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ABSTRACT: In this paper we described scheduling system of press shops in automotive industry. In these shops metal 

sheets are being shaped as kinds of automotive parts with press machines. These machines can serve for different 

operations with changing molds on them. The structure basically corresponds to a flexible job-shop scheduling problem 

with this special characteristic of machines. In this press shop items between operations are transferred with containers 

those are designed for related item with defined capacity. This structure allows us to use lot streaming strategy to 

reduce makespan. On the other hand according to corporate policy idle operators that are waiting job is not desired. 

We established a mathematical model taking into account these circumstances and compared with other modelling 

approach proposed in the literature. 
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1 INTRODUCTION 

In this paper, we focused on solving the lot streaming 

problem in a flexible job shop environment. The flexible 

job-shop scheduling problem (FJSP) is an extension of 

the classical JSP, where operations are allowed to be 

processed on any among a set of available machines. 

FJSP is more difficult than the classical JSP because it 

contains an additional problem that is assigning opera-

tions to machines (Bagheri et al.,2010). 

One of the most difficult problems in this area is the Job-

shop Scheduling Problem (JSP), where a set of jobs must 

be processed on a set of machines, each job is formed by 

a sequence of consecutive operations and each operation 

requires exactly one machine. Machines are continuously 

available and can process one operation at a time without 

interruption. The decision concerns how to sequence the 

operations on the machines, such as a given performance 

indicator is optimized. A typical performance indicator 

for JSP is the makespan, i.e., the time needed to com-

plete all the jobs. JSP is a well-known NP-hard problem 

(Pezzella et al.,2008). 

FJSP is desired to process operations on a machine cho-

sen among a set of available ones. Therefore, the FJSP is 

more computationally difficult than the JSP (Hmida et 
al.,2010). The problem of scheduling jobs in FJSP could 

be decomposed into two sub-problems:  

The routing sub-problem that assigns each operation to a 

machine selected out of a set of capable machines.  

The scheduling sub-problem that consists of sequencing 

the assigned operations on all machines in order to ob-

tain a feasible schedule to minimize the predefined ob-

jective function. 

Unlike the classical JSP where each operation is pro-

cessed on a predefined machine, each operation in the 

FJSP can be processed on one out of several machines. 

This makes FJSP more difficult to solve due to the con-

sideration of both routing of jobs and scheduling of op-

erations. Moreover, it is a complex combinatorial opti-

mization problem. Therefore FJSP is NP-hard too  

(Zhang et al.,2011)  

With respect to lot streaming, a job is actually a lot com-

posed of identical items. In classical flexible job shop 

scheduling problems a lot is usually indivisible. The 

entire lot must be completed before being transferred to 

its successor operation, which leads to low machine 

utilization and long completion times. Lot streaming 

techniques, on the other hand, provide the possibility of 

splitting a lot into multiple smaller sublots, which can be 

treated individually and immediately transferred to the 

next stage once they are completed. Different sublots of 

the same job can thus be simultaneously processed at 

different operation stages. As a result of operation over-

lapping, the production can be considerably accelerated. 

If the production lot is processed without splitting, the 

average work in process (WIP) will be equal to produc-

tion lot size. However, in case of splitting the production 

lot into sublots, departure of the first sublot reduces the 

WIP level by its size and the remaining sublots continue 

to reduce the WIP level by their sublot sizes. Reduction 

in space requirements and material handling system 

capacity requirements can be thought as the other bene-

fits of lot streaming (Edis et al.,2007). In the last years, a 

majority of researches focused on solving lot streaming 

problems in a flow shop production system (Baker, 

1995), (Potts and Baker, 1989), (Vickson and Alfreds-

son, 1992), (Chen and Steiner, 1998), (Chen and Steiner, 

2003), (Biskup and Feldmann, 2006), (Feldmann and 
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Biskup, 2005). The flexible job shop scheduling prob-

lem, on the contrary, has received little attention (Bus-

cher and Shen, 2011). (Gomes et al., 2005) proposed 

time indexed mathematical model for FJSP overlapping 

in operation with parallel machines (i.e, capable ma-

chines with same efficiency for an operation). (Torabi et 

al., 2005) addressed the common cycle multi-product 

lot-scheduling problem in deterministic flexible job 

shops where the planning horizon is finite and fixed by 

management. First, they developed a new mixed zero-

one nonlinear model to solve the problem to optimality. 

Then, they have suggested an efficient enumeration 

method to determine an optimal solution. (Alvarez-

Valdes et al., 2005) developed a heuristic to schedule 

flexible job-shop in a glass factory. (Fattahi et al., 2009) 

formulated a mixed integer linear programming (MILP) 

and developed a simulated annealing algorithm to solve 

large scale problems. They tested their algorithm on a set 

of random test problems generated by them. (Khalife et 

al., 2010) developed a simulated annealing algorithm to 

solve multi-objective FJSP with overlapping in opera-

tions. They solved test problems generated by (Fattahi et 

al., 2009) for multi-objective function consist of 

weighted sum of the three objective values and for each 

three objectives independently. (Farughia et al., 2011) 

proposed a hybrid meta-heuristic algorithm called 

memetic algorithm based on considering overlapping in 

operation in the FJSP. They solved same test problems 

of (Fattahi et al., 2009) with their algorithm and com-

pared the results. 

This paper presents a mathematical model which is mod-

ified from model developed by (Özgüven et al., 2010) 

for FJSP enabling it to solve the FJSP with overlapping 

in operations. Proposed mathematical model is tested on 

a set of test problems and we compared our results with 

results obtained by (Fattahi et al., 2009).  

 

2 PROBLEM DEFINITION AND 

ASSUMPTIONS 

This paper describes the scheduling systems of press 

shops producing large automotive parts. Press machines 

can serve for lot of jobs with changing their molds. Be-

cause of this property of machines press shops can be 

investigated under flexible job shop scheduling topic. 

FJSP is a generalization of the traditional JS), in which it 

is desired to process operations on a machine chosen 

among a set of available ones (Ben Hmida et al., 2010) 

FJSP can be formulated as follows (Ho et al., 2007): 

1. There is a set of n jobs J = {J1,…,Jn} and a set of m 

machines M = {M1,..., Mm}.; 

2. Let J = {Ji}1≤i≤n, indexed i, be a set of n jobs; 

3. Let M= {Mk}1≤k≤m, indexed k, be a set of m ma-

chines; 

4. Each job consists of a predetermined sequence of 

operations; 

5. Each operation Oij can be processed without inter-

ruption on any of machine k. (k∈Mij). Therefore pkij 

is implied processing time of Oij on machine k. 

 

In press shops parts are transferred between operations 

with containers designed for related part. These contain-

ers are with different capacity according to part that 

contain. This property of production system is allowing 

the use of lot steaming strategy. As a result of lot stream-

ing, several potential benefits can be obtained (Low et 

al., 2004): 

 

(a) Reduction of production lead times (thus, better due-

date performance), 

(b) Reduction of WIP inventory and associated WIP 

costs, 

(c) Reduction of interim storage and space requirements, 

and  

(d) Reduction of material handling system (MHS) capac-

ity requirements. 

 

As an example, we can consider a batch with 500 items, 

if each item has a processing time of 2 time units on 

machine 1and 1 time unit on machine 2, then according 

to traditional batch manufacturing, the makespan will be 

500*2+500*1=1500 as shown in figure 1. 

 
Figure 1: Traditional batch manufacturing 

 

Next, if we consider splitting this batch into two sublots 

with sizes 300 and 200, then it takes 300*2=600 time 

units for the items of the first sublot to be ready for ma-

chine 2. In the same manner, the items of second sublot 

will be ready for machine after 300*2+200*2=1000 time 

units. As seen in figure 2 dividing this batch into two 

sublots provides a makespan of 1200 time units which is 

smaller than the makespan under the original case. This 

small example gives an idea about how lot streaming 

accelerates the process of the items at the same time 

reducing the flow time of parts in the process those are 

the aims of press shops. 
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Figure 2: Lot streaming strategy 

 

Additionally in press shops idle operator is not allowed. 

This is called in lot streaming literature “Non-Idling 

Case”. If prior operation’s processing time is slower than 

the successor operation there will be idling time for 

operator. For instance we have two consecutive opera-

tions. Prior operation’s processing time 25 time units and 

successor operation’ processing time 15 time units. In 

such a case there will idling time shown with red area in 

figure 3.  

 

 
Figure 3: Idling Time 

 

(Fattahi et al., 2009) limited extent of overlapping by a 

coefficient, ovij defined as the proportion of operation Oij 

that has to be processed before its successor Oij+1 can 

start. In our model we divide entire demand of a product 

into sublots (predefined sized containers) and schedule 

them individually. So we do not need any coefficient. 

(Fattahi et al., 2009) solved test problems with 0.1 over-

lapping coefficient (ovij=0.1) for all operations. To en-

sure the equal terms to compare with Fattahi’s model we 

assumed demand for each part is 10 and sublot size is 1. 

(it corresponds 0.1 overlapping coefficient) 

In this paper we tried to consist a mathematical model 

ensures circumstances above with these assumptions 

(Xia and Wu, 2005): 

 

1) All machines are available at time 0 and independ-

ent from each other. 

2) All jobs are released at time 0 and independent from 

each other. 

3) Setting up times of machines and transportation 

times between operations are negligible. 

4) Maintenance activities and machine break downs are 

neglected. 

5) At a given time, a machine can execute at most one 

operation.  

6) There are no precedence constraints among the 

operations of different jobs. 

7) More than one operation of the same job can be 

executed at a time. 

 

 

 

 

 

3   PRESENTATION OF MODEL 

 

The following notation is used for the formulation of our 

mathematical model: 

 

Indices and sets 

 

i  jobs (i,f  ϵ J) 

j   operations (j,g ϵ O) 

k   machines (k ϵ M) 

J   the set of jobs 

M  the set of machines 

O  the set of operations 

Oi   ordered set of operations of job i  

Oif(i)           first operation of job i 

Oil(i)           last operation of job i 

lf(ij)        first sublot of operation Oij 

ll(ij)         last sublot of operation Oij 

Mij         the set of alternative machines on which opera-

tion Oij can be processed, 

 

Parameters 

tkij   the processing time of operation Oij on ma-

chine k 

M   a large number 

di  demand for job i 

Pti  lot size of job i 

pri  total lot number of job i 

  pri = [di/pti]
+
 

tpijlk     the processing time of sublot of operation Oij 

on machine k 

If l. sublot is the last sublot (l=pri);  

                               (di-pti*(pri-1))* tkij  

Otherwise;       

                               pti* tkijk 

Ek:       The set of operations which can be performed on 

machine k                     

 

This calculation of sublot processing time prevents the 

undue idling time between operations as seen in figure 4. 

As an example, we have 112 units demand for product p 

and sublot size of this product is 25 units. In such a sit-

uation the last sublot’s size will be 12 units not same as 

the prior sublots (25 units) . 

 

Decision variables 

yijk   1, if machine k is selected for operation Oij;  

              0, otherwise 

xijlk       1, if l. sublot of operation Oij is assigned on ma-

chine k 

              0, otherwise 

 

sijlk    the starting time of lot l of operation Oij on 

machine k 

cijlk   the completion time of lot l of operation Oij on 

machine k 

zijfgk  1, if operation Oij precedes operation Ofg on 

machine k;  

              0, otherwise 
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Cijlk  the completion time of l. sublot of operation Oij 

on machine k 

               
      completion time of last sublot of final 

operation of job i 

Cmax  maximum completion time over all jobs 

(makespan) 

 

 
Figure 4:   Undue idling time 

 

The proposed mathematical model is defined as follows: 

 

Minimize Cmax 

                
                                  (1) 

                    
                                 (2) 

                                                    (3) 

                                          (4) 

                                                 

                                            (5) 

                                   

                                            (6) 

          
           

                                 

        ∈                                        (7) 

          
           

                          

        ∈                                        (8) 

                                                      

                                       (9) 

                                                          

                                                  (10) 

                
                                 

                                             (11) 
 

Constrain (1) computes the completion times of last 

sublot of final operation of a job. Constraint (2) deter-

mines the makespan. Constraint (3) ensures that opera-

tion Oij is assigned to only one machine. Constraint (4) 

ensures the assigned sublots of Oij to machine k equal to 

total sublot number of Oij. Constraint (5) set the starting 

and completion times of l. sublot of operation Oij on 

machine k equal to zero if it is not assigned to machine 

k. Otherwise, the constraints (6) guarantee that the dif-

ference between the starting and the completion times is 

equal at least to the processing time of l. sublot of opera-

tion Oij on machine k. Constraints (7) and (8) force oper-

ation Oij and operation Ofg cannot be done at the same 

time on any machine k in the set Ek  and ensures that he 

case no interruption in the sequence of sublots of an 

operation Oij. Constraint (9) ensures that the precedence 

relationships between the operations of a job are not 

violated, i.e. the l. sublot of operation Oij is not started 

before the l. sublot of operation Oij-1 has been completed. 

Constraint (10) takes care of precedence relationship 

sublots of operations i.e. the l. sublot of operation Oij is 

not started before the (l-1). sublot of operation Oij has 

been completed. Constraint (11) ensures that the case 

where there is no production interruption time (i.e., the 

idle time) between any two adjacent sublots at the same 

stage. In other words, sublots on a particular stage have 

to be processed directly one after the other. 

 

4   COMPARISON OF MODELS 

In this section results obtained by proposed model by us 

and (Fattahi et al.,2009) (it will be referred to as Model 

F)  are compared. We used some of the test problems 

randomly created by (Fattahi et al., 2009). These prob-

lems divided into three groups: Small, medium and large 

size FJSPs. Problems are coded in the mathematical 

language GAMS and used CPLEX solver. Test problems 

are run on PC with Core(TM) 2 Quard CPU, 2.66 GHz 

processor and 4 GB RAM. The runs are terminated after 

86400 seconds (24 hours). As shown in Table 1. for 

small sized problems Cmax values obtained by each 

model is same and optimum. But proposed model ob-

tained these results at lower CPU time. Proposed model 

also finds the optimal solution of first three medium 

sized problems which Model F does not. For the remain-

ing problems proposed model found best integer solu-

tions however Model F cannot found any best integer 

solution. 
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Table 1 

The computational results of Model F and proposed model 

  Model F   Proposed Model 

Size 

(i.j.k) 

Integer 

variable  

Non 

integer 

variable  

Number 

of 

Const. 

CPU 

time (s) Cmax   

Integer 

variable  

Non 

integer 

variable 

Number 

of 

Const. 

CPU 

time (s) Cmax 

Small size 

2.2.2. 40 26 136 1 66 

 

100 201 320 0.28 66 

2.2.2. 32 24 110 1 107 

 

92 201 284 0.16 107 

3.2.2. 72 36 237 16 221 

 

150 301 460 0.59 221 

3.2.2 84 38 239 15 355 

 

151 301 462 0,78 355 

3.2.2 84 38 275 250 119 

 

162 301 504 1,5 119 

3.3.3 189 50 503 452 256 

 

317 631 781 0,7 256 

3.3.5 225 55 604 63 233.5 

 

492 991 984 1.39 233.5 

3.3.4 216 55 595 1303 193 

 

411 811 912 1.67 193 

3.3.3 243 56 590 1850 171.7 

 

336 631 852 2.68 171.7 

4.3.5 300 66 870 1179 419.5   650 1321 1260 1 419.5 

Medium Size 

4.3.5 360 71 983 >3600 (357.5;419.5) 

 

589 1681 1678 0.94 419.5 

5.3.7 840 106 1996 >3600 (196.8;380.7) 

 

1185 2251 2160 1232 325.1 

6.3.7 1260 131 2831 >3600 (196.8;   -    ) 

 

1462 2701 2684 64806 371.6 

7.3.7 1617 149 3803 >3600 (273.4;   -    ) 

 

1730 3151 3180 86400 (300.2; 454.9) 

7.3.7 1617 149 3740 >3600 (2370.1; -    )   1725 3151 3160 86400 (340.8; 443.3) 

Large Size 

8.3.7 2184 174 4766 >3600 (   -     ;    -   ) 

 

1999 3601 3658 86400 (347.3; 565.4) 

8.4.7 3584 219 7883 >3600 (   -     ;    -   ) 

 

2746 4801 4992 86400 (325.2; 803.0) 

9.4.8 4896 256 9778 >3600 (   -     ;    -   ) 

 

3426 6121 5912 86400 (308.9; 832.5) 

11.4.8 7040 308 14190 >3600 (   -     ;    -   ) 

 

4303 7481 7436 86400 (308.0; 1157.0) 

12.4.8 8832 346 16784 >3600 (   -     ;    -   )   4775 8161 8270 86400 (459.4; 1478.7) 

 

 

 

 

5   CONCLUSIONS 
 

 

In this paper a mathematical model is developed for FJSP with 

overlapping in operations.  Then proposed model is compared 

with alternative model proposed (Fattahi et al., 2009) and 

superiority of our model is displayed in terms of Cmax and 

CPU time. Results also showed that it is quite difficult to reach 

an optimal solution to this problem in real life with mathemati-

cal modeling technique because of its NP-hard structure. 

Therefore authors of this paper are planning as a future study to 

develop a solution approach with genetic algorithm to solve 

large problem instances. 
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