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ABSTRACT: This paper considers a two-stage hybrid flow shop scheduling problem. The objective is the
minimizing of maximum completion time of all the jobs. There exist two dedicated machines at stage 1 and
one machine at stage 2. Fach job is defined by two operations processed on the two-stages in series. Depending
on the job type, the job is processed on either of the two machines at stagel and must be processed on the
single machine at stage2. the jobs are transported between the stages by a robot or a conveyor. After the
problem formulation, we present lower bounds for the objective function. We then discuss a few polynomially
solvable cases of the problem and present the solution algorithms. Since a general case of the problem
is strongly NP-hard, we propose two heuristics to find approzimate solutions to the general case. Compu-
tational experiments are done on a number of randomly generated test problems, and the test results are reported.

KEYWORDS: sheduling, flexible flow shop, transport, two-stage makespan.

1 Introduction

Our problem may be defined as follows. We are given
a set N of n independent jobs distributed in two dis-
joint subsets which have to be scheduled on a two-
stage flow shop in series; the first stage contains two
dedicated machines and the second stage contains one
common single machine with unlimited buffer spaces.
We assume that all the jobs are available at time 0 and
each job has exactly two operations to be executed
on the two-stages. Preemption is not allowed and the
machines can process only one job at a time. Addi-
tionally, transportation times are considered. They
occur if a job changes from one machine to another
between which the transport takes place. We assume
that all these transport operations have to be done by
a single transport robot (conveyor) which can carry
up to ¢ jobs in one shipment. The transportation
time from one machine to the other machine is de-
noted by t (the round-trip requires 2t). We assume
that loading and unloading times are included in the
processing times of jobs and are not considered sep-
arately. Our goal is to schedule the jobs so as to
minimize the makespan.

As applications of the dedicated machines cover a
large class of real problems: service industry (H.
C. Hwang et al., 2004), semiconductor manufactur-
ing environment (G. Centeno and R. L. Armacost,
2004),..., similar examples can be found in process

industry such as chemical and pharmaceutical indus-
tries. We can find another example at a global man-
ufacturing firm where products are first fabricated in
one location and transferred to factories in different
countries for final assembly. In this case, each fac-
tory can be considered as a machine. The products
areas sembled in different locations because they are
sold in those countries and by doing so, the firm can
minimize tariffs and reduce the delivery time to lo-
cal customers (J. Yang, 2010a). Our work consid-
ers dedicated machines at stage 1 which is common
in real-world situations. This problem may arise in
a manufacturing environment, The products are ini-
tially processed on two different machines at first as-
sembly depending of their specifications. After their
transportation, they must go through a common ma-
chine in a final fabrication stage, such as an inspection
and testing station.

Literature review

The scheduling of flow shops with multiple parallel
machines per stage, usually referred to as the hybrid
flow shop (HFS), is a complex combinatorial prob-
lem encountered in many real world applications. (R.
Ruiz et al, 2010) studied the hybrid flow shop schedul-
ing problem. They presented a literature review on
exact, heuristic and metaheuristic methods that have
been proposed for its solution. A great deal of re-
search has been done also on two-stage flow shop pro-
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duction scheduling without transportation consider-
ations. The scheduling problems on two stage hy-
brid flow shop are known to be strongly NP-hard (J.
N. D. Gupta, 1988). A particular hybrid flow shop
scheduling problem with the objective of minimiz-
ing makespan is first considered in (F. Riane et al,
2002). They developed three heuristics which run in
polynomial time and one dynamic programming algo-
rithm which runs in exponential time. They empir-
ically evaluated their solution procedures. (J. Yang,
2010b) established that the same problem is unary
NP-complete. (J. Yang, 2010a) considered the prob-
lem of minimizing total completion time in a two-
stage hybrid flow shop scheduling problem with dedi-
cated machines at stage2; established the complexity
of several variations of the problem and presented op-
timal solutions for a few special cases. (O.Ceyda and
M.T.L. Bertrand, 1997) studied the problem of mini-
mizing makespan in a two-stage flowshop scheduling
problem with a common second-stage machine, they
showed that the problem is NP-hard and presented an
heuristic procedure for the solution of the problem.
(W. Besbes et al, 2010) considered the 2-stage flow
shop problem with parallel dedicated machines and
developed two approximate methods. The first ap-
proximate method is based on the Johnson’s and Fifo
rules. The second one is a genetic algorithm based ap-
proach. (Sung and Min, 2001) studied a two-machine
flow shop scheduling problem by considering different
machine sequences, such as batch to discrete, batch
to batch and discrete to batch. In (N. Dridi et al,
2001), the two-stage hybrid flow shop with dedicated
machines was studied. Some basic properties, a set
of lower bounds and two polynomial cases were pro-
vided and a new heuristic was developed to sequence
jobs in such a way that the obtained makespan cor-
responds to the lower bound. A case study in a two-
stage hybrid flow shop with setup time and dedicated
machines in (H.T. Lina and C.J. Liao, 2003)is taken
from a label sticker manufacturing company. The ob-
jective is to schedule one day’s mix of label stickers
through the shop such that the weighted maximal tar-
diness is minimized. An heuristic is proposed to find
the near-optimal schedule for the problem.

A few related machine scheduling models with trans-
portation considerations have been studied in the lit-
erature. The earliest scheduling papers that con-
sider transportation are (P.L. Maggu et al, 1981)
and (P.L. Maggu et al, 1982). (B.M.T. Lina et
al, 2007) addressed a three-machine assembly-type
flow shop scheduling problem, which frequently arises
from manufacturing process management as well as
from supply chain management. Machines one and
two are arranged in parallel for producing component
parts individually, and machine three is an assembly
line arranged as the second stage of a flow shop for
processing the component parts in batches. When-
ever a batch is formed on the second-stage machine,

a constant setup time is required. (L. X. Tang et
al, 2000) studied a scheduling problem in a steelmak-
ing shop. Two models arising from steelmaking and
refining operations are considered. The first model
assumes that there is a converter at the steelmaking
operation and a refining furnace at the refining oper-
ation. A transporter with capacity one is available to
carry out jobs from converter to a refining furnace.
The second model considers a more practical situa-
tion in which jobs are processed in identical parallel
converters first, and then the jobs coming from the
same converter are transported by a dedicated trol-
ley with capacity one to the next operations. (ZL.
Chen and CY. Lee, 2001) studied scheduling prob-
lem with semi-finished jobs and finished jobs delivery
in which capacity of transporters and transportation
times are explicitly considered in flow shop or paral-
lel machines environment. (N. Chikhi and M. Abbas,
2012) established complexity results on two stage hy-
brid flow shop with batch transfer between stages.
(Y. Crama et al, 2000) reviews production planning
and scheduling models in automated manufacturing
systems that include material handling devices. (Y.
Crama and J. Van de Klundert, 1999) established the
validity of the conjecture that 1-unit cycles yield opti-
mal production rates for 3-machine robotic flowshops.
(N. Brauner and G. Finke, 1997) proved that 1-unit
cycles do not necessarily yield optimal solutions for
cells of size four or large and some complexity results
of one-cycle robotic flow-shops are established in (N.
Brauner et al, 2003). In the current literature, the al-
location of the operations to each machine is assumed
to be constant and for given processing times the op-
timum robot move cycle minimizing the cycle time
is to be determined. In some manufacturing opera-
tions such as chemical electroplating this assumption
is meaningful and these operations mostly require no-
wait constraints (see A. Agnetis,2000). (A.Che et al,
2012) considered scheduling multiple robots in a no-
wait re-entrant robotic flowshop. (C.B. Chu, 2006)
addresses an improved algorithm for 2-cyclic iden-
tical part scheduling in a no-wait robotic flow shop
where exactly two parts enter and two parts leave
the production line during each cycle. (N. Brauner,
2008) considered the problem of identical part pro-
duction in cyclic robotic cells. (S. Li, 1997) considers
a two-stage hybrid flow shop with a single machine
at stage 1 and multiple identical machines at stage
2. The flowshop is characterized by major and minor
setups, part families and batch production allowing
split and no split at stage 2. In (V. Suresh, 1997),
the author considers a two-stage flow shop with mul-
tiple processors in each stage. The processors are
of the unrelated type. A two-stage algorithm is de-
veloped to minimize the makespan. (L. Tang and
H. Gong, 2008) considered the coordinated schedul-
ing problem of hybrid batch production on a single
batching machine and two-stage transportation con-
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necting the production, where there is a crane avail-
able in the first-stage that transports jobs from the
warehouse to the machine and there is a vehicle avail-
able in the second-stage to deliver jobs from the ma-
chine to the customer. They prove that this problem
is strongly NP-hard and a polynomial time algorithm
is proposed for a case where the job transportation
times are identical on the crane or the vehicle. (J.
Hurink and S. Knust, 2001) studied the m-machine
flow shop scheduling problem with the consideration
of transportation times. In this paper, we study a
two-stage flow shop production problem with dedi-
cated machines at the first stage and one single com-
mon machine at the second stage which is different
from those machine environment studied in a simple
two-stage productions problem. Furthermore, trans-
portation time and conveyor capacity are considered.

Notation

The problem thus defined is denoted TF3|o = 2,v =
1,¢ > 1|Cmax(N) (TF to denote a flow shop problem
with transportation, ¢ = 2 means that every job is
constituted of two operations and v = 1 means that
there is only one conveyor of capacity ”c¢”). Let N1
and N2 be two disjoint subsets of N such that N1 N
N2 =0 . and N1UN2 = N. Let nl = |[N1]| be the
number of jobs belonging to the first job type and
n2 = |N2| be the number of jobs belonging to the
second one. Cmax denotes the maximum completion
time (makespan).

Let us denote N1 = {.Jy, Ja, ..., Jn, } the set of jobs of
Type "1” and N2 = {Jp, 41, Jny+2, -y Jnq+no | the set
of jobs of Type 72”.

If J; € N1, then the first operation of this job must be
processed on the machine M; during one processing
time Pj; j = 1,2... ,nl and this job is transported to-
ward M3, the second operation of this job is processed
on M3 during one processing time Pjs(j = 1,2...,n1).

If J; € N2, the first operation of this job must be
processed on the machine My during one processing
time Pj; j= n1+1,... ;n and transported toward Ms.
The second operation of this job will be processed on
M3 during one processing time Pjp j =nq + 1,... n.

The present article is organized as follows: the second
section is devoted to the mathematical formulation,
where a mixed integer linear programming model is
proposed to determine the schedule with minimum
makespan. This model has been tested using the
Cplex solver in section 3. Section 4 is dedicated to
the calculation of lower bounds . We establish com-
plexity of some special cases in section 5. In section
6, a general case is studied and some particular cases
that can be solved polynomially are presented. In sec-
tion 7, two heuristics are presented for the solution of

the general case and some numerical tests are car-
ried out to show the performance and the efficiency
of the different heuristics in the last section. Finally,
we provide a conclusion at the end of this article.

2 Modeling

We present a mixed integer linear programming
model for this problem in order to determine the se-
quence of jobs that minimizes the total makespan cri-
terion.

For every job .J;, we define the following integer vari-
ables:

e p;1: is the processing time of a job J; on the first
stage, i = 1,n

® p;o: is the processing time of a job J; on the second
stage, i =1,n

e {;,: is the starting time of the operation O;s of the
job J; on the stage s, i = 1,n and s= 1, 2.

e d;p: is the transportation time of job J;,i =1,n

For every pair (J;, J;) of jobs, we introduce the fol-
lowing binary variables:

e o;; equal to 1 if d;s < djs, and O otherwise.
® 2,5 equal to 1 if t;; < t;,, and O otherwise.
e C,q: max completion time of all the jobs.

The mixed integer linear programming formulation
for the general problem is:

Minimize Craz;

subject to:
tio > tio+pio— M*(1—xi51) Vi, j€NGEH#YH)...(1)
tio 2> tj2 +pj2 — M * wij1 Vi,j € N(t#7)...(2)
tin > tin +pin — M * (1 —x552) V4,5 € Ns(i#5)...(3)
ti1 2 tjn +pj1 — M * x452 Vi,7 € No(i # 7)...(4)
ZTij1 +xji =1 Vi,j€ N(t#j)...(5)
Zije + Tjiz = 1 V 4,5 € Ns(i# j)...(6)
o +aj; <1 Vi, j€N(@#7)..(7)
djp—dipEQt*Oéij—Ozji*M VZ,]EN(Z#])(S)
dip — djp > 2t x 0j; — iy x M Vi, j€ N(#7J)...(9)
;L:l,i;éj(l — Qi — Ozji) <c-—1 A i,j € N(lO)
dis > ti1 + pa1 Vi,j € N...(11)
tio > dis +1 Vi, j € N(@#j)...(12)
tio + pi2 < Cmax Vi,5 € N(i #j)...(13)
Tijs, auj € {0,1} Vi,j € Nys=1,2..(14)

ti57 dis € IN
Where M is a very large value

Constraints (1) and (2) (respectively (3) and (4))
are the disjunctive constraints at each stage. Con-
straints (5) and (6) require that each machine exe-
cutes only one job at a time. Constraints (7),(8),
(9) and (10) are constraints on the conveyor (vehi-
cle) and on the jobs to be transported: Constraints
(7) express that all jobs must be transported between
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the stages. Constraints (8) and (9) indicate that any
job J; is transported between the stages either before
or after another job J;, or at the same time and show
that the transportation time of a round-trip of the
vehicle requires 2t. Constraints (10) express the fact
that the number of transported jobs at any time must
be smaller than the vehicle capacity. Constraints (11)
ensure that a job cannot be transported from the first
to the second stage, only once the first operation of
this job is finished. Constraints (12)and (13) con-
cern the second stage. Constraints (12) induce that
the processing time of the second operation of a job
can only begin once the job has arrived to the second
stage.Constraints (13) imply that the end of process-
ing of any job is lower or equal to the makespan. Con-
straints (14) and (15) indicate the type of variables.

From this formulation, we can derive a lower bound
by relaxing the constraints (14) and (15). The relaxed
problem can be solved using a linear programming
solver (Cplex for example).

3 Testing of the model with CPLEX

The linear models with integer and binary variables
can be solved by efficient solvers such as LINGO,
CPLEX, etc. Our mathematical model has been
tested on a Personal Computer(Intel core 2 duo 2
GHz)using Cplex Solver. The processing times p;;
and p;o are generated by a uniform law in [1,30]. We
fixed the number of jobs and let the vehicle capacity
and the transportation time vary. For every case, the
average execution time (for which the optimal or the
feasible solution is obtained) is computed in seconds.
We have gotten good results for instances of reduced
size. The results are given in the Table 1.

(a) n =6, avr — time(optimal)

’ n \ c : capacity \ t:trans-timet \ avr-time ‘
6 |2 1 3,64 sec
6|2 5 5,71 sec
6|3 1 3,62 sec
6|3 5 5,63 sec

(b) n = 10,50, avr — time( feasible)
n ¢ : capacity | t:trans-time | avr-time
10 | 2 1 0,33 sec
10 | 2 5 0,28 sec
10 | 3 1 0,31 sec
10 | 3 5 0,28 sec
50 | 20 1 23,73 sec
50 | 20 5 23,09 sec
50 | 30 1 23,15 sec
50 | 30 5 22,71 sec

Table 1: Results obtained by the Cplex solver.

4  Study of bounds

The workload of a machine k corresponds to the sum
of job processing times that the machine must carry
and it is denoted: Wy (Q) with Q a subset of N.

Wi(ND) = Y pi, Wa(N2)= >

1<j<nl (n1+1)<j<n

pj1(1)

W3(N) = Z pj2 (2)

1<j<n

Lemma 1 Cmaz > W3(N) + 1r<nl£1 {pjr} +t
<j<n

Proof 1 The makespan of the workshop is larger or
equal to the total workload of any machine, that is
Crnaz > W5(N). Equality may occur only in the case
where transportation are equal to zero. We assume
that all jobs are processed on all the machines without

idle time.

All jobs must be transported from the first stage to Mz
in order to be processed. If Jy is the first job processed
on the first stage, it will be the first to be processed
on M3 during time p13. Therefore, the completion
time is Cpae = p11 +t + W3(N). Thus Cmax >
Wg(N) + min {pjl} + 1.

1<j<n

Lemma 2 Cmax

1I_<nj1£n{pj2} +1

> max{Wi(N1),Wa(N2)} +

Proof 2 The makespan of the workshop is larger
or equal to the workload of any machine, that is
Cmaz > max{W1(N1),W5(N2)}. We first assume
that all jobs are processed on the two-stages with-
out idle time. All jobs must be transported from the
stagel to stage2 in order to be processed on Ms. Let
J(s) be the last job processed on stagel, requiring a
transportation time t. Assuming that it is going to
be processed on M3 right after its arrival during one
time psa, then the completion time of Ji5) on M3
18 Cso = C + ps1 + t + ps2, where C is the time
completion on the stagel before the job Jis). Then
Co2 = max{Wi(N1),Wa(N2)} + t + ps2, therefore
Cs2 > max{Wl(N1)7WQ(NQ)}+t+1r<nii£1n{pi2}. Thus

Cmaw 2 ma‘X{Wl (N1>7 W2(N2)} + t:r_lf<nl£1 {piz}.
<i<n

Lemma 3 Cmaz > {([%] —1)*2t—|—t—|—11<n_i£1 {pja}+
<j<n

min {p;1}}.

1<j<n

Proof 3 Let J; and J, be the first and the last job
(respectively) to execute on the workshop. All jobs
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must be transported to the second stage in order to
be processed on machine Mz. As the vehicle capac-
ity is equal to ¢ and a round-trip takes 2t, then the
necessary time to transport all jobs is greater or equal
than ([2] — 1) * 2t +t. We assume that all jobs are
processed on the two-stages without idle time and the
conveyor transports the jobs without wait time.

The transportation of jobs takes place only if the pro-
cessing of Jy is finished on stagel. Also, at the end of
the transportation of jobs, J, must be executed on Ms.
Therefore Crar = p11+ ([2] — 1) % 2t + ¢ + pra, then

c

C’rnaa: Z (|—Z-| - 1) * 2t + t + 12151{%1} + 1I§ni1£n{pi2}'

We give three lower bounds LB, LB and LB®)
for the objective function:

LBW = W3(N) + min {pj1} +t. (3)
1<j<n

LB® = max{Wy(N1), Wo(N2)} + min {pjz}-+1.(4)

@ — (2= in {p, in {p;
LB = {([/1=1)#2t+t+ min {pjo}+ min {pj }}.(5)

Proposition 1 LB = max{LB" LB® LB®)} is
also a lower bound for the makespan.

5 Complexity and special case

The problem TF3lc = 2,v = 1,¢ > 1|Cmaxz(N)
is strongly NP-hard because one particular prob-
lem without transportation times denoted F3|lo =
2|Cmaz(N) was shown to be strongly NP-hard in
(M.T.L. Bertrand,1999).

We show that problem TF2|v = 1,¢ > 1|Cmax(N)
studied in (C. Y. Lee and Z. L. Chen, 2001) is a
special case of the problem TF3|oc = 2,v = 1,¢ >
1|Cmax(N):

Remark 1 If N2 = () then problem TF3|oc = 2,v =
1,¢ > 1|Cmax(N) is identical to problem TF2|v =
1,¢ > 1|Cmax(N).

Proof 4 Since all jobs are processed on My and no
job is processed on Ms, the problem TF3|o = 2,v =
1,¢ > 1|Cmax(N) is identical to problem TF2|v =
1,¢ > 1|Cmax(N).

Theorem 1 The decision wversion of  prob-
lems TF2lv = 1l,¢ > 1|Cmax(N),TF3|lc =
2,pj1 = pl,j € Nl,v = 1,¢ > 1|Cmax(N) and
TF3|lo = 2,pj1 = pl,j € N2v = 1,¢ > 1|Cmaxz(N)
are NP-complete.

Proof 5 The decision version of problem TF2|v =
1,¢ # 2|Cmax(N) is NP- complete (ZL. Chen and
CY. Lee, 2001). From Remarkl, TF2lv = 1,¢ >
1|Cmax(N) is a special case of TF3loc = 2,v =1,c >
1|Cmax(N). Hence,the result with problem TF3|o =
2,v = 1,¢ # 2|Cmax(N) holds. Similarly,the deci-
sion wversion of problem TF3|loc = 2,p;1 = pl,j €
N1,v = 1l,¢ # 2|Cmax(N) is NP-complete since
the decision wversion of problem TF2lv = 1,¢ #
2|C'maz(N) is NP-complete. A similar argument can
be applied to the other case.

6 General case: c=1

Although this general case TF3|lo = 2,v = 1,¢ =
1|Cmax(N) is NP-hard, there are some particular
cases which can be solved in polynomial time:

o ()If minpjo > max{p;i,2t} then an optimal

schedule is obtained in 6(n).

e (2) If minp;; > 2max{maxp;2,2t} then an op-
timal schedule is obtained in 6(n).

These two special cases are equivalent to those consid-
ered in (O. Ceyda and M.T.L. Bertrand, 1997) with-
out transportation time, therefore, we omit the proof.

e (3) If pj1 = p,pj2 = ¢ : An optimal ordering
schedule is given by any sequence of jobs such
that the jobs are processed alternatively.

Proof 6 we have four cases:

o A)p<2t(q<2tV g>2t)
e B)p>2t(q<2tVg>2t)

Let us denote Jyp and Jyp be the first and the last job
(respectively) to be processed. First, we take the first
job J1p whose execution time on the first machine is
p. Second, all jobs must be transported in order to
be processed. As the wvehicle capacity is equal to 1
and a round-trip takes 2t, then the necessary time to
transport all jobs is equal to (n — 1) % 2t + t (for the
case A) . The transportation of jobs takes place only
if the processing of Jip is finished on stagel. Also,
at the end of the transportation of jobs, J,» must be
processed on Ms. Therefore for the case (A1) Cpax =
p+(n—1)%2t+t+q, however LB®) = ppin1+(n—1)%
2t + t + pmin2 then Cmax(N) = LB®) For the case
(A2),there is no idle time on Ms,then Cpar = p +
t +W3(N), then Cmaz(N) = LB, we deduce that
the case (A)is a polynomial case. A similar argument
can be applied to the case (B).

These three special cases are identified for theoretical
interest only because it may be hard to find a real life
problem satisfying these conditions.
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6.1 Case where p;; is identical for all i € N

Algorithm 1 1: Arrange the jobs in N in LPT rule
relative to processing times on the common ma-
chine p;2 and denote the resulting list as Py .

2: Decompose the set Y of n jobs into two mutually
exclusive families N1, Na, depending of the job
type.

3: Process the job of type 1 and type 2 on the corre-
sponding machine at the first stage according to
the order in vn and transport them in the same
order in Yy .

4: Process these jobs on the common machine at the
second stage according to the order of their trans-
portation.

Theorem 2 The inverse order in Wn gives an op-
timal solution for the problem TF3loc = 2,pj0 =
p1,Vi € N,c = 1|Cmaz with one common machine
at the first stage and two dedicated machines at the
second stage.

Proof 7 There is no idle time on the common ma-
chine at stagel.The processing times on the Stage2
are identical. Then in this situation, to minimize the
makespan, the transportation time must be minimized
and since the conveyor capacity is one, a simple pair-
wise arqgument can prove that among jobs, it is opti-
mal to process jobs in SPT order.

Theorem 3 The algorithm 1 gives an optimal solu-
tion for the problem TF3|oc = 2,pj1 =p1,Vi € N,c=
1|Cmaz.

Proof 8 The problem TF3lo = 2,pj =
p1,Vi € N,c = 1|Cmaz is symmetric to the
problem TF3|oc = 2,pjo = p1,Vi € N,c = 1|Cmaz
with one common machine at the first stage and two
dedicated machines at the second stage. Therefore,
from the preceding theorem, the inverse order in
Py is an optimal sequence and the precedent al-
gorithm gives an optimal solution for the problem
TF3|lo =2,pj1 =p1,Vi € N,c=1|Cmaz.

6.2 Case where p;, is identical for all i € N

Algorithm 2 1: Depending of the job type, decom-
pose the set of n jobs into two mutually exclusive
families Ny, No.

2: Arrange the jobs in each family in SPT rule rel-
ative to the processing times pj1 and denote the
resulting list as TN, , TN,-

3: Process the job of type 1 on My according to my,
and process jobs of type 2 on Ma according to mn, .

4: Let C[j] be the completion time of the job J; on
the first stage.

5: Arrange the jobs in the increasing order of Clj]
and denote the resulting list wy .

6: Transport the jobs to the order in wy .

7: Process these jobs on the second stage in the order
of their transportation.

Theorem 4 The algorithm 2 gives an optimal solu-
tion for the problem TF3|o = 2,pjo = p2,Vi € N,c =
1|Cmax.

Proof 9 There is no idle time on the two machines
in the first stage. The processing times on the ma-
chine 8 are identical. Then in this situation, to min-
imize the makespan, the transportation time must be
minimized and since the conveyor capacity is one, a
simple pairwise argument can prove that among jobs
i the same set such as N1 or Ns, it is optimal to
process jobs in SPT order.

Theorem 5 The inverse order in TN gives an op-
timal solution for the problem TF3loc = 2,pj1 =
p1,¥i € N,c = 1|Cmax with one common machine
at the first stage and two dedicated machines at the
second stage.

Proof 10 The problem TF3lo = 2,pj2 =
p2,Vi € N,c = 1|Cmax is symmetric to the prob-
lem TF3|oc = 2,pj1 = p1,Vi € N,c = 1|Cmaz with
one common machine at the first stage and two ded-
icated machines at the second stage. Therefore, the
inverse order in wy s an optimal sequence and gives
an optimal solution for the second problem.

7 Heuristics

Recall that the general case TF3loc =2,Vi € N,c=
1|Cmax is NP-hard, we propose two heuristics for
its solution. These heuristics are based on the
algorithm of Johnson (S.M. Johnson, 1954). We
improved it in order to take into account the trans-
portation times. Finally, we use the two rules SPT
(Shortest Processing Time) and LPT (Longest Pro-
cessing Time) that are based on the arranging of jobs.

Heuristic 1 1: Depending of the jobs type , decom-
pose the set of n jobs into two mutually exclusive
families Ny, No.

2: Construct an artificial F2//Cmax problem in rel-
ative to jobs in N with processing times on the
first machine pl;y = max{p;,4t} and plin =
Ppi2 + pi1 on the second machine.

3: Apply the modified Johnson’s algorithm to this
pseudo problem to solve this artificial problem
with LPT(1)LPT(2) in relative to pl;o and denote
the resulting list as ¥
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4: Process the jobs of type 1 and type 2 on the cor-
responding machine at the first stage according to
the order in ¥y and transport them according to
the same order.

5: Process these jobs on the second stage in the order
of their transportation.

Heuristic 2 1: Depending of the jobs type , decom-
pose the set of n jobs into two mutually exclusive
families N1, Ns.

2: Construct an artificial F2//Cmax problem in
relative to jobs in N with processing times on
the first machine pl;1 = pi1 + pio and plip =
max{p;a,4t} on the second machine.

3: Apply the modified Johnson’s algorithm to this
pseudo problem to solve this artificial problem
with SPT(1)SPT(2) in relative to pl;; and denote
the resulting list as mn

4: Process the jobs of type 1 and type 2 on the cor-
responding machine at the first stage according to
the order in wn and transport them according to
the same order.

5: Process these jobs on the second stage in the order
of their transportation.

8 Experimentation

To study the practical value of the methods that we
develop, the heuristics H; and H, are empirically
evaluated. Note that these two heuristics are indeed
heuristics for the general case.

To generate large size test problems, the following
parameters are considered:

e Number of jobs (n): 30, 100, 500, 1000.

e Processing times of jobs on the two-stage P;; and
P;5: being generated from discrete Uniform dis-
tribution with range [1, 30], [1, 50] and [1, 100].

e Capacity of the transporter (c).

e Transportation time of transporter (t): being
generated from discrete Uniform distribution
with range [1, 10].

For each combination of number of jobs, we randomly
generate 100 problem instances for the performance
test of the heuristic algorithms. As there are 12
combinations for each heuristic, the total 2400
instances are generated. For each problem instance,
the heuristic makespan, denoted by C(H), and lower
bound of makespan, denoted by LB, are computed.
The relative error ratio can be defined as:

Error Ratio (ER):%.

Table 2 and Table 3 summarize the results of com-
putational experiments. For each combination, the

P, P (1, 30] [1, 50] [1, 100]

n = 30 Avg.ER 0.060 0.058 0.059
Max.ER  0.130 0.113 0.114
Avg.Tim  35.74 32.7 32.38
Max.Tim 47 47 47

n = 100 Avg.ER 0.020 0.018 0.0189
Max.ER  0.057 0.028 0.029
Avg. Tim  86.26 115.58 110.3
Max.Tim 109 141 125

n = 500 Avg.ER 0.004 0.003 0.003
Max.ER  0.019 0.004 0.004
Avg.Tim  528.81 449.31 526.44
Max.Tim 577 546 983

n = 1000 Avg.ER 0.002 0.001 0.001
Max.ER  0.009 0.002 0.002
Avg.Tim  884.52 675.08 914.17
Max.Tim 999 999 999

Table 2: Computational results of error ratios of the
heuristic Hi( ¢ = 1)

P, P; [1, 30 [1,50] [1,100]

n =30 Avg.ER 0.014 0.001 0.0003
Max.ER 0.118 0.029 0.010
Avg. Tim  38.53 41.05 40.58
Max.Tim 47 63 47

n = 100 Avg.ER 0.006 0.0008 0.0001
Max.ER 0.059 0.010 0.003
Avg. Tim  83.48 130.50 123.58
Max.Tim 110 297 172

n = 500 Avg.ER 0.001 0.0001  0.00001
Max.ER 0.014 0.0023  0.0002
Avg. Tim  504.38 492.97 467.52
Max.Tim 780 515 530

n = 1000 Avg.ER 0.0008 0.0001  0.00002
Max.ER 0.0083 0.002 0.0007
Avg. Tim  447.76 888.9 771.86
Max.Tim 999 967 999

Table 3: Computational results of error ratios of the
heuristic Ha( ¢ = 1).

average and maximum values of error ratios denoted
by Avg.ER and Max.ER, respectively are used to
evaluate the performance of the proposed heuristics.
The average and maximum required time for applying
each heuristic are computed (in milliseconds), respec-
tively are denoted by Avg.Tim and Max.Tim.

For the two heuristics, we compared the lower bound
LB and the results of the makespan C; obtained by
the heuristic H;.

From the computational results, we can observe that
very small difference exists between the lower bound
and the heuristic makespan. So, it reveals that both
of them are close to the optimal solution and the
heuristic algorithms can find near-optimal solution ef-
ficiently. We also observe that the ratio errors follow
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(a) Hi:pil,pi2 € 1,50, t € 1,10 (b) H2pil,pi2 € 1,50, t € 1,10

(a) Case (n=10)

(b) Case (n=100)

Figure 1: Comparison between C; and the lower
bound LB (Case:n=10)
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(a) Hi:pil,pi2 € 1,50, t € 1,10 (b) H2:pil,pi2 € 1,50, t € 1,10

Figure 2: Comparison between C; and the lower
bound LB (Case:n=100)

a decreasing trend as the number of jobs increases.
In general, results obtained for the different tests re-
veal that the heuristics give very good results but the
heuristic Hs is better than the heuristic Hj.

9 Conclusion

We studied a two-stage hybrid flow shop scheduling
problem with two dedicated machines at stage 1 and
one machine at stage 2. The stages are connected by
a conveyor. The performance criteria chosen is the
total execution time of all the jobs (makespan). We
presented and modeled our problem as a linear pro-
gram in integer and binary variables. We also pro-
posed lower bounds for the objective function, that
may be taken as references to assess the quality of
solutions obtained by the developed methods. Some
polynomially solvable cases of the problem are ana-
lyzed and solved in polynomial time. We developed
two heuristics to find approximate solutions to the
general case with computational experiments.
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