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Abstract—Researchers in functional neuroimaging mostly
use activation coordinates to formulate their hypotheses. In-
stead, we propose to use the full statistical images to define
regions of interest (ROIs). This paper presents two machine
learning approaches, transfer learning and selection transfer,
that are compared upon their ability to identify the common
patterns between brain activation maps related to two func-
tional tasks. We provide some preliminary quantification of
these similarities, and show that selection transfer makes it
possible to set a spatial scale yielding ROIs that are more
specific to the context of interest than with transfer learning. In
particular, selection transfer outlines well known regions such
as the Visual Word Form Area when discriminating between
different visual tasks.
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I. INTRODUCTION

Functional neuroimaging data are currently routinely used
to better understand cognitive processes. They rely heavily
on previous findings to formulate hypotheses and narrow
the search space to regions of interest (ROIs), most often
reported as coordinates of activation peaks [1], or from
coordinate databases such as BrainMap [2]. However, un-
derstanding the literature is increasingly difficult, so that
there is a need for more systematic methods, which use the
images themselves to characterize the functional specificity
of brain regions [3]. Transfer learning is a method that
trains a classifier to learn a discriminant model on a source
task, and then generalizes on a target task without further
training. It can yield insights on some brain mechanisms
if the tasks share specific common effects in some brain
regions [4]. The goal of this work is to investigate the
power of transfer learning procedures applied to pairs of
cognitive contrasts, where the discrimination ability of the
classifier quantifies the information shared between brain
maps, and thus characterizes at which spatial scale functional
contrasts can be jointly classified. We show that in many
cases, transfer learning gives poor results in terms of spatial
selectivity. To address this limitation, we introduce selection
transfer, i.e. classification of brain states on the target task
following the canonical procedure [5], but using regions
defined on the source task.

II. METHODS

Problem setting: We start from a database holding
several studies, each of them containing different functional
contrast images, acquired over multiple subjects. We con-
sider two sets of tasks, the source tasks and the target
tasks, each composed of pairs of contrast images. Given
n contrasts pairs of k voxel each, we call X ∈ Rn,k the
images of the source tasks, and y the label denoting the
functional contrast under study. The target images and labels
are defined likewise: X? ∈ Rn,k and y?. The source and
the target share a similar functional spatial pattern, and
we are interested in finding the common ROIs, as well as
the differences, using a machine learning approach. Note
that a common pitfall in neuroimaging classification-based
data processing is a successful prediction cannot guarantee
that the information used by the classifier is specific to the
cognitive process of interest.

Regions selection: Feature selection is an important
step of brain activity decoding procedures. Full brain de-
coding approaches are efficient but require a careful method-
ology to recover the contribution of different brain regions
in the classification. To test the involvement of a particular
brain region, researchers typically use ROIs from an atlas, or
derived from the literature. Another option is to use methods
such as the searchlight algorithm, in order to evaluate and
extract spatially relevant voxels across the whole brain [6].
We choose to use a one-way ANOVA procedure [7], that
yields a selection based on the functional activations elicited
by a task, rather than using purely spatial information. We
consider different fractions of the brain voxels that are
most correlated to the functional contrast and perform the
learning procedure on these voxels. We vary the percentiles
of selected voxels with a cubic scale, from roughly 150
voxels to the full brain. This way we can control the spatial
specificity against the prediction performance, and attempt
to find an optimal set of regions.

Transfer learning: This consists in learning discrimi-
native models on a source functional task (X,y) in order
to capture information that should be predictive for a target
task (X?,y?). The general assumption is that if a transfer
occurs, the two experiments share at least some common
cognitive circuity. Here, we train a linear classifier on the
source task, and we predict the labels of the target without



any additional training. The features are selected with a one-
way ANOVA on the source task, which makes it possible
to compare region-based transfer learning with full brain
transfer learning.

Selection transfer: This consists in building a predictive
model for the target task based on information extracted
from the source task. However, here the transfer occurs on
feature selection: we perform the ANOVA procedure on
(X,y) to select the most relevant voxels, then we train
a linear classifier on (X?,y?), and predict on the same
task with the voxels selected from the source. Consequently,
the transfer is not a generalization of a classifier as in
transfer learning, but rather an evaluation of the significance
of features from a task to another. We use the same linear
classifier as the one used for transfer learning.

III. EXPERIMENTS AND RESULTS

A. FRMI dataset

We use data from two fMRI studies for this work. The first
one [8] is composed of 322 subjects and was designed to
assess the inter-subject variability in some language, visual,
calculation, and sensorimotor tasks. The second study is
similar to the first one in terms of stimuli, but the data were
acquired on 35 pairs of twin subjects. The two studies were
pre-processed and analyzed with the standard fMRI analysis
software SPM5. The data used for this work are a subset of
the 90 different statistical images resulting from the intra-
subject analyses. The raw images were acquired on a 3T
SIEMENS Trio and a 3T Brucker scanner for the first study,
and on a 1.5T GE Signa for the second one. Table I presents
the list of contrasts pairs used for this analysis.

B. Experimental results for transfer learning

We are interested in transfer learning: we learn a discrim-
inative model on the source task with a univariate feature
selection, and predict the labels on the target task.

The analysis presents two phases: we first train a linear
classifier on a source task, and then re-use the discriminative
model on the target task to perform the transfer learning;
this is repeated on 6 different sub-samples of the source
task to estimate the uncertainty on transfer accuracy. We
use two kinds of linear classifiers: a SVC (Support Vector
Classifier) and a Logistic Regression with `2 penalization.
The penalization is set by nested 6-fold cross-validation for
each classifier. We find that the two methods yield very
close results, and thus report only results using the SVC
classifier. We also train and then test the classifier on the
target task and call this procedure inline learning. In Figure
1, we show the performance τ tp of transfer learning, relative
to inline learning τ ip, varying the percentile p of features
selected in a cubic scale. In general, for any given p, τ ip
can remain significantly higher than τ tp. For this reason, we
use a heuristic to select the scale parameter (see also Figure
1): the scale that yields the minimal τ ip − τ tp difference. We

consider that at this scale, the maps associated with the two
tasks share a maximal amount of common information.

However, the voxels selected with this method are either
too few to give an accurate prediction, or too many to yield
identifiable regions. The transfers do not behave the same
way on both directions: in general, one direction is more
sensitive but less specific, and the other direction shows
the opposite behaviour. This comes from tasks-related foci
being more spatially focused for some contrasts. Because
of this lack of specificity, we do not find contained regions
that overlap with the Fusiform Face Area (FFA) [9], the
Parahippocampal Place Area (PPA) [10] or the Visual Word
Form Area (VWFA) [11], regions respectively involved in
face recognition, object visual processing, and reading.

C. Experimental results for selection transfer

We are interested in selection transfer: we do not perform
transfer learning, instead, we use the univariate feature selec-
tion performed on the source task, to learn a discriminative
model and predict the labels in the target task.

We use the same machine learning tools as the transfer
learning: we train and test a linear classifier with a 6-fold
cross validation test on the target task. For this method the
SVC and the Logistic Regression with `2 penalization also
give very close results. As with transfer learning, we also
perform an inline learning on the target task, with features
selected on the same images.

On Figure 2, we show the performance τsp of selection
transfer against inline learning τ ip, and how the performance
varies with the percentile p of the brain recruited for the
learning process. In comparison to transfer learning, two
things happen: i) the selection transfer is more symmetric,
ii) τ ip is not significantly higher than τsp for every p. We can
therefore use a t-test to define the selected scale (Figure 2)
as the first one with non significant difference between the
curves. This enables us to control the amount of information
to include in the prediction problem, and have both a good
performance and an improved specificity of the regions
selected for the two tasks. In practical terms, the selected
scale makes it possible to identify the smallest fraction of
the brain that yields overlapping regions in the two tasks, and
consequently an accurate prediction. Although the selected
regions have no guarantee of optimality, they are specific
enough to overlap with the FFA, the PPA and the VWFA.
We can also use the area under the p-values curve from the
t-test as a measure of similarity between the tasks. While, it
is not possible to interpret this measure absolutely, we can
use it to compare one task versus others. For the example
on Figure 2, we can see that the area between face and word
is smaller than between face and house. This indicates that
the face task is closer to the word task than the house task,
which is consistent with previous findings [12].

Limitations: Selection transfer captures voxels that
generalize well in terms of prediction from one task to



Contrasts Names Selected Scale Area under p-curve Description
trans. sel. trans. sel.

house/scramble → face/scramble 68.11 3.25 22.73 4.51 house/scramble = house image versus scrambled image
face/scramble → house/scramble 0.40 2.67 16.22 2.71 face/scramble = face image versus scrambled image
word/scramble → face/scramble 23.77 4.63 10.36 2.88 word/scramble = word image versus scrambled image
face/scramble → word/scramble 1.36 0.79 11.15 2.29 face/scramble = face image versus scrambled image
French/sound → Korean/sound 0.40 0.02 3.57 4.61 French/sound = French listening versus unstructured sound
Korean/sound → French/sound 0.27 0.00 14.59 1.21 Korean/sound = Korean listening versus unstructured sound
V comp./sent. → A comp./sent. 11.01 0.00 2.62 1.76 V comp./sent. = computation versus sentences reading
A comp./sent. → V comp./sent. 0.01 6.36 4.75 3.10 A comp./sent. = computation versus sentences listening
V motor/sent. → A motor/sent. 0.10 0.00 11.84 1.85 V motor/sent. = button press action versus sentences reading
A motor/sent. → V motor/sent. 7.37 0.00 4.45 2.11 A motor/sent. = button press action versus sentences listening

Table I
SOURCE AND TARGET TASKS: SELECTED SCALES AND AREA UNDER THE P-VALUES CURVE FOR BOTH TRANSFER LEARNING AND SELECTION

TRANSFER. TRANS.= TRANSFER LEARNING; SEL.= SELECTION TRANSFER; V= VISUAL STIMULI; A= AUDITORY STIMULI.

another. However, a classifier may require very few voxels to
perform well, in which case this method misses some regions
involved in the cognitive process of interest. This effect is
represented by the values in Table I, where selection transfer
requires only a small p fraction of the brain to obtain a τsp ,
which is not significantly lower than τ ip (e.g., V comp./sent
→ A motor/sent.). In order to retrieve optimal regions when
this is the case, a standard analysis, based either on contrast
addition or conjunction [13], would be sensitive enough to
detect the common active regions for both tasks.

IV. CONCLUSION

In this contribution, we investigate the ability of transfer
learning and selection transfer to characterize the spatial
scale at which functional contrasts can be jointly classified.
The objective is to find a systematic procedure to extract
ROIs that define common information between two func-
tional tasks, instead of relying on activation coordinates
from the literature. We show that transfer learning does not
provide control on the regions size it uses to classify the
tasks. Instead we use a selection transfer procedure that
seems to better characterize which fraction of the brain
yields discriminant information. Our results suggest that
transfer learning requires to be used in a carefully designed
study, as it is difficult to control the spatial selectivity
of this method. Another interesting result is that selection
transfer is not symmetric (i.e., source and target tasks are
not inversible), as opposed to contrast conjunction. In the
future, we would like use such methods in meta-analysis, in
order to leverage large databases of functional images.
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Figure 1. Example of results using the Transfer learning approach, in four different transfer settings: we can see that the area between the inner transfer
prediction accuracy curves are large, and that the prediction rates do not converge. The optimal scale, defined as the minimum of the difference between
the curves, often corresponds to a rather broad, non-specific brain map.
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Figure 2. Example of result using the Selection transfer approach: The two prediction curves do converge, so that the difference becomes non-significant
as soon as a relatively small fraction of the voxels are included: the spatial scale is defined here as the point where the curves can no longer be distinguished.
It corresponds to more symmetric and meaningful brain maps than those obtained with transfer learning.


