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ABSTRACT 

 

Even though wave run-up is not a new subject, until recently analytical 

and numerical studies of long wave run-up on a plane beach have failed 

to identify the existence of resonant regimes. Furthermore, it was a 

common belief that the leading wave will result in the maximum run-

up. Stefanakis et al. (2011) underlined the importance of resonant long 

wave interactions during run-up and run-down. In the current paper we 

provide additional results with the use of one-dimensional numerical 

simulations in the framework of the nonlinear shallow water equations 

with boundary forcing for plane and nontrivial beaches. Several wave 

profiles are used as forcing conditions to the boundary value problem. 

Resonant interactions between incident and receding waves are found 

to occur, depending on the beach slope and the wavelength, and result 

in enhanced run-up of non-leading waves. 
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INTRODUCTION 

 

From a mathematical standpoint, wave run-up, which is the maximum 

vertical extent of wave uprush on a beach above still water level 

(Sorensen, 1997), has an intrinsic difficulty: the moving shoreline. The 

no-slip condition applied at the initial shoreline for the solution of the 

Navier-Stokes equations, implies that the shoreline should remain 

stationary, which of course is not the case. Despite this difficulty, major 

progress to the solution of the initial value problem in one propagation 

direction was achieved with the introduction of the Carrier and 

Greenspan (CG) transformation (1958), which allows the reduction of 

the two nonlinear shallow water equations (NSWE) into a single linear 

equation and the transformation of the moving wet/dry interface to a 

stationary point. Further important advances on the subject were 

achieved by Keller and Keller (1964), Carrier (1966) and Synolakis 

(1987), with the latter deriving an analytical expression for the run-up 

of solitary waves. The solitary wave together with the N-wave 

(Tadepalli and Synolakis, 1994) are the two predominant conceptual 

wave profiles in tsunami literature, even though more recent studies 

(Madsen et al., 2008, Madsen and Shaffer, 2010) question them and 

propose more geophysically relevant paradigms. Expressions for long 

wave run-up that are independent of the incident wave profile were 

derived by Didenkulova and Pelinovsky (2008).  All the above studies 

dealt with the initial value problem (IVP). Antuono and Brocchini 

(2007) solved the boundary value problem (BVP) for the NSWE, using 

the CG transformation, and applied a perturbation approach by 

assuming small amplitude incoming waves at the seaward boundary. 

Later, the same authors (2010) solved the BVP in physical space 

without use of the CG transformation. 

 

The only ones who addressed the two-dimensional problem were 

Brocchini and Peregrine (1996). They used a transformation to relate 

the longshore coordinate to the time variable. This operation allowed 

the derivation of an expression for the horizontal velocity, which 

reduced the dimensions and transformed their problem into the already 

solved one-dimensional canonical problem. However, their solution is 

only valid for mild angles of incidence. 

 

Almost all of the aforementioned studies focus on the value of 

maximum wave run-up. Nevertheless, none of these theoretical models 

is able to capture extreme values such as those observed during the Java 

2006 tsunami (Fritz et al., 2007). Moreover, despite the fact that 

solitary waves or N-waves might be appropriate as models for the 

leading tsunami waves, DART buoy measurements reveal a sequence 

of waves reaching the shore. Furthermore, it has been reported that in 

some cases it is not the leading wave that caused the maximum 

damage. Scientists explain this phenomenon by assuming that the 

amplification is due to reflection and refraction effects from nearshore 

topographic features (Neetu et al., 2011) or due to earthquake-

generated local submarine landslides. It is found that bathymetric 

changes may lead to wave resonance (Kajiura, 1977; Agnon and Mei, 

1988; Grataloup and Mei, 2003). In addition, shelf resonance (Munk et 

al., 1964; Rabinovich and Leviant, 1992), responsible for wave 

amplification phenomena, is caused due to trapping of long waves on 

the continental shelf region, which requires the existence of a shelf 

break (i.e. abrupt change of bathymetry). This type of resonance is 

observed when the incident wavelength is four times larger than the 

continental shelf and is found to affect tides as well as tsunamis. 

However, shelf resonance, as stated above, mainly describes wave 

amplification and not run-up amplification. In the present study we  

shed light on the run-up amplification phenomenon by non-leading 

long waves with the use of one-dimensional numerical simulations of 

the NSWE for the boundary value problem. Our solver uses a Finite 

Volume Characteristic Flux scheme with a UNO2 type of 

reconstruction for higher order terms and a third order Runge-Kutta 



 

time discretization. The model is described in detail and validated by 

Dutykh et al. (2011a).  

 

WAVES ON A PLANE BEACH 

 

Monochromatic Waves 

 

The maximum wave run-up for the geometry of Fig. 1 was first studied 

for three different beach slopes, namely, tan! = 0.13, 0.26, and 0.3, 

using incident monochromatic waves at the seaward boundary (x = -L) 

of the form: 

 

!(!L, t) = ±!
0
sin("t),   ! / g tan(" ) / L ! (0, 6.29)

    
(1)

      
 

where "(x,t) is the free-surface elevation, #  is the angular frequency, !  

is the beach angle and g is the gravitational acceleration. At the 

seaward boundary, we only prescribe the free-surface elevation and not 

the velocity because boundary velocity is actually a result of the BVP 

as pointed out by Antuono and Brocchini (2010). However, in our 

opinion, the realistic implementation of the seaward boundary 

conditions still remains a open question and one should also keep in 

mind that the NSWE are an approximate model. 

 

 
 
Fig. 1: Schematic of run-up problem geometry. 

 

 

The maximum run-up was found to depend on the incident wavelength, 

the beach slope as well as the beach length (Fig. 2). For a given slope, 

the maximum run-up is highest when the non-dimensional wavelength 

$0/L % 5.1 (i.e. at L = 1000 m offshore, the resonant wavelength is $0 = 

5100 m) for which resonance is observed. Here $0 denotes the 

wavelength of the incident wave: 

 

!
0
=
2" gL tan(# )

$             
(2)

 

 

The maximum run-up increases with increasing slope and with 

increasing beach length and the run-up amplification reaches values 

that are extremely high (Rmax/"0 % 60). Increasing the beach length 

leads to an observation of a secondary resonant regime at $0/L = 1.5 

(Fig. 2). Resonant amplification is apparent in both leading elevation 

and leading depression waves. Adding dispersion to the system 

(Dutykh et al., 2011a) results in reduced amplification values, though 

without qualitatively changing the overall picture, as the resonant 

frequencies remain the same. The resonant maximum run-up values are 

not achieved by the first incident wave, as is the case for $0/L > 10, but 

by subsequent ones (Fig. 3), which strengthens the assumption of the 

existence of a resonant mechanism between incident and receding 

waves. Linear theory (Pelinovsky and Mazova, 1992) does not predict 

resonant regimes, according to which Rmax/"0 = 2& (2L/ $0)
1/2

 . Our 

numerical results are in close agreement with linear theory for non-

resonant regimes (Fig. 2). 
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Fig. 2: Maximum run-up amplification factor as a function of non-

dimensional angular frequency (top) and non-dimensional wavelength 

(bottom) for two beach lengths (L = 12.5 m and 4000 m). 

 

 

 

 

 
Fig. 3: Run-up timeseries for two different angular frequencies, namely 

# = 0.4 s
-1

, which is the resonant frequency when tan! = 0.13 and # = 

0.6 s
-1

, which is a non-resonant frequency for the same slope (L = 12.5 

m). 

 

 

In Fig. 3 we can observe that waves with both resonant and non-

resonant frequencies reach a quasiperiodic state of equilibrium, 

although non-resonant frequencies reach this state faster. A 

differentiating point is the existence of a single peak (trough) [run-up 

(run-down)] at the quasiperiodic state of the resonant frequency, while 

the non-resonant frequencies show multiple peaks (troughs). This 

difference indicates the synchronization between the incident and 

reflected waves on the run-up and run-down process in the resonant 

regime. 

 

The spatiotemporal behaviour of the non-dimensional horizontal 

velocity is shown in Fig. 4. From this figure we can observe that during 

the resonant run-up (Fig. 4a) in one location there is an abrupt change 



 

from negative to high positive values of the velocity, which clearly 

states the creation of a wave front. On the other hand, the run-down 

process is much smoother but during it the wave assumes higher 

absolute velocities than during the run-up. In the same figure it can be 

seen that the velocity in inundated areas does not go to zero as the 

shoreline recedes. This is due to the presence of a very thin layer of 

fluid (h/"0 < 10
-2

) which recedes very slowly and is not considered in 

the computation of the shoreline position. The non-resonant regime 

exhibits velocities that do not vary as much over time and are lower 

than the equivalent resonant ones (Fig. 4b). 

 

(a) 

 

(b) 

Fig. 4: Spatiotemporal behaviour of non-dimensional horizontal 

velocity u / (g tan! L)
1/2

 in the resonant regime (a) and non-resonant 

regime (b). The black line describes the evolution of the shoreline 

position in time. In both cases tan! = 0.13 and L = 12.5 m.  

 

 

The resonant run-up mechanism is now examined in terms of energy. 

The potential and kinetic energy are respectively (Dutykh and Dias, 

2009): 

EP =
1

2
!g "2

dx
x
!           

(3)  

E
K
=
1

2
! u

2

!h

"

" dx
x
" dz       

(4)
 

 

The energy evolution for the resonant regime when tan! = 0.3 is 

depicted in Fig. 5. Both maximum potential and kinetic energies 

increase over time until  a quasiperiodic state is reached. The potential 

energy takes its maximum value at the instance of maximum run-up, 

when the kinetic energy is minimum. Moreover, the maximum 

potential energy is approximately 5 times larger than the equivalent 

kinetic energy. The extreme oscillations in the total energy are due to 

the large volumetric changes (inflow-outflow) during run-up and run-

down (Fig. 6), which actually affect the limits of integration in the 

energy equations. Since the volume of fluid inside the computational 

domain is changing, the current resonant mechanism should not be 

confused with wavemaker resonance (inside a laboratory flume the 

volume remains constant). 

 

 

 
Fig. 5: Energy evolution for the resonant regime (# = 0.6 s

-1
) when  

tan! = 0.3 and L = 12.5 . 
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Fig. 6: Evolution of the volume of water inside the computational 

domain. Vi is the initial volume. 

 

 

Bichromatic Waves 

 

In order to further explore whether there is more physics carried out by 

modal interactions in the resonant run-up amplification phenomenon, 



 

we investigated waves of bichromatic modal structure. In order to make 

direct comparisons with the monochromatic case, each mode had half 

the amplitude of the equivalent monochromatic wave ("0/2). According 

to our simulations (Fig. 7) no important new interactions are found to 

occur. When one of the two frequencies is in the resonant regime, the 

run-up is dominated by this frequency, while the second (non-resonant) 

frequency does not interfere in the dynamics. When both frequencies 

are resonant, there is a little enhancement of the run-up but it is not 

very significant. Nevertheless, an important finding is that the resonant 

mechanism is not restricted to the monochromatic wave case. 

 

 
 

Fig. 7: Maximum run-up of a dichromatic wave as a function of non-

dimensional frequency when tan! = 0.13 and L = 12.5 . 

 

 

Cnoidal Waves 

 
Cnoidal wave profiles were also investigated as boundary forcing: 

 

!(!L, t) =!
0
!H sn

2 kc t

2
,m

"

#
$
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'               
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!

"
#

$

%
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H =
!
0
mK
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where sn is a Jacobian elliptic function with parameter m (0<m<1), and 

K=K(m) and E=E(m) are the complete elliptic integrals of the first and 

second kind, respectively (Abramowitz and Stegun, 1965). The 

parameter m controls both the wave profile and the wavelength. Small 

m values result in high frequency sinusoidal waves, whereas high m 

values tend to solitary-like wave profiles. These cnoidal waves are 

exact solutions to the nonlinear Serre equations (Serre, 1953; Dias and 

Milewski, 2010). Varying the parameter m, the maximum run-up shows 

a more complex behaviour (Fig. 8) compared to monochromatic waves. 

Multiple resonant regimes, interrupted by “calmer” ones, are observed, 

the severity of which grows with increasing m. The run-up 

amplification reaches the value Rmax/"0 = 27 which clearly is 

considerably high. 

 

 

 

Single Wave With Tail 
 

All previous simulations dealt with idealized wave conditions. 

However, we wanted to explore whether similar resonant phenomena 

can occur during a real tsunami. For this reason, a simulation was run 

for the 25 October 2010 Mentawai Islands tsunami. A virtual wave
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Fig. 8: Cnoidal run-up amplification as a function of parameter m. 

 

 

gauge was placed at Lon = 100.24
o
 E, Lat = -3.4

o
 N which recorded the 

free-surface elevation timeseries for the first 10,800 s of the tsunami 

(Fig. 9a). At the wave gauge location, the depth is approximately      

120 m. Therefore the mean actual slope to the closest shore is          

tan! = 0.03. Using this slope and by setting the first 2000 s of the gauge 

recordings as boundary forcing, we computed the evolution of the 

shoreline elevation (Fig. 9b). We can observe the run-up of three waves 

at t = 720 s, t = 1320 s, and t = 1860 s. It is clear that the first wave 

does not lead to the highest run-up, even though it has the highest 

amplitude, as recorded by the wave gauge. Therefore, local resonant 

tsunami run-up amplification might give an explanation to why it is not 

always the leading higher wave that causes the maximum damage. 

 

 

WAVES ON A NON-TRIVIAL BEACH 

 

Driven by our curiosity to see whether our results can be extended to 

real bathymetries, we ran simulations of monochromatic waves over a 

transect of the real Mentawai bathymetry (Fig 10a). The existence of 

multiple resonant peaks may be observed in Fig. 10b. However, the 

run-up amplification is not as high as in the plane beach case.  

Nevertheless, the existence of several resonant regimes implies that in 

nature this phenomenon might not be rare. 

 

 

CONCLUSIONS 

 

In summary, we discovered local resonant run-up amplification 

phenomena demonstrated in the context of the one-dimensional BVP of  

NSWE on a plane beach. The resonance occurs due to the interaction 

between incoming and reflected waves, and the actual amplification 

ratio depends on the beach slope and beach length for the case of 

monochromatic waves. Resonant wave interactions are apparent for 

various idealized wave profiles, such as dichromatic and cnoidal waves. 



 

(a) 

(b) 

 

Fig. 9: (a) Virtual wave gauge recordings (Lon = 100.24
o
 E, Lat = -3.4

o
 

N) for the 25 October 2010 Mentawai Islands tsunami. (b) Evolution of 

the shoreline elevation for the first 2000 s.  

 

 

 

These phenomena can explain why it is not always the first wave that 

results in the highest run-up. More realistic wave profiles, which are 

typical of tsunamis can also exhibit resonant behaviour, explaining why 

the tail of a single wave may produce leading-order run-up values. 

Resonant mechanisms are not limited to the plane beach paradigm but 

can be observed in more complex bathymetries, as well, thus 

suggesting that local run-up amplification is not a rare event. However, 

when the bathymetry is non-trivial, we cannot draw firm conclusions 

on what extent resonance is attributed to wave trapping and generation 

of harmonics. Moreover, further research should be conducted on the 

relevance of the run-up amplification mechanism to the continental 

shelf resonance (Munk et al., 1964; Rabinovich and Leviant, 1992). We 

will also investigate resonant long-wave run-up on two-dimensional 

bathymetry, with the VOLNA code (Dutykh et al., 2011b). 
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Fig. 10: (a) Transect of the Mentawai bathymetry. (b) Amplification 

ratio as a function of non-dimensional wavelength. 
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