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ABSTRACT: This paper deals with the job-shop scheduling problem with generic time-lags (JSPGTL). This problem 

is a generalization of the job-shop scheduling problem where extra (minimal and maximal) delays can appear between 

any operations. To solve the problem we extend the ARP-MD Deppner’s heuristic to tackle this extension providing a 

new randomized heuristic. And propose a greedy version denoted GREEDY_ARP-MD. The numerical experiments are 

based on a set of 48 instances including 8 instances based on the flow-shop Carlier’s instances and on the well-known 

40 Laurence’sjob-shop  instances. The numerical experiments proved that ARP-MD heuristic is time consuming and 

can be used only for small scale instances. Instances with 10 jobs and 10 machines required several hours to obtain a 

solution. The greedy version is strongly efficient and can be executed thousands of time per second and so gives 

solutions for a part of the medium and large scale instances. This work is a step into definition of heuristic for the 

JSPGTL based on the initial Deppner’s proposal. This sequel study prove that definition of efficient heuristic for 

definition of solutions is a challenging problem and would require a considerable amount of attention to obtain time 

saving approaches 

 

KEYWORDS: Scheduling, Job-shop problem, Generic time-lags, heuristic 

 

1 INTRODUCTION 

The job-shop problem with minimum and maximum 

time-lags (JSPGTL) is a generalization of the job-shop 

problem, in which there are time relations between the 

starting times of two successive operations belonging to 

any two jobs. The JSPGTL involves a set of n  jobs 

 ni ,2,1  that have to be processed on set of 

machines m   mj ,2,1 . Each job is fully defined by 

an ordered sequence of operations that are associated 

with a particular machine. Therefore, the dimension of 

the problem is often denoted as mn . In addition, the 

process must satisfy other constraints such as: (i) no 

more than one operation of any job can be executed 

simultaneously; and (ii) no machine can process more 

than one operation at the same time; (iii) the job 

operations must be executed in a predefined sequence 

and once an operation is started, no preemption is 

permitted. 

 

A time-lag can be defined between the finish time of a 

given operation jiO ,  (denoted by 
jioft

,
) and the start 

time of another operation '', jiO  (denoted by 
',' jiost ) using 

the following equation: 

 

',',,','',', ,, jijijijijiji oooooo Lftstl   (1) 

with 
',',',', ,, jijijiji oooo lL  . 

In this formula 
',', , jiji ool  represents the minimal time-lag 

and 
',', , jiji ooL is the maximal time-lag. The first part of 

this formula 
jijijiji oooo ftstl

,','',', ,   means that '', jiO  

cannot start before at least ',', , jiji ool  units after the end of 

jiO , . The second part of the formula 

',',,',' , jijijiji oooo Lftst   means that ',' jiO  cannot be 

started latter than ',', , jiji ooL  units after the end of jiO , . 

 

As stressed by Brucker (Brucker et al., 1999), for the 

JSPGTL without preemption and fixed processing times, 

the time-lags constraints can be formulated with only 

“start-start” relations by using 
jijiji ooo pftst

,,,
 . 

Then time-lags can be defined by the formula: 

 

jijijijijijijiji oooooooo pLststpl
,',',,',',',', ,,   (2) 

 

The general time-lags constraints made the problem very 

hard to solve. For example, the single machine JSSP is 
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polynomial solve for the makespan minimization, since 

each semi-active schedule is an optimal one. However, 

the same problem with general time-lags constraint is 

proven to be NP-hard (Wikum et al., 1994). Moreover, 

even finding a feasible solution is a NP-complete 

problem. 

 

According to the   notation introduced by (Graham 

et al. 1976) the problem can be represented by 

max, ',',
ClJ

jiji oo  (Brucker et al., 1999). 

 

Time-lags between the start and completion times of 

different activities have to be observed in numerous 

scheduling problems including the RCPSP where 

resource consumption is addressed (Brucker et al., 

1999). They result from technological or organizational 

constraints in practice. Besides minimum time-lags, 

maximum time-lags might be given which occurs in 

chemical industries and food industries. 

 

Recent publications on RCPSP focus on RCPSP 

extensions including but not limited to multi-mode/time-

lags (Coelho and Vanhoucke, 2011), reactive scheduling 

in multi-mode (Deblaere et al., 2011). Methods are for 

numerous proposals, based on heuristic and meta-

heuristics. See (Hartmann and Briskorn, 2010) for a 

survey of RCPSP variants previously addressed in 

publications. 

 

The classical job-shop problem is a well-addressed 

problem in the literature but only few articles are 

concerned with time-lag constraints. (Wikum et al., 

1994) study single-machine problems with minimum 

and/or maximum distances between jobs and state that 

some particular single-machine problems with time-lags 

are polynomially solvable, even if the general case is 

NP-hard. Brucker et al., 1999 show that many 

scheduling problems (such as multi-processor tasks or 

multi-purpose machines) can be modeled as single-

machine problems with time-lags and propose a branch-

and-bound method. A local search approach can be 

found in (Hurink and Keuchel, 2001). 

 

Furthermore, since the job-shop problem with time-lags 

can be viewed as a special case of the RCPSP with time-

lags, the relevant literature on this problem also applies 

to the JSPGTL (Kolicsh and Padman 2001; Neumann et 

al., 2002). However, in general, finding a feasible 

solution with time-lags is an NP-complete problem for 

the JSPGTL. 

 

(Deppner, 2004) proposed heuristics for a general 

scheduling problem which includes the job-shop 

problem. In his thesis, minimal and maximal time-lags 

between every pair of operations are tackled. 

 

(Fondrevelle et al. 2006) investigated permutation flow-

shop problems with minimal and/or maximal time lags, 

where the time lags are defined between couples of suc-

cessive operations of jobs. They presented theoretical 

results concerning two-machine cases and proved that 

the two-machine permutation flowshop with constant 

maximal time lags is strongly NP-hard. An optimal 

branch and bound procedure to solve the m-machine 

permutation flowshop problem with minimal and maxi-

mal time lags is developed. Several lower bounds were 

implemented and tested, and some constructive heuris-

tics were adapted to the particular constraints of the 

problem, to provide initial upper bounds. 

 

Later (Fondrevelle et al. 2008) succefully adapted the 

best bound among those proposed (Fondrevelle et al. 

2006) and developed a branch and bound procedure to 

solve the permutation flowshop scheduling problems 

with time lags with objective to minimize the weighted 

sum of machine completion times. It is shown that the 

problem under study generalizes makespan and several 

complexity results for two- and three-machine problems 

are derived. 

 

(Zhang and de Velde, 2010) investigated the open shop 

with generic time-lags. The performance of the greedy 

algorithm for the on-line two-machine open shop 

scheduling problem of minimizing makespan is 

analyzed. It is proven that the competitive ratio for the 

greedy algorithm is 2, and it can be reduced to 5/3 if the 

maximum time lag is less than the minimum positive 

processing time of any operation. They also proved that 

no on-line non-delay algorithm can have a better 

competitive ratio. 

 

(Dhouib et al., 2012.) studied the permutation flowshop 

scheduling problem with sequence dependent setup 

times and time lags constraints of successive operations 

of the same job minimizing the number of tardy jobs. 

Two mathematical programming formulations are 

proposed for the considered problem. A simulated 

annealing algorithm is also developed to solve the 

problem. 

 

(Javadian et al., 2012) introduced meta-heuristic 

algorithm based on the immune algorithm for hybrid 

flow shop scheduling problems considering time lags 

and sequence-dependent setup times to minimize the 

makespan. A mathematical model is presented which is 

capable of solving the small size of the considered 

problem in a reasonable time. Numerical experiments are 

used to evaluate the performance and effectiveness of the 

proposed algorithm. Computational results indicate that 

the proposed algorithm can produce near-optimal 

solutions in a short computational time. Moreover, it can 

be applied easily in real factory conditions and for large-

sized problems. 

 

Lately some research focus on the job-shop scheduling 

problem with minimal and maximal time-lags between 

successive operations of the same job. For this problem 

it is possible to obtain solution considering scheduling 

where all operations of a shop are schedule 
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consecutively giving worst quality solution which is 

used as initial solution of iterative search process. These 

solutions are denoted canonical solutions (Caumond et 

al., 2008). Authors proposed a memetic based approach 

taking advantages of initial solutions generation by a 

heuristic which adds each operation iteratively, a 

powerful local search based on the critical path analysis 

and on a neighbouring generation system. Their 

approach is validated solving both flow-shop, job-shop, 

no-wait and instances with time-lags. 

 

(Artigues et al., 2011) introduced powerful heuristic and 

generalized resource constraint propagation mechanisms. 

The proposed approach based on the disjunctive time-

bound-on-node (TBON) graph introduced by (Esquirol 

et al., 1995) is more efficient than the memetic algorithm 

of (Caumond et al. 2008). The disjunctive TBON 

representation is equivalent to the disjunctive graph, but 

it allows the distinct visualization of the different 

components of the problem: duration time-lags, start and 

finish times, although it yields a larger number of nodes. 

 

Recently (Lacomme et al. 2011) proposed an integer 

linear model and some dedicated constraint propagation 

rules which aim to detect some inconsistencies for the 

JSPGTL. The efficiency of these rules is illustrated on a 

small example. These propagation rules can be included 

in a heuristic method for the acceleration of the search 

for feasible solution thanks to early detection of certain 

inconsistencies. 

 

2 HEURISTIC BASED APPROACH FOR 

JSPGTL SOLVING 

The first heuristic proposed by Deppner (Deppner, 2004) 

is a priority dispatching rules generation based on a 

similar approach like the Giffler and Thomson’s 

algorithm (Giffler and Thomson 1960). This is a 

constructive heuristic which consists in scheduling of 

one operation per iteration and which includes a 

backtracking system to avoid trap induced by the 

maximal time-lags. 

 

This heuristic is known to be inefficient in practice 

because of too many backtracks. In the following 

paragraphs, we will propose an improvement of this 

heuristic. 

 

The problem is modelized as a non-oriented disjunctive 

graph. Since a job sequence on machines is generated, it 

is possible to obtain an oriented disjunctive graph. A 

Bellman like longest path algorithm permits to compute 

the earliest completion time of the last operation. 

 

 

2.1 Problem modeling and solution representation 

2.1.1 Disjunctive graph model 

 

First introduced by (Roy and Sussmann 1964) the 

disjunctive graph models each operation by a vertex and 

precedence constraints between operations of one job are 

represented by an arc. Disjunctive constraints between 

operations of two jobs which required the same machine 

are modeled by an edge. 

 

Let us consider an example of JSSP composed of 3 jobs 

all of them having 3 operations defined in Table 1. For 

each job, this table gives the set of operations and for 

each operation the machine needed (m1, m2 or m3) and 

the processing time on this machine. 

 

         Op. 

Jobs 
Oi1 Oi2 Oi3 

i=1 (m1, 10) (m2, 35) (m3, 25) 

i=2 (m1, 15) (m3, 16) (m2, 12) 

i=3 (m3, 11) (m1, 12) (m2, 21) 

Table 1: Example of JSSP 

 

The disjunctive graph illustrating this example is given 

in figure 1. In this graph, an arc (in full line) between 

two operations ),( ',, jiji OO  represents the routing 

constraint of this job i . It is valuated by the minimal 

distance between the start times of these two operations: 

 

jijiji ooo pstst
,,, '   (3) 

 

Each pair of disjunctive arcs is represented with a dotted 

edge and represents the resource constraint between two 

operations sharing the same resource.  

0
0

0

10 35

1615 12

12

21

25

m1

m1 m3 m2

m3 m1 m2

m2 m3

11

O1,1 O1,2 O1,3

O2,1 O2,2 O2,3 *

O3,1 O3,2 O3,3

 

Figure 1: Disjunctive graph of the job-shop (problem 

modeling). 

The time-lags between operations of different jobs are: 

36
3,11,1 , ool   45

3,11,1 , ooL  
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20
2,21,1 , ool   30

2,21,1 , ooL  

5
1,31,2 , ool

  
20

1,31,2 , ooL
 

 

To model time-lags constraints on the 

conjunctive/disjunctive graph, we use the formulation 

based only on start times of operations (and the 

processing times of operations). Then these time-lags 

constraints are modelled by: 

 5546
1,13,1
 oo stst  

 4030
1,12,2
 oo stst  

 3520
1213


,, oO stst  

 

The graph of the figure 2 represents this problem. It 

corresponds to the same graph given in figure 1 for the 

job-shop with in addition the time-lags constraints. 

Maximal time-lags constraints are represented by 

negative arc cost in the disjunctive graph from one 

operation to the previous one. The negative cost of the 

arc is equal to the duration of the previous operation plus 

the maximal time-lag value. The maximal time-lag 

between 1,1O  and 3,1O  operations of the job 1 are 

represented by one arc which values−55 in the non-

oriented disjunctive graph. 

0

O1,1

*
0

0

10 35

1615 12

12

21

25

m1

m1
m3 m2

m3 m1 m2

m2

m3

0

11

30

-40

20
-35

46

-55

10

O1,2 O1,3

O2,1 O2,2 O2,3

O3,1 O3,2 O3,3

 

Figure 2: Disjunctive graph of the JSPGTL (problem 

modeling) 

Minimal time-lags constraints are represented by arc cost 

in the disjunctive graph from one operation to the next 

one. The cost of the arc is equal to the duration of the 

previous operation plus the minimal time-lag value. The 

minimal time-lag between 1,1O  and 3,1O  operations of 

the job 1 are represented by one arc which values 46 in 

the non-oriented disjunctive graph. When no time-lags 

are specified (for example between 2,1O  and 3,1O ), it is 

possible to assume, without loss of generality, to have 

null minimal time-lags and infinite maximal time-lags. 

Since there is no interest in considering infinite maximal 

time-lags, negative arc representing infinite maximal 

time-lags are ignored in graphs representation in the 

remainder of this article. 

2.1.2 Solution representation 

 

The arcs between operations of jobs which use the same 

machines define the operations sequence on machines. A 

solution is a cycle free oriented disjunctive graph which 

encompassed arcs only. The arcs between operations of 

jobs which use the same machines define the operations 

sequence on machines. The graph of figure 3 and the 

Gantt chart of figure 4 represent a solution in which: 

 on machine 1 the sequence is operation 1,2O , 

operation 2,3O  and operation 1,1O ; 

 on machine 2 the sequence is operation 2,1O , 

operation 3,3O and operation 3,2O ; 

 on machine 3 the sequence is operation 1,3O , 

operation 2,2O  and operation 3,1O . 

 

0

O1,1 O1,2 O1,3

O2,1 O2,2 O2,3

O3,1 O3,2 O3,3

*
0

0

10 35

1615 12

12

21

25

m1

m1
m3 m2

m3 m1 m2

m2

m3

0

11

10

15

11

16

35

21

43

30

-40

20
-35

53 89

0 0 73 109 121

20 31 88

46

-55

12

 

Figure 3: Fully oriented disjunctive graph of the 

JSPGTL (lines in bold give the critical path) 

73

10 20 31 40 50 60 70 800

O1,1

O1,2

O1,3

O2,1

26

O2,2

31

43

20

O2,3

O3,1

O3,2

O3,3

88

90 100

89 114

15 53 110 120

109 121

m3

m1

m2

Minimal Time-lags

 

Figure 4: Gantt chart of JSPGTL 

A strongly efficient strategy has been introduced by 

(Bierwith 1995) considering that one operation is linked 

to one job only. For the job-shop problem a Bierwith’s 

sequence does not generate any inconsistent graph. 

Based on Bierwith’s proposal, this solution can be 

represented by the following Bierwith’s vector: 2 3 3 1 1 

2 3 1 2 which is also called: sequence with repetition. 

Let us note, there exist several Bierwirth's sequences 

which carry out to the same oriented disjunctive graph. 

Note the j
th

 occurrence of job i represents the operation 

 ji; . For more details concerning the use of Bierwirth's 

sequences for solving job-shop with time lags see 

(Caumond et al. 2008; Lacomme et al. 2011). 

Bierwirth’s sequences can be efficiently generated by 

any greedy algorithm or any iterative method. In this 
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paper these sequences are managed by heuristics 

proposed in the next sections.  

 

2.2 Heuristic definition: Randomized_ARP_MD 

Based on Deppner’s proposal (Deppner, 2004) the 

proposed Randomized_ARP_MD works as follow. 

During the initialization step, the set of unscheduled 

operations L  is initialized to the set of all operations and 

the set of scheduled operations S  is initialized to the 

empty set. Note that maximal time-lags are not included 

in the graph during earliest starting time computation. 

After each evaluation, maximal time-lags are checked to 

state if they hold or not. 

 

The main loop consists in scheduling of one operation 

and is ended when the set of unscheduled operations is 

empty ( L ) or when the maximal number of 

iterations is reached. The maximal number of iterations 

prevents excessive computational time. 

 

The heuristic is composed of 5 parts starting with a 

graph G  which encompasses only positive arcs i.e. 

maximal time-lags are not included and where no 

disjunctions are solve. The heuristic mainspring is given 

in Algorithm 1. 

 

Part 1 consists in identification of eligible operation. An 

operation is stated eligible if all predecessors have been 

previously labeled. Let us note T  the set of eligible 

operations. Note that nodes previously investigated are 

tagged with the array denoted Mem and that the 

procedure Eligible scan only not yet investigated node 

(Mem[i]=false). 

 

Part 2 consists in a random selection of an operation 

according to the earliest finishing time iEF . This is 

achieved with a probability p . Let us note i  the 

operation to schedule and im  the machine required. 
imT  

is the set of all operations to schedule on the machine 

im . 

 

Part 3 consists in looking if any eligible operation j  in 

imT  has an earliest starting time jES  upper bounded by 

iEF . This step is a careful search for more prior 

operations on the same machine using earliest starting 

time. Let us note k  the operation of interest either i  or 

j . 

 

Part 4 consists in managing backtrack in the decisional 

tree if no operation can be identified. This is achieved by 

the command pop (mem:=Pop(S);) which permits to 

save the child node previously investigated. 

 

Part 5 consists in computing the earliest starting time of 

the operation after insertion of the operation k . Two 

situations can hold. First the graph G  is acyclic and the 

current Mem vector is saved on the stack. The process is 

iterated at step 1 where a new child node will be 

investigated. Second, the graph is unproductive and no 

push is achieved. The next iteration consists in 

computing T  thanks to the Eligible procedure.  

 

Algorithm 1. Randomized_ARP_MD 

procedure name 

 Randomized_ARP_MD 

Input data 

    : set of operations to schedule 

 nm : maximal number of iterations 

Output data 

   : a Bierwith’ sequence 

 iES  : earliest start time of operations 

 iEF  : earliest finish time of operations 

 

Local data 

 S   : Stack 

 Mem : array [1..n] of branching nodes 

(boolean) 

 

begin 

 OL :    // unscheduled operations 

 :S    // scheduled operations 

 step := 1; // save initial state 

 for i:=1 to n do  

  Mem[i] := false; 

 end do 

 S.Push(Mem); 

  While (S.Empty()=false) do 

 S.Pop(Mem); 

 Call Evaluate(G ) 

 

 // part 1 

 // identification of eligible operations 

 

 ),,(: MemSLEligibleT    

 'T  := operations of E  in  

  increasing order of iEF  

 //  part 2 random selection of an operation 

 //  according to iEF  

 i:=1; Stop := false; 

 while (stop=false) do 

  p:=random(100); 

  if (p<80) then 

   j:=i         // save position in E 

    stop:=true  

  else 

   i:= (i mod E )+1 

  endif 

 end do 

 

 // part 3 looking for a more prior operation 

 

 iEo :   // operation 

 omm :   // machine 

 j:=1; k:=-1 

 while (j<= E ) and (Stop=true) do 

 begin 

  jEoc :  // current operation 

  if ( ij  )and ( mmoc  ) then 

      if (Mem[i]=false) then 

   if ( ooc EFES  ) then 
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    jk : ;  

    oco ESEF :  

   endif; 

       endif; 

      endif; 

  1:  jj  

 end; 

 

   // part 4 Backtrack required 

 

 if (Stop=false) then  // backtrack 

   mem:=Pop(S);  

   Step:=Step-1;  

 Else 

 

   // part 5 insertion of k is investigated 

 

  Mem[k]:=true; 

km  is the machine of operation k  Compute 

Prec the previous operation schedule on 

machine km  and assign -1 to Prec if not kJ  

is the job of the opearation k  

   if ( 1prec ) then 

  Add the disjunctive arc from prec to k 

  end; 

  Mem[k] := true; 

  Call Evaluate(G ) to obtain iES  

  if (G  is acyclic) then 

        Mem[k] := true; 

   S.Push(mem);   

   for i:=1 to n do  

    Mem[i] := false; 

   end do 

   kJStep :][  

  endif 

 endif 

 

 

Note that the Evaluate G routine could not be as basic as 

the classical job-shop one. When dealing with time-lags, 

inserting an operation may require alteration of the 

starting times of previously scheduled operations. Thus, 

the evaluation of one partial schedule consists in a full 

run of the longest path algorithm in the disjunctive 

graph. During this evaluation, a positive length cycle 

may be detected and the evaluation procedure returns an 

infinite starting time. 

 

2.3 A greedy Heuristic definition: 

Greedy_Randomized_ARP_MD 

The Randomized_ARP_MD heuristic cannot be used 

for instances with up to 20 operations since it is 

responsible of not acceptable computational time. 

 

The greedy version consists in achieving only one 

branch into the search tree representing only one 

decision. The greedy variant can then be re-start many 

times and due to the random selection several branches 

can be explore. 

 

This version can be used for medium and large scale 

instances but provides, depending on the branch in the 

tree, a non-feasible solution or a solution without any 

guaranty in the quality. 

 

3 COMPUTATIONAL EVALUATION 

3.1 A new set of instances 

To evaluate the proposed heuristic, we consider random 

generated instances. The benchmark is concerned with 

instances based on the OR-library
1
 for classical shop 

problems (job-shop and flow-shop). 

 

To include time-lag constraints, a dedicated program 

randomly generates minimal and maximal time-lags 

ensuring that one solution exists. Depending on the 

instances the numbers of time-lags vary from 3 to 13. 

These instances can be downloaded at: 

 

http://www.isima.fr/~lacomme/GTL/instancesGTL.html 

 

The framework performance is studied over experiments 

including both flow-shop and job-shop instances with 

time-lags. For each set of instances, the objective is to 

underlines, the capabilities of the proposed heuristics to 

provide new solutions for time-lags instances. 

3.1.1 Flow-Shop instances: characteristics 

 

The Carlier’s instances (denoted car1 to car8) is a wide 

spread set of instances used in a wide majority of 

publications addressing flow-shop scheduling problem 

taken from (Carlier 1978). 

3.1.2 Job-Shop instances: characteristics 

 

The Laurence’s la01 to la40 instances are wide spread 

instances with different size ( number of jobs x number 

of machines) 10x5, 15x5, 20x5, 10x10, 15x10, 20x10, 

30x10, and 15x15 (Lawrence 1985). 

 

3.2 Numerical experiments 

The instances are large scale instances and there is no 

possibility to fully execute the heuristic which would be 

responsible of excessive computational time. The 

maximal number of decision nodes must be upper 

bounded to avoid time consuming heuristic execution by 

a generation of partial search tree. This maximal number 

of nodes during branch and bound is responsible of 

premature stop, prevents excessive computational time 

but does not guaranty that a solution is found when the 

method stops. 

 

The preliminary experiments we carried out, push us into 

accepting that 100 000 nodes are sufficient enough. Even 

if the number of nodes is limited, results showed that the 

                                                           
1
 http://people.brunel.ac.uk/~mastjjb/jeb/orlib/files/ 

 

http://www.isima.fr/~lacomme/GTL/instancesGTL.html
http://people.brunel.ac.uk/~mastjjb/jeb/orlib/files/
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Randomized_ARP_MD cannot be used for instance with 

up to 20 operations to schedule due to the excessive 

computational time.  

 

Considering the conclusion mentioned above we decided 

to promote the Greedy_Randomized_ARP_MD 

procedure. For each instance the greedy heuristic is 

restarted 100 000 times and the best found solutions (if a 

solution has been obtained) are reported in table 3 and 4. 

 

Experiments were achieved on a Pentium IV 2.8 Ghz 

with 12 Go of Memory and which is about 2800 MFlops.  

 

In the next sections the following notations are used: 

 

BKS  : Best known solution obtained using integer 

linear model (Lacomme et al. 2011) with one 

hour time limit. Asterisk denotes optimal 

solution. 

BFS  : Best found solution during 100 000 

executions. 

tt  : Total time to achieved the 100 000 executions 

(if a solution has been obtained). 

nt  :  The number of time-lags introduced. 

 

3.2.1 Flow-Shop instances with TL 

 

Table 2 reports results obtained by the proposed 

heuristic. 

 

Instances n  m  BKS  nt  BFS  tt  
car1 11 5 8574* 9 13 788 2s 

car2 13 4 7777 7 /  

car3 12 5 9025* 6 /  

car4 14 4 8787 8 /  

car5 10 6 9867* 7 13 597 <1 

car6 8 9 9404* 10 /  

car7 7 7 8746* 9 10 948 <1 

car8 8 8 11317* 5 16 130 <1 

Table 3: Flow-Shop instances with TL 

 

Let us note that for instances car2, car3, car4 and car6 no 

feasible solution is found after 100 000 executions of the 

Greedy_Randomized_ARP_MD.  

3.2.2 Job-Shop instances with TL 

 

The job-shop instances encompass 50 operations of the 

small instances and more than 200 operations for the 

larger ones. 

 

Table 3 gives the results for the job-shop instances with 

time-lags. For these instances it is possible to 

distinguish:  

 Instances for which no solution has been found; 

 Solutions for which the computation time remains 

low (about 1 or 2 seconds); 

 Instances for which computational time is greater 

than 100 seconds (instances la36, la38 for example). 

 

 

Instances n  m  BKS  nt  BFS  tt  

la01 10 5 666 * 5 875 8s 

la02 10 5 697 * 5 897 <1s 

la03 10 5 636 * 6 /  

la04 10 5 713 * 6 /  

la05 10 5 593 * 6 878 <1s 

la06 15 5 926 * 7 /  

la07 15 5 894   8 1123 <1s 

la08 15 5 907 * 8 /  

la09 15 5 951   8 /  

la10 15 5 958   6 /  

la11 20 5 1222   7 /  

la12 20 5 1039   6 1575 3s 

la13 20 5 1150   7 /  

la14 20 5 1292   10 1584 6s 

la15 20 5 1207   7 1593 <1s 

la16 10 10 1114 * 8 1599 <1s 

la17 10 10 1091 * 10 1292 <1s 

la18 10 10 1076 * 9 /  

la19 10 10 1050 * 8 1403 58s 

la20 10 10 1142 * 8 1635 <1s 

la21 15 10 1181   13 1795 151s 

la22 15 10 1028   6 /  

la23 15 10 1054   8 /  

la24 15 10 1054   6 /  

la25 15 10 1069   8 1736 3s 

la26 20 10 1306   11 1877 <1s 

la27 20 10 1408   7 /  

la28 20 10 1325   9 1997 <1s 

la29 20 10 1308   9 /  

la30 20 10 1395   8 /  

la31 30 10 1890   11 2543 <1s 

la32 30 10 1986   5 2500 <1s 

la33 30 10 1790   6 /  

la34 30 10 1962   5 /  

la35 30 10 2128   6 /  

la36 15 15 1350 * 7 1747 192s 

la37 15 15 1566 * 5 2452 <1s 

la38 15 15 1295   8 1725 281s 

la39 15 15 1390   8 /  

la40 15 15 1320   6 /  

Table 3: Job-Shop instances with TL 

 

4 CONCLUDING REMARKS AND FURTHER 

RESEARCH 

This paper presents the first attempt to solve the job-

shop with generic time-lags between some operations of 

different jobs. In this case, even the computation of a 

solution is a difficult problem. 

 

Using the original Deppner’s proposition (Deppner 

2004), we introduce a two randomized heuristics. The 

first one Randomized_ARP_MD can be used 
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unfortunately only for small sizes instances up to 20 

operations which instances are out of interest. This 

heuristic suffers from many backtracks. The second one 

Greedy_Randomized_ARP_MD which can be used for 

medium and large size problems is more promising. This 

heuristic is a greedy variant without backtracks and can 

be restarted several times to explore the search tree. As 

far as we know, these heuristics are the first ones for the 

job-shop problem with time-lags between operations of 

different jobs which can be used for large size problems. 

 

To evaluate these new heuristics, we propose a new set 

of instances composed of 8 flow-shop instances based on 

Carlier’s flow-shop instances and 40 job-shop instances 

based on the Lawrence’s instances. 

 

The results are promising. When a solution is found by 

Greedy_Randomized_ARP_MD the results are on 

average 37% from the solutions obtained using linear 

programming whit time limit of one hour.  

 

This first study open several research issues. The one of 

them consists in including some propagation rules into 

the Randomized_ARP_MD which suffers from many 

backtracks. For instance, constraint propagation 

dedicated to JSPGTL proposed in (Lacomme et al. 2011) 

or generic time constraint propagation as proposed in 

(Artigues et al., 2011) can be used to reduce the tree 

search expansion. Another issue consists in studying the 

impact of dedicated propagation with regards to general 

propagations in terms of efficiency and performances to 

obtain a feasible solution. 

 

Finally, our research will be directed into the definition 

of GRASP-ELS framework taking advantages of all 

previous remarks and propositions. The GRASP-ELS is 

a combination of the GRASP metaheuristic and the ELS 

metaheuristic combining the positive features of both 

methods. The GRASP (Greedy Randomized Adaptive 

Search Procedure) is a multi-start local search 

metaheuristic. At each iteration, an initial solution must 

be constructed using a Greedy_Randomized_ARP_MD. 

It is then improved by a local search and the best 

solution obtained at the end of each GRASP iteration is 

kept. The Evolutionary Local Search (ELS) is an 

extension of the Iterated Local Search (ILS). At each 

iteration of the ELS, several copies of the current 

solution are done. Each copy is modified (mutation) 

before being improved by a local search. The best 

obtained solution is kept as the new current solution. The 

purpose of the ELS is to better investigate the 

neighbourhood of the current local optimum before 

leaving it, while the GRASP aims at managing the 

diversity during the solution space exploration. 

The framework we promote is a multi-start ELS in 

which an ELS is applied to the initial solutions generated 

by greedy randomized heuristics. 

 

 

REFERENCES 

 

Artigues, C., M.J. Huguet and P. Lopez. 2011 

Generalized disjunctive constraint propagation for 

solving the job shop problem with time lags. 

Engineering Applications of Artificial Intelligence, 

24, p. 220-231. 

 

Bierwirth C. A., 1995. Generalized permutation 

approach to jobshop scheduling with genetic 

algorithms. OR Spektrum. 17, 87-92,  

 

Brucker, P., T. Hilbig and J. Hurink, 1999. A branch and 

bound algorithm for a single machine scheduling 

with positive and negative time-lags. Discrete 

Applied Mathematics, 94, p. 77–99. 

 

Carlier, J., 1978. Ordonnancements a contraintes 

disjonctives, RAIRO Recherche operationelle / 

Operations Research, vol.12, p. 333-351.  

 

Caumond, A., P. Lacomme and N. Tchernev, 2008. A 

Memetic Algorithm for the Job-Shop with time-

lags”, Computers & Operations Research, vol. 35, 

p. 2331-2356. 

 

Coelho, J. and M. Vanhoucke, 2011. Multi-mode 

resource-constrained project scheduling using 

RCPSP and SAT solvers. European Journal of 

Operational Research, 213, p. 73-82. 

 

Deppner, F. 2004. Ordonnancement d’atelier avec 

contraintes temporelles entre opérations, PhD thesis 

in French, LORIA Nancy, France. 

 

Dhouib, E., Teghem, J. and T. Loukil, 2012. Minimizing 

the number of tardy jobs in a permutation flowshop 

Scheduling Problem with Setup Times and Time 

Lags Constraints, Journal of Mathematical 

Modelling and Algorithms, DOI: 10.1007/s10852-

012-9180-x. 

 

Esquirol, P., M.J. Huguet and P. Popez, 1995. Modeling 

and managing disjunctions in scheduling problems”,  

Journal of Intelligent Manufacturing, 6, p. 133–144. 

 

Fondrevelle, J., Oulamaraa, A. and M.-C. Portmann, 

2006. Permutation flowshop scheduling problems 

with maximal and minimal time lags, Computers & 

Operations Research, 33, p. 1540–1556. 

 

Fondrevelle, J., Oulamaraa, A. and M.-C. Portmann, 

2008. Permutation flowshop scheduling problems 

with time lags to minimize the weighted sum of 

machine completion times, International Journal of 

Production Economics, 112, p. 168–176 

 



MOSIM’12 - June 06-08, 2012 - Bordeaux - France 

 

Giffler B. and J.L. Thompson, 1960. Algorithms for 

solving production scheduling problems, Operations 

Research, 8, p. 487-503. 

 

Graham, R.L., E.L. Lawler, J.K. Lenstra and A.H.G. Kan 

Rinnooy, 1979. Optimisation and approximation in 

deterministic sequencing and scheduling: a survey. 

Annals of Discrete Mathematics, 5, pp. 236-287. 

 

Hartmann S. and D. Briskorn 2010. A survey of variants 

and extensions of the resource-constrained project 

scheduling problem. European Journal of 

Operational Research, 207, p. 1-14. 

 

Hurink, J. and J. Keuchel, 2001, Local search algorithms 

for a single-machine scheduling problem with 

positive and negative time-lags. Discrete Applied 

Mathematics, 112, p. 179-197. 

 

Javadian, N., Fattahi, P., Farahmand-Mehr, M., Mehdi 

Amiri-Aref, M. and M. Kazemi, 2012. An immune 

algorithm for hybrid flow shop scheduling problem 

with time lags and sequence-dependent setup times, 

The International Journal of Advanced 

Manufacturing Technology, Doi: 10.1007/s00170-

012-3911-z. 

 

Kolicsh, R. and R. Padman, 2001. An integrated survey 

of deterministic project scheduling, Omega, 29, p. 

249–272. 

 

Lawrence, D., 1985. Job Shop Scheduling with Genetic 

Algorithms. First International Conference on 

Genetic Algorithms. Mahwah, New Jersey, p. 136-

140. 

 

Deblaere, F., E. Demeulemeester, and W. Herroelen, 

2011. Reactive scheduling in the multi-mode RCPSP. 

Computers & Operations Research, 38, p. 63-74. 

 

Lacomme, P., MJ. Huguet and N. Tchernev, 2011. 

Dedicated constraint propagation for Job-Shop 

problem with generic time-lags. 16th IEEE 

conference on Emerging Technologies and Factory 

Automation IEEE catalog number: CFP11ETF-USB, 

ISBN: 978-1-4577-0016-3, Toulouse, France. 

 

Neumann K., C. Schwindt and J. Zimmermann, 2002, 

Project Scheduling with Time Windows and Scarce 

Resources, Springer. 

 

Roy B. and B. Sussmann, 1964. Les problèmes 

d'ordonnancement avec contraintes disjunctive, In : 

Note DS N°9 bis, SEMA, Paris, 1964. 

 

Wikum, E. D., D.C. Llewellynnand G.L. Nemhauser, 

1994. One-machine  generalized precedence constrained 

scheduling problem, Operations Research Letters, 16, p. 

87–99 

 

Zhang, X. and S. de Velde, 2010, On-line two-machine 

open shop scheduling with time lags, European Journal 

of Operational Research, 204, p. 14–19. 

 

. 

 


