
HAL Id: hal-00728690
https://hal.science/hal-00728690

Submitted on 30 Aug 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

JOB-SHOP WITH GENERIC TIME-LAGS: A
HEURISTIC BASED APPROACH

Marie-José Huguet, Philippe Lacomme, Nikolay Tchernev

To cite this version:
Marie-José Huguet, Philippe Lacomme, Nikolay Tchernev. JOB-SHOP WITH GENERIC TIME-
LAGS: A HEURISTIC BASED APPROACH. 9th International Conference on Modeling, Optimiza-
tion & SIMulation, Jun 2012, Bordeaux, France. �hal-00728690�

https://hal.science/hal-00728690
https://hal.archives-ouvertes.fr

9
th

 International Conference of Modeling, Optimization and Simulation - MOSIM’12

 June 06-08, 2012 – Bordeaux - France

“Performance, interoperability and safety for sustainable development”

JOB-SHOP WITH GENERIC TIME-LAGS: A HEURISTIC BASED

APPROACH

P. LACOMME, N. TCHERNEV

Université Blaise Pascal

LIMOS - UMR CNRS 6138

Campus des Cézeaux,

63177 Aubière Cedex

{placomme, tchernev}@isima.fr

M.J. HUGUET

CNRS ; LAAS ;

7 avenue du Colonel Roche,

F-31077 Toulouse Cedex 4, France

Université de Toulouse ; UPS, INSA, INP, ISAE ; UT1,

UTM, LAAS ; F-31077 Toulouse Cedex 4, France

huguet@laas.fr

ABSTRACT: This paper deals with the job-shop scheduling problem with generic time-lags (JSPGTL). This problem

is a generalization of the job-shop scheduling problem where extra (minimal and maximal) delays can appear between

any operations. To solve the problem we extend the ARP-MD Deppner’s heuristic to tackle this extension providing a

new randomized heuristic. And propose a greedy version denoted GREEDY_ARP-MD. The numerical experiments are

based on a set of 48 instances including 8 instances based on the flow-shop Carlier’s instances and on the well-known

40 Laurence’sjob-shop instances. The numerical experiments proved that ARP-MD heuristic is time consuming and

can be used only for small scale instances. Instances with 10 jobs and 10 machines required several hours to obtain a

solution. The greedy version is strongly efficient and can be executed thousands of time per second and so gives

solutions for a part of the medium and large scale instances. This work is a step into definition of heuristic for the

JSPGTL based on the initial Deppner’s proposal. This sequel study prove that definition of efficient heuristic for

definition of solutions is a challenging problem and would require a considerable amount of attention to obtain time

saving approaches

KEYWORDS: Scheduling, Job-shop problem, Generic time-lags, heuristic

1 INTRODUCTION

The job-shop problem with minimum and maximum

time-lags (JSPGTL) is a generalization of the job-shop

problem, in which there are time relations between the

starting times of two successive operations belonging to

any two jobs. The JSPGTL involves a set of n jobs

 ni ,2,1 that have to be processed on set of

machines m  mj ,2,1 . Each job is fully defined by

an ordered sequence of operations that are associated

with a particular machine. Therefore, the dimension of

the problem is often denoted as mn . In addition, the

process must satisfy other constraints such as: (i) no

more than one operation of any job can be executed

simultaneously; and (ii) no machine can process more

than one operation at the same time; (iii) the job

operations must be executed in a predefined sequence

and once an operation is started, no preemption is

permitted.

A time-lag can be defined between the finish time of a

given operation jiO , (denoted by
jioft

,
) and the start

time of another operation '', jiO (denoted by
',' jiost) using

the following equation:

',',,','',', ,, jijijijijiji oooooo Lftstl  (1)

with
',',',', ,, jijijiji oooo lL  .

In this formula
',', , jiji ool represents the minimal time-lag

and
',', , jiji ooL is the maximal time-lag. The first part of

this formula
jijijiji oooo ftstl

,','',', ,  means that '', jiO

cannot start before at least ',', , jiji ool units after the end of

jiO , . The second part of the formula

',',,',' , jijijiji oooo Lftst  means that ',' jiO cannot be

started latter than ',', , jiji ooL units after the end of jiO , .

As stressed by Brucker (Brucker et al., 1999), for the

JSPGTL without preemption and fixed processing times,

the time-lags constraints can be formulated with only

“start-start” relations by using
jijiji ooo pftst

,,,
 .

Then time-lags can be defined by the formula:

jijijijijijijiji oooooooo pLststpl
,',',,',',',', ,,  (2)

The general time-lags constraints made the problem very

hard to solve. For example, the single machine JSSP is

MOSIM’12 - June 06-08, 2012 - Bordeaux - France

polynomial solve for the makespan minimization, since

each semi-active schedule is an optimal one. However,

the same problem with general time-lags constraint is

proven to be NP-hard (Wikum et al., 1994). Moreover,

even finding a feasible solution is a NP-complete

problem.

According to the  notation introduced by (Graham

et al. 1976) the problem can be represented by

max, ',',
ClJ

jiji oo (Brucker et al., 1999).

Time-lags between the start and completion times of

different activities have to be observed in numerous

scheduling problems including the RCPSP where

resource consumption is addressed (Brucker et al.,

1999). They result from technological or organizational

constraints in practice. Besides minimum time-lags,

maximum time-lags might be given which occurs in

chemical industries and food industries.

Recent publications on RCPSP focus on RCPSP

extensions including but not limited to multi-mode/time-

lags (Coelho and Vanhoucke, 2011), reactive scheduling

in multi-mode (Deblaere et al., 2011). Methods are for

numerous proposals, based on heuristic and meta-

heuristics. See (Hartmann and Briskorn, 2010) for a

survey of RCPSP variants previously addressed in

publications.

The classical job-shop problem is a well-addressed

problem in the literature but only few articles are

concerned with time-lag constraints. (Wikum et al.,

1994) study single-machine problems with minimum

and/or maximum distances between jobs and state that

some particular single-machine problems with time-lags

are polynomially solvable, even if the general case is

NP-hard. Brucker et al., 1999 show that many

scheduling problems (such as multi-processor tasks or

multi-purpose machines) can be modeled as single-

machine problems with time-lags and propose a branch-

and-bound method. A local search approach can be

found in (Hurink and Keuchel, 2001).

Furthermore, since the job-shop problem with time-lags

can be viewed as a special case of the RCPSP with time-

lags, the relevant literature on this problem also applies

to the JSPGTL (Kolicsh and Padman 2001; Neumann et

al., 2002). However, in general, finding a feasible

solution with time-lags is an NP-complete problem for

the JSPGTL.

(Deppner, 2004) proposed heuristics for a general

scheduling problem which includes the job-shop

problem. In his thesis, minimal and maximal time-lags

between every pair of operations are tackled.

(Fondrevelle et al. 2006) investigated permutation flow-

shop problems with minimal and/or maximal time lags,

where the time lags are defined between couples of suc-

cessive operations of jobs. They presented theoretical

results concerning two-machine cases and proved that

the two-machine permutation flowshop with constant

maximal time lags is strongly NP-hard. An optimal

branch and bound procedure to solve the m-machine

permutation flowshop problem with minimal and maxi-

mal time lags is developed. Several lower bounds were

implemented and tested, and some constructive heuris-

tics were adapted to the particular constraints of the

problem, to provide initial upper bounds.

Later (Fondrevelle et al. 2008) succefully adapted the

best bound among those proposed (Fondrevelle et al.

2006) and developed a branch and bound procedure to

solve the permutation flowshop scheduling problems

with time lags with objective to minimize the weighted

sum of machine completion times. It is shown that the

problem under study generalizes makespan and several

complexity results for two- and three-machine problems

are derived.

(Zhang and de Velde, 2010) investigated the open shop

with generic time-lags. The performance of the greedy

algorithm for the on-line two-machine open shop

scheduling problem of minimizing makespan is

analyzed. It is proven that the competitive ratio for the

greedy algorithm is 2, and it can be reduced to 5/3 if the

maximum time lag is less than the minimum positive

processing time of any operation. They also proved that

no on-line non-delay algorithm can have a better

competitive ratio.

(Dhouib et al., 2012.) studied the permutation flowshop

scheduling problem with sequence dependent setup

times and time lags constraints of successive operations

of the same job minimizing the number of tardy jobs.

Two mathematical programming formulations are

proposed for the considered problem. A simulated

annealing algorithm is also developed to solve the

problem.

(Javadian et al., 2012) introduced meta-heuristic

algorithm based on the immune algorithm for hybrid

flow shop scheduling problems considering time lags

and sequence-dependent setup times to minimize the

makespan. A mathematical model is presented which is

capable of solving the small size of the considered

problem in a reasonable time. Numerical experiments are

used to evaluate the performance and effectiveness of the

proposed algorithm. Computational results indicate that

the proposed algorithm can produce near-optimal

solutions in a short computational time. Moreover, it can

be applied easily in real factory conditions and for large-

sized problems.

Lately some research focus on the job-shop scheduling

problem with minimal and maximal time-lags between

successive operations of the same job. For this problem

it is possible to obtain solution considering scheduling

where all operations of a shop are schedule

MOSIM’12 - June 06-08, 2012 - Bordeaux - France

consecutively giving worst quality solution which is

used as initial solution of iterative search process. These

solutions are denoted canonical solutions (Caumond et

al., 2008). Authors proposed a memetic based approach

taking advantages of initial solutions generation by a

heuristic which adds each operation iteratively, a

powerful local search based on the critical path analysis

and on a neighbouring generation system. Their

approach is validated solving both flow-shop, job-shop,

no-wait and instances with time-lags.

(Artigues et al., 2011) introduced powerful heuristic and

generalized resource constraint propagation mechanisms.

The proposed approach based on the disjunctive time-

bound-on-node (TBON) graph introduced by (Esquirol

et al., 1995) is more efficient than the memetic algorithm

of (Caumond et al. 2008). The disjunctive TBON

representation is equivalent to the disjunctive graph, but

it allows the distinct visualization of the different

components of the problem: duration time-lags, start and

finish times, although it yields a larger number of nodes.

Recently (Lacomme et al. 2011) proposed an integer

linear model and some dedicated constraint propagation

rules which aim to detect some inconsistencies for the

JSPGTL. The efficiency of these rules is illustrated on a

small example. These propagation rules can be included

in a heuristic method for the acceleration of the search

for feasible solution thanks to early detection of certain

inconsistencies.

2 HEURISTIC BASED APPROACH FOR

JSPGTL SOLVING

The first heuristic proposed by Deppner (Deppner, 2004)

is a priority dispatching rules generation based on a

similar approach like the Giffler and Thomson’s

algorithm (Giffler and Thomson 1960). This is a

constructive heuristic which consists in scheduling of

one operation per iteration and which includes a

backtracking system to avoid trap induced by the

maximal time-lags.

This heuristic is known to be inefficient in practice

because of too many backtracks. In the following

paragraphs, we will propose an improvement of this

heuristic.

The problem is modelized as a non-oriented disjunctive

graph. Since a job sequence on machines is generated, it

is possible to obtain an oriented disjunctive graph. A

Bellman like longest path algorithm permits to compute

the earliest completion time of the last operation.

2.1 Problem modeling and solution representation

2.1.1 Disjunctive graph model

First introduced by (Roy and Sussmann 1964) the

disjunctive graph models each operation by a vertex and

precedence constraints between operations of one job are

represented by an arc. Disjunctive constraints between

operations of two jobs which required the same machine

are modeled by an edge.

Let us consider an example of JSSP composed of 3 jobs

all of them having 3 operations defined in Table 1. For

each job, this table gives the set of operations and for

each operation the machine needed (m1, m2 or m3) and

the processing time on this machine.

 Op.

Jobs
Oi1 Oi2 Oi3

i=1 (m1, 10) (m2, 35) (m3, 25)

i=2 (m1, 15) (m3, 16) (m2, 12)

i=3 (m3, 11) (m1, 12) (m2, 21)

Table 1: Example of JSSP

The disjunctive graph illustrating this example is given

in figure 1. In this graph, an arc (in full line) between

two operations),(',, jiji OO represents the routing

constraint of this job i . It is valuated by the minimal

distance between the start times of these two operations:

jijiji ooo pstst
,,, '  (3)

Each pair of disjunctive arcs is represented with a dotted

edge and represents the resource constraint between two

operations sharing the same resource.

0
0

0

10 35

1615 12

12

21

25

m1

m1 m3 m2

m3 m1 m2

m2 m3

11

O1,1 O1,2 O1,3

O2,1 O2,2 O2,3 *

O3,1 O3,2 O3,3

Figure 1: Disjunctive graph of the job-shop (problem

modeling).

The time-lags between operations of different jobs are:

36
3,11,1 , ool 45

3,11,1 , ooL

MOSIM’12 - June 06-08, 2012 - Bordeaux - France

20
2,21,1 , ool 30

2,21,1 , ooL

5
1,31,2 , ool

20

1,31,2 , ooL

To model time-lags constraints on the

conjunctive/disjunctive graph, we use the formulation

based only on start times of operations (and the

processing times of operations). Then these time-lags

constraints are modelled by:

 5546
1,13,1
 oo stst

 4030
1,12,2
 oo stst

 3520
1213


,, oO stst

The graph of the figure 2 represents this problem. It

corresponds to the same graph given in figure 1 for the

job-shop with in addition the time-lags constraints.

Maximal time-lags constraints are represented by

negative arc cost in the disjunctive graph from one

operation to the previous one. The negative cost of the

arc is equal to the duration of the previous operation plus

the maximal time-lag value. The maximal time-lag

between 1,1O and 3,1O operations of the job 1 are

represented by one arc which values−55 in the non-

oriented disjunctive graph.

0

O1,1

*
0

0

10 35

1615 12

12

21

25

m1

m1
m3 m2

m3 m1 m2

m2

m3

0

11

30

-40

20
-35

46

-55

10

O1,2 O1,3

O2,1 O2,2 O2,3

O3,1 O3,2 O3,3

Figure 2: Disjunctive graph of the JSPGTL (problem

modeling)

Minimal time-lags constraints are represented by arc cost

in the disjunctive graph from one operation to the next

one. The cost of the arc is equal to the duration of the

previous operation plus the minimal time-lag value. The

minimal time-lag between 1,1O and 3,1O operations of

the job 1 are represented by one arc which values 46 in

the non-oriented disjunctive graph. When no time-lags

are specified (for example between 2,1O and 3,1O), it is

possible to assume, without loss of generality, to have

null minimal time-lags and infinite maximal time-lags.

Since there is no interest in considering infinite maximal

time-lags, negative arc representing infinite maximal

time-lags are ignored in graphs representation in the

remainder of this article.

2.1.2 Solution representation

The arcs between operations of jobs which use the same

machines define the operations sequence on machines. A

solution is a cycle free oriented disjunctive graph which

encompassed arcs only. The arcs between operations of

jobs which use the same machines define the operations

sequence on machines. The graph of figure 3 and the

Gantt chart of figure 4 represent a solution in which:

 on machine 1 the sequence is operation 1,2O ,

operation 2,3O and operation 1,1O ;

 on machine 2 the sequence is operation 2,1O ,

operation 3,3O and operation 3,2O ;

 on machine 3 the sequence is operation 1,3O ,

operation 2,2O and operation 3,1O .

0

O1,1 O1,2 O1,3

O2,1 O2,2 O2,3

O3,1 O3,2 O3,3

*
0

0

10 35

1615 12

12

21

25

m1

m1
m3 m2

m3 m1 m2

m2

m3

0

11

10

15

11

16

35

21

43

30

-40

20
-35

53 89

0 0 73 109 121

20 31 88

46

-55

12

Figure 3: Fully oriented disjunctive graph of the

JSPGTL (lines in bold give the critical path)

73

10 20 31 40 50 60 70 800

O1,1

O1,2

O1,3

O2,1

26

O2,2

31

43

20

O2,3

O3,1

O3,2

O3,3

88

90 100

89 114

15 53 110 120

109 121

m3

m1

m2

Minimal Time-lags

Figure 4: Gantt chart of JSPGTL

A strongly efficient strategy has been introduced by

(Bierwith 1995) considering that one operation is linked

to one job only. For the job-shop problem a Bierwith’s

sequence does not generate any inconsistent graph.

Based on Bierwith’s proposal, this solution can be

represented by the following Bierwith’s vector: 2 3 3 1 1

2 3 1 2 which is also called: sequence with repetition.

Let us note, there exist several Bierwirth's sequences

which carry out to the same oriented disjunctive graph.

Note the j
th

 occurrence of job i represents the operation

 ji; . For more details concerning the use of Bierwirth's

sequences for solving job-shop with time lags see

(Caumond et al. 2008; Lacomme et al. 2011).

Bierwirth’s sequences can be efficiently generated by

any greedy algorithm or any iterative method. In this

MOSIM’12 - June 06-08, 2012 - Bordeaux - France

paper these sequences are managed by heuristics

proposed in the next sections.

2.2 Heuristic definition: Randomized_ARP_MD

Based on Deppner’s proposal (Deppner, 2004) the

proposed Randomized_ARP_MD works as follow.

During the initialization step, the set of unscheduled

operations L is initialized to the set of all operations and

the set of scheduled operations S is initialized to the

empty set. Note that maximal time-lags are not included

in the graph during earliest starting time computation.

After each evaluation, maximal time-lags are checked to

state if they hold or not.

The main loop consists in scheduling of one operation

and is ended when the set of unscheduled operations is

empty (L) or when the maximal number of

iterations is reached. The maximal number of iterations

prevents excessive computational time.

The heuristic is composed of 5 parts starting with a

graph G which encompasses only positive arcs i.e.

maximal time-lags are not included and where no

disjunctions are solve. The heuristic mainspring is given

in Algorithm 1.

Part 1 consists in identification of eligible operation. An

operation is stated eligible if all predecessors have been

previously labeled. Let us note T the set of eligible

operations. Note that nodes previously investigated are

tagged with the array denoted Mem and that the

procedure Eligible scan only not yet investigated node

(Mem[i]=false).

Part 2 consists in a random selection of an operation

according to the earliest finishing time iEF . This is

achieved with a probability p . Let us note i the

operation to schedule and im the machine required.
imT

is the set of all operations to schedule on the machine

im .

Part 3 consists in looking if any eligible operation j in

imT has an earliest starting time jES upper bounded by

iEF . This step is a careful search for more prior

operations on the same machine using earliest starting

time. Let us note k the operation of interest either i or

j .

Part 4 consists in managing backtrack in the decisional

tree if no operation can be identified. This is achieved by

the command pop (mem:=Pop(S);) which permits to

save the child node previously investigated.

Part 5 consists in computing the earliest starting time of

the operation after insertion of the operation k . Two

situations can hold. First the graph G is acyclic and the

current Mem vector is saved on the stack. The process is

iterated at step 1 where a new child node will be

investigated. Second, the graph is unproductive and no

push is achieved. The next iteration consists in

computing T thanks to the Eligible procedure.

Algorithm 1. Randomized_ARP_MD

procedure name

 Randomized_ARP_MD

Input data

  : set of operations to schedule

 nm : maximal number of iterations

Output data

  : a Bierwith’ sequence

 iES : earliest start time of operations

 iEF : earliest finish time of operations

Local data

 S : Stack

 Mem : array [1..n] of branching nodes

(boolean)

begin

 OL : // unscheduled operations

 :S // scheduled operations

 step := 1; // save initial state

 for i:=1 to n do

 Mem[i] := false;

 end do

 S.Push(Mem);

 While (S.Empty()=false) do

 S.Pop(Mem);

 Call Evaluate(G)

 // part 1

 // identification of eligible operations

),,(: MemSLEligibleT 

 'T := operations of E in

 increasing order of iEF

 // part 2 random selection of an operation

 // according to iEF

 i:=1; Stop := false;

 while (stop=false) do

 p:=random(100);

 if (p<80) then

 j:=i // save position in E

 stop:=true

 else

 i:= (i mod E)+1

 endif

 end do

 // part 3 looking for a more prior operation

 iEo : // operation

 omm : // machine

 j:=1; k:=-1

 while (j<= E) and (Stop=true) do

 begin

 jEoc : // current operation

 if (ij )and (mmoc ) then

 if (Mem[i]=false) then

 if (ooc EFES ) then

MOSIM’12 - June 06-08, 2012 - Bordeaux - France

 jk : ;

 oco ESEF :

 endif;

 endif;

 endif;

 1:  jj

 end;

 // part 4 Backtrack required

 if (Stop=false) then // backtrack

 mem:=Pop(S);

 Step:=Step-1;

 Else

 // part 5 insertion of k is investigated

 Mem[k]:=true;

km is the machine of operation k Compute

Prec the previous operation schedule on

machine km and assign -1 to Prec if not kJ

is the job of the opearation k

 if (1prec) then

 Add the disjunctive arc from prec to k

 end;

 Mem[k] := true;

 Call Evaluate(G) to obtain iES

 if (G is acyclic) then

 Mem[k] := true;

 S.Push(mem);

 for i:=1 to n do

 Mem[i] := false;

 end do

 kJStep :][

 endif

 endif

Note that the Evaluate G routine could not be as basic as

the classical job-shop one. When dealing with time-lags,

inserting an operation may require alteration of the

starting times of previously scheduled operations. Thus,

the evaluation of one partial schedule consists in a full

run of the longest path algorithm in the disjunctive

graph. During this evaluation, a positive length cycle

may be detected and the evaluation procedure returns an

infinite starting time.

2.3 A greedy Heuristic definition:

Greedy_Randomized_ARP_MD

The Randomized_ARP_MD heuristic cannot be used

for instances with up to 20 operations since it is

responsible of not acceptable computational time.

The greedy version consists in achieving only one

branch into the search tree representing only one

decision. The greedy variant can then be re-start many

times and due to the random selection several branches

can be explore.

This version can be used for medium and large scale

instances but provides, depending on the branch in the

tree, a non-feasible solution or a solution without any

guaranty in the quality.

3 COMPUTATIONAL EVALUATION

3.1 A new set of instances

To evaluate the proposed heuristic, we consider random

generated instances. The benchmark is concerned with

instances based on the OR-library
1
 for classical shop

problems (job-shop and flow-shop).

To include time-lag constraints, a dedicated program

randomly generates minimal and maximal time-lags

ensuring that one solution exists. Depending on the

instances the numbers of time-lags vary from 3 to 13.

These instances can be downloaded at:

http://www.isima.fr/~lacomme/GTL/instancesGTL.html

The framework performance is studied over experiments

including both flow-shop and job-shop instances with

time-lags. For each set of instances, the objective is to

underlines, the capabilities of the proposed heuristics to

provide new solutions for time-lags instances.

3.1.1 Flow-Shop instances: characteristics

The Carlier’s instances (denoted car1 to car8) is a wide

spread set of instances used in a wide majority of

publications addressing flow-shop scheduling problem

taken from (Carlier 1978).

3.1.2 Job-Shop instances: characteristics

The Laurence’s la01 to la40 instances are wide spread

instances with different size (number of jobs x number

of machines) 10x5, 15x5, 20x5, 10x10, 15x10, 20x10,

30x10, and 15x15 (Lawrence 1985).

3.2 Numerical experiments

The instances are large scale instances and there is no

possibility to fully execute the heuristic which would be

responsible of excessive computational time. The

maximal number of decision nodes must be upper

bounded to avoid time consuming heuristic execution by

a generation of partial search tree. This maximal number

of nodes during branch and bound is responsible of

premature stop, prevents excessive computational time

but does not guaranty that a solution is found when the

method stops.

The preliminary experiments we carried out, push us into

accepting that 100 000 nodes are sufficient enough. Even

if the number of nodes is limited, results showed that the

1
 http://people.brunel.ac.uk/~mastjjb/jeb/orlib/files/

http://www.isima.fr/~lacomme/GTL/instancesGTL.html
http://people.brunel.ac.uk/~mastjjb/jeb/orlib/files/

MOSIM’12 - June 06-08, 2012 - Bordeaux - France

Randomized_ARP_MD cannot be used for instance with

up to 20 operations to schedule due to the excessive

computational time.

Considering the conclusion mentioned above we decided

to promote the Greedy_Randomized_ARP_MD

procedure. For each instance the greedy heuristic is

restarted 100 000 times and the best found solutions (if a

solution has been obtained) are reported in table 3 and 4.

Experiments were achieved on a Pentium IV 2.8 Ghz

with 12 Go of Memory and which is about 2800 MFlops.

In the next sections the following notations are used:

BKS : Best known solution obtained using integer

linear model (Lacomme et al. 2011) with one

hour time limit. Asterisk denotes optimal

solution.

BFS : Best found solution during 100 000

executions.

tt : Total time to achieved the 100 000 executions

(if a solution has been obtained).

nt : The number of time-lags introduced.

3.2.1 Flow-Shop instances with TL

Table 2 reports results obtained by the proposed

heuristic.

Instances n m BKS nt BFS tt
car1 11 5 8574* 9 13 788 2s

car2 13 4 7777 7 /

car3 12 5 9025* 6 /

car4 14 4 8787 8 /

car5 10 6 9867* 7 13 597 <1

car6 8 9 9404* 10 /

car7 7 7 8746* 9 10 948 <1

car8 8 8 11317* 5 16 130 <1

Table 3: Flow-Shop instances with TL

Let us note that for instances car2, car3, car4 and car6 no

feasible solution is found after 100 000 executions of the

Greedy_Randomized_ARP_MD.

3.2.2 Job-Shop instances with TL

The job-shop instances encompass 50 operations of the

small instances and more than 200 operations for the

larger ones.

Table 3 gives the results for the job-shop instances with

time-lags. For these instances it is possible to

distinguish:

 Instances for which no solution has been found;

 Solutions for which the computation time remains

low (about 1 or 2 seconds);

 Instances for which computational time is greater

than 100 seconds (instances la36, la38 for example).

Instances n m BKS nt BFS tt

la01 10 5 666 * 5 875 8s

la02 10 5 697 * 5 897 <1s

la03 10 5 636 * 6 /

la04 10 5 713 * 6 /

la05 10 5 593 * 6 878 <1s

la06 15 5 926 * 7 /

la07 15 5 894 8 1123 <1s

la08 15 5 907 * 8 /

la09 15 5 951 8 /

la10 15 5 958 6 /

la11 20 5 1222 7 /

la12 20 5 1039 6 1575 3s

la13 20 5 1150 7 /

la14 20 5 1292 10 1584 6s

la15 20 5 1207 7 1593 <1s

la16 10 10 1114 * 8 1599 <1s

la17 10 10 1091 * 10 1292 <1s

la18 10 10 1076 * 9 /

la19 10 10 1050 * 8 1403 58s

la20 10 10 1142 * 8 1635 <1s

la21 15 10 1181 13 1795 151s

la22 15 10 1028 6 /

la23 15 10 1054 8 /

la24 15 10 1054 6 /

la25 15 10 1069 8 1736 3s

la26 20 10 1306 11 1877 <1s

la27 20 10 1408 7 /

la28 20 10 1325 9 1997 <1s

la29 20 10 1308 9 /

la30 20 10 1395 8 /

la31 30 10 1890 11 2543 <1s

la32 30 10 1986 5 2500 <1s

la33 30 10 1790 6 /

la34 30 10 1962 5 /

la35 30 10 2128 6 /

la36 15 15 1350 * 7 1747 192s

la37 15 15 1566 * 5 2452 <1s

la38 15 15 1295 8 1725 281s

la39 15 15 1390 8 /

la40 15 15 1320 6 /

Table 3: Job-Shop instances with TL

4 CONCLUDING REMARKS AND FURTHER

RESEARCH

This paper presents the first attempt to solve the job-

shop with generic time-lags between some operations of

different jobs. In this case, even the computation of a

solution is a difficult problem.

Using the original Deppner’s proposition (Deppner

2004), we introduce a two randomized heuristics. The

first one Randomized_ARP_MD can be used

MOSIM’12 - June 06-08, 2012 - Bordeaux - France

unfortunately only for small sizes instances up to 20

operations which instances are out of interest. This

heuristic suffers from many backtracks. The second one

Greedy_Randomized_ARP_MD which can be used for

medium and large size problems is more promising. This

heuristic is a greedy variant without backtracks and can

be restarted several times to explore the search tree. As

far as we know, these heuristics are the first ones for the

job-shop problem with time-lags between operations of

different jobs which can be used for large size problems.

To evaluate these new heuristics, we propose a new set

of instances composed of 8 flow-shop instances based on

Carlier’s flow-shop instances and 40 job-shop instances

based on the Lawrence’s instances.

The results are promising. When a solution is found by

Greedy_Randomized_ARP_MD the results are on

average 37% from the solutions obtained using linear

programming whit time limit of one hour.

This first study open several research issues. The one of

them consists in including some propagation rules into

the Randomized_ARP_MD which suffers from many

backtracks. For instance, constraint propagation

dedicated to JSPGTL proposed in (Lacomme et al. 2011)

or generic time constraint propagation as proposed in

(Artigues et al., 2011) can be used to reduce the tree

search expansion. Another issue consists in studying the

impact of dedicated propagation with regards to general

propagations in terms of efficiency and performances to

obtain a feasible solution.

Finally, our research will be directed into the definition

of GRASP-ELS framework taking advantages of all

previous remarks and propositions. The GRASP-ELS is

a combination of the GRASP metaheuristic and the ELS

metaheuristic combining the positive features of both

methods. The GRASP (Greedy Randomized Adaptive

Search Procedure) is a multi-start local search

metaheuristic. At each iteration, an initial solution must

be constructed using a Greedy_Randomized_ARP_MD.

It is then improved by a local search and the best

solution obtained at the end of each GRASP iteration is

kept. The Evolutionary Local Search (ELS) is an

extension of the Iterated Local Search (ILS). At each

iteration of the ELS, several copies of the current

solution are done. Each copy is modified (mutation)

before being improved by a local search. The best

obtained solution is kept as the new current solution. The

purpose of the ELS is to better investigate the

neighbourhood of the current local optimum before

leaving it, while the GRASP aims at managing the

diversity during the solution space exploration.

The framework we promote is a multi-start ELS in

which an ELS is applied to the initial solutions generated

by greedy randomized heuristics.

REFERENCES

Artigues, C., M.J. Huguet and P. Lopez. 2011

Generalized disjunctive constraint propagation for

solving the job shop problem with time lags.

Engineering Applications of Artificial Intelligence,

24, p. 220-231.

Bierwirth C. A., 1995. Generalized permutation

approach to jobshop scheduling with genetic

algorithms. OR Spektrum. 17, 87-92,

Brucker, P., T. Hilbig and J. Hurink, 1999. A branch and

bound algorithm for a single machine scheduling

with positive and negative time-lags. Discrete

Applied Mathematics, 94, p. 77–99.

Carlier, J., 1978. Ordonnancements a contraintes

disjonctives, RAIRO Recherche operationelle /

Operations Research, vol.12, p. 333-351.

Caumond, A., P. Lacomme and N. Tchernev, 2008. A

Memetic Algorithm for the Job-Shop with time-

lags”, Computers & Operations Research, vol. 35,

p. 2331-2356.

Coelho, J. and M. Vanhoucke, 2011. Multi-mode

resource-constrained project scheduling using

RCPSP and SAT solvers. European Journal of

Operational Research, 213, p. 73-82.

Deppner, F. 2004. Ordonnancement d’atelier avec

contraintes temporelles entre opérations, PhD thesis

in French, LORIA Nancy, France.

Dhouib, E., Teghem, J. and T. Loukil, 2012. Minimizing

the number of tardy jobs in a permutation flowshop

Scheduling Problem with Setup Times and Time

Lags Constraints, Journal of Mathematical

Modelling and Algorithms, DOI: 10.1007/s10852-

012-9180-x.

Esquirol, P., M.J. Huguet and P. Popez, 1995. Modeling

and managing disjunctions in scheduling problems”,

Journal of Intelligent Manufacturing, 6, p. 133–144.

Fondrevelle, J., Oulamaraa, A. and M.-C. Portmann,

2006. Permutation flowshop scheduling problems

with maximal and minimal time lags, Computers &

Operations Research, 33, p. 1540–1556.

Fondrevelle, J., Oulamaraa, A. and M.-C. Portmann,

2008. Permutation flowshop scheduling problems

with time lags to minimize the weighted sum of

machine completion times, International Journal of

Production Economics, 112, p. 168–176

MOSIM’12 - June 06-08, 2012 - Bordeaux - France

Giffler B. and J.L. Thompson, 1960. Algorithms for

solving production scheduling problems, Operations

Research, 8, p. 487-503.

Graham, R.L., E.L. Lawler, J.K. Lenstra and A.H.G. Kan

Rinnooy, 1979. Optimisation and approximation in

deterministic sequencing and scheduling: a survey.

Annals of Discrete Mathematics, 5, pp. 236-287.

Hartmann S. and D. Briskorn 2010. A survey of variants

and extensions of the resource-constrained project

scheduling problem. European Journal of

Operational Research, 207, p. 1-14.

Hurink, J. and J. Keuchel, 2001, Local search algorithms

for a single-machine scheduling problem with

positive and negative time-lags. Discrete Applied

Mathematics, 112, p. 179-197.

Javadian, N., Fattahi, P., Farahmand-Mehr, M., Mehdi

Amiri-Aref, M. and M. Kazemi, 2012. An immune

algorithm for hybrid flow shop scheduling problem

with time lags and sequence-dependent setup times,

The International Journal of Advanced

Manufacturing Technology, Doi: 10.1007/s00170-

012-3911-z.

Kolicsh, R. and R. Padman, 2001. An integrated survey

of deterministic project scheduling, Omega, 29, p.

249–272.

Lawrence, D., 1985. Job Shop Scheduling with Genetic

Algorithms. First International Conference on

Genetic Algorithms. Mahwah, New Jersey, p. 136-

140.

Deblaere, F., E. Demeulemeester, and W. Herroelen,

2011. Reactive scheduling in the multi-mode RCPSP.

Computers & Operations Research, 38, p. 63-74.

Lacomme, P., MJ. Huguet and N. Tchernev, 2011.

Dedicated constraint propagation for Job-Shop

problem with generic time-lags. 16th IEEE

conference on Emerging Technologies and Factory

Automation IEEE catalog number: CFP11ETF-USB,

ISBN: 978-1-4577-0016-3, Toulouse, France.

Neumann K., C. Schwindt and J. Zimmermann, 2002,

Project Scheduling with Time Windows and Scarce

Resources, Springer.

Roy B. and B. Sussmann, 1964. Les problèmes

d'ordonnancement avec contraintes disjunctive, In :

Note DS N°9 bis, SEMA, Paris, 1964.

Wikum, E. D., D.C. Llewellynnand G.L. Nemhauser,

1994. One-machine generalized precedence constrained

scheduling problem, Operations Research Letters, 16, p.

87–99

Zhang, X. and S. de Velde, 2010, On-line two-machine

open shop scheduling with time lags, European Journal

of Operational Research, 204, p. 14–19.

.

