symmetrical. At first we use the conservation of matter considering 2D island surrounded by 

sphere of radius sufficiently large, so that in this radius almost hemispherical symmetry can 

be assumed.  

Relation between total diffusion flux J
dif

 in the radial direction and the rate of nucleus 

growth (unusual combination of 3D diffusion with 2D particle seems OK as far as particle 

size is much smaller than the droplet size): 
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,dif d Sh h dx dS
J

dt Ω Ω dt dx

 − = = 
 

        (26) 

with ( ) 22dif
J j πη ρ ρ= at any xρ >> .        (27) 

Factor η characterizes the deviation from the spherical geometry in the vicinity of 

nucleus. Unfortunately, we cannot suggest anything better than analytic solution under 

spherical geometry and roughly assume η ≈ 1/2. 

As shown in textbooks on Ham’s model of precipitate growth in 3D space or for 3D-

ripening [25], the steady state flux density in 3D space is: 

( )
ef

min2

eq
r

)n(ccD
)(j

ρΩ
ρ

−
−=         (28) 

here π/Sref
min = , (S is determined by eq. (5)) 

Moreover, from eqs. (7) and (21) we obtain: 

εR2
dx

dS
=           (29) 

and 
"g)c1(

1

Rx2
cc)n(cc

ef

eqeq −
−−=−

ε
γ

       (30) 

From combination of (26-30) we obtain the growth rate: 

 
h

"g)c1(R2
x)cc(D

R

2

dt

dx

ef

eq 








−
−−

=
ε

γΩ
η

ε
π

     (31) 

Zero value of the growth rate corresponds to the critical size. Thus, 

 creq

ef

x)cc(
"g)c1(R2

−=
− ε

γΩ
.       (32) 

Hence, 

 
( )

h

xx)cc(D

R

2

dt

dx creq

crxx

−−
=









→

η

ε
π

      (33) 

 

b) Calculation of 

crxxdx

Gd

→







 ∆
 

From (12), with taking into account (11) and (29), we obtain: 

x

R2hRh2
g

Rh2

Rx2
g

dx

dn

dn

Gd

dx

Gd
ef

bulk
ef

bulk γ
Ω

ε
∆

Ω
ε

ε
γΩ

∆
∆∆

+=







+==    (34) 

Critical radius of two-dimensional nucleus corresponds to zero derivative of Gibbs energy 

change, thus, 
x

R2hRh2
g

ef
bulk γ

Ω
ε

∆ −= . Hence, 

 








 −
=










−=









→ cr

cref

cr

ef

crxx x

xx
R2h

x

1

x

1
R2h

dx

Gd
γγ

∆
   (35) 

Finally, after substitution of (33) and (35) in (23), we obtain: 

( )
( ) ef2

eqcr

cr
ef

crcreq
cr

Rh

)cc(Dx
kT

xxR2h

x
.

h

xx)cc(D

R

2
kT)x(B

γ

η

ε
π

γ

η

ε
π −

=
−

−−
−=

 
(36) 

Or, for escape from simultaneous presence of supersaturation term (c - ceq) and critical 

size parameter xcr we can use (32) once again: 
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( )
( ) ef2

eqcr

cr
ef

crcreq
cr

Rh

)cc(Dx
kT

xxR2h

x
.

h

xx)cc(D

R

2
kT)x(B

γ

η

ε
π

γ

η

ε
π −

=
−

−−
−=

 cr22/32/3cr x
"g)c1(hR

D
2/kT)x(B

−
=

ε
Ωη

π      (37) 

We determine nucleation probability and then use standard Monte Carlo scheme with 

eq. (21): 

( ) ( ) ,ttvtp ∆=∆          (38) 

If, at some value *t , ( )tprandom ∆< , then  
R2

h3
*)t(cc i1i,o −=+     (39) 

 

Parameters and basic algorithm for modeling of step-wise nanowire growth. 
 

Disilane pressure was changed between: 1·10
-7

 - 3·10
-5

 Torr (typical values used in Refs. 

[1,2]), 

Diffusivity of Si in liquid solution D = 10
-9

 m
2
/s, 

Height of monolayer h = 0.31· 10
-9

 m, 

Radius of liquid droplet (taken here approximately as hemispherical) R = 22 nm, 

Time-step was chosen depending on flux density, as one percent of anticipated average 

waiting time: ;
j 100

h

100

t
dt

dep
i

i
i Ω⋅

=
><

=  

A formulated model was used for numeric calculation of time behavior of 

supersaturation and step-flow kinetics. At that, Monte Carlo algorithm was used. 

 

 

3.  Results and discussion 

We cannot claim to predict the mean waiting time in the steady-state regime: 

evidently, this average time is just an inverse total flux J (
dep

j 

h
t

Ω
>=< ). Yet, one can 

suggest other characteristics. Typical time dependences of nucleation probability and of 

silicon content in gold droplet are presented on Fig.5. In particular, Fig.5b demonstrates that 

system possesses elements of self organization – the concentration of silicon in the droplet 

soon “forgets” about its initial value and fluctuates around some steady-state asymptotic value 

determined by the magnitude of incoming flux: the larger is the flux, the higher is the average 

supersaturation. Dependence of asymptotic average value of composition on incoming flux is 

shown in Fig.6. Time correlations between these fluctuations are discussed below. 

 

Figure 5 here 

 

In Figure 5b one can also see that supersaturation remains significantly larger than the 

depletion during one monolayer growth. Indeed, the variation of silicon concentration in the 

drop after nucleation and “instantaneous” growth of a silicon monolayer, for h = 0,31nm and 

R = 22nm, ∆cmax = 0,0211 is twice lower than the mean silicon supersaturation eqcc −  of 

about 0,046. Thus, DEPLETION as a result of nucleation, in our previous considerations 

means just lower supersaturation with respectively high nucleation barrier. 

Fig.6 shows that the inverse of the supersaturation decreases linearly with the 

logarithm of the incoming flux density (proportional to disilane pressure). This linear 

character of dependence can be explained by a rather simple theoretical model to be presented 

elsewhere. 
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Figure 6 here 

 

In table 1 values of nucleation barriers energies for average silicon concentration (as 

well as the minimum and maximum values) are presented for different values of incoming 

flux. In this table values of average supersaturations are also reported. It is seen that the 

nucleation barrier energy decreases with the increasing incoming flux which is in agreement 

with the fact that silicon supersaturation increases with the deposition flux (see Fig. 6a). 

In the following tables and plots we present:  

Average waiting time: 
n

t

t

n

i

i∑
=>=< 1  

Amount of intervals (successful nucleations) for each calculation is n = 1000. 

Square root of average squared deviation of waiting times: 
1n

)tt(
n

1i

2
i

−

><−

=
∑
=∆  

Dimensionless standard deviation: 
><

=
t

d
∆

 

Absolute time correlation:  
1n

)tt)(tt(

C

n

2i
1ii

−

><−><−
=

∑
=

−

 

Dimensionless time correlation:  
2

i

1ii

)tt(

)tt)(tt(C
c

><−

><−><−
== −

∆
 

Fig.7 gives the variation of dimensionless standard deviation and dimensionless time 

correlation on the logarithm of deposition flux density. The dimensionless standard deviation 

increases almost proportionally with the logarithm of the disilane pressure (in Torr) up to 

1·10
-5

 Torr whereas the variation of dimensionless time correlation presents an asymptotic 

behavior (i.e. for high flux densities it tends to zero). 

 

Figure 7 here 

 

Distributions for the disilane pressure P = 4·10
-7

, 5·10
-6

 and 3·10
-5

 Torr are presented 

on the Fig.8. They are rather well fitted by Weibull distribution. Parameters of Weibull 

distribution function ( )(),|( ),0(

)(
1

xIexbabaxfy
b

a

x

bb

∞

−−−== ) are estimated. The larger is b, 

the narrower is distribution. 

 

Figure 8 here 

 

4. Summary 

1. Possibility of jerky motion is confirmed in the model using assumptions of 

heterogeneous nucleation, mononuclear mechanism and diameter independent growth 

rate.  

2. Zeldovich nucleation theory (including determination of diffusivity in the size space) 

is adapted for the case of: a) heterogenous nucleation; b) complex geometry; c) time-

dependent driving force. 

3. Asymptotic supersaturation of liquid Au with Si increases with increasing incoming 

flux. Inverse supersaturation is a linear descending function of the flux density 

logarithm.  
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4. Standard deviation of reduced waiting times distribution increases with increasing 

deposition flux. It correlates with time correlation for subsequent monolayers. 

Stronger time correlation corresponds to narrower waiting time distribution. This 

result obtained for silicon repeats conclusion of [3] for VLS growth of GaAs 

nanowhiskers.  

5. Waiting time correlation for subsequent events is negative and it increases by absolute 

value with decreasing incoming flux. Namely, the absolute value of the dimensionless 

time correlation is approximately inversely proportional to the flux density. 

6. Waiting time distribution is well fitted by Weibull plots with standard deviation 

decreasing with decreasing flux density. 
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Figure captions 

 

Figure 1. Model system for nanowire 

 

Figure 2. Shape of the nucleus and the directions of the surface tensions 

 

Figure 3 The Au–Si phase diagram calculated in [20] 

 

Figure 4. a) Dependence of thermodynamic Gibbs potential of the system during nucleation; 

b) Model Gibbs potentials of liquid solution and silicon (schematically); 

 

Figure 5. Typical nucleation probability dependence on time (a) and typical  silicon 

concentration dependence on time (b) for Si nanowires with R = 22 nm grown at T = 823 K 

and disilane pressure 4·10
-7

 Torr. 

 

Figure 6. Dependence of inverse supersaturation on the logarithm of disilane pressure (in 

Torr) for Si nanowires with R = 22 nm grown at T = 823 K. 

 

Figure 7. Dependences of dimensionless standard deviation (a) and the logarithm 

dimensionless time correlation (b) on the logarithm of disilane pressure (In Torr). Note that in 

(b) the gradient is close to -1 which means that the absolute value of the dimensionless time 

correlation is approximately inversely proportional to the flux density. Phase-plane portrait of 

dimensionless standard deviation and dimensionless time correlation is presented (c). 

 

Figure 8. Distribution of waiting times fitted by Weibull distribution function: for the disilane 

pressure 4·10
-7

 Torr with parameters a = 1,045, b = 10,526 (a); for the disilane pressure 5·10
-6

 

Torr with parameters a = 1.052, b = 8,697 (b); for the disilane pressure 3·10
-5

 Torr with 

parameters a = 1,064, b = 7,030 (c). 
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Figure 3
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Figure 6
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Table 1. Minimal and maximal values of nucleation barriers for T = 823 K 

 

Disilane 

pressure, Torr 

Average 

concentration 

Average 

supersaturation kT

G
min

∆
 

kT

G
max

∆
 

4·10
-7

 0,3053 0,04591 27,762 36.278 

5·10
-6

 0,3088 0,04944 25,255 36,274 

3·10
-5

 0,3118 0,05244 23,573 35,319 

 

 

 

Table 2. Dependence of different time characteristics on the disilane pressure (T =823K).  

 

Disilane 

pressure, 

Torr 

Average 

waiting 

time, s 

Average 

squared 

deviation, s 

 

Dimensionless 

standard 

deviation 

Absolute 

time 

correlation, s 

Dimensionless 

time 

correlation 

4·10
-7

 12,456 1,238 0,099 -0,759 -0,613 

5·10
-6

 0,996 0,118 0,119 -0,007 -0,057 

3·10
-5

 0,166 0,025 0,149 -3,2·10
-4 

-0,013 
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