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ABSTRACT : In the last years, several epidemics have been reported in particular the chikungunya epidemic
on the Réunion Island. For predicting its possible evolution, new models describing the transmission of the
chikungunya to the human population have been proposed and studied in the literature. In such models, some
parameters are not directely accessible from experiments and for estimating them, iterative algorithms can be
used. However, before searching for their values, it is essential to verify the identifiability of models parameters
to assess whether the set of unknown parameters can be uniquely determined from the data. Thus, identifiability
is particularly important in modeling, indeed, if the model is not identifiable, numerical procedures can fail and
in that case, some supplementary data have to be added or the set of admissible data has to be reduced. Thus,
this paper proposes to study the identifiability of the proposed models by (Moulay, Aziz-Alaoui & Cadivel 2011).
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1 Introduction

The chikungunya virus is a vector-borne disease
transmitted by mosquitoes of Aedes genus. Sev-
eral epidemics of this tropical disease have been re-
ported these last 50 years. Recently an unprece-
dented epidemic has been observed in the Réunion
island (a French island in the Indian Ocean) in 2005-
2006 where one third of the total population has
been infected. A pic of 40 000 infected per week
has been reached in february 2006. Another chikun-
gunya epidemic has been reported in Italy in 2007.
It was the first time that such disease was observed
in a non tropical region. The responsible vector of
these two epidemics is identified: the Aedes Albopic-
tus mosquito (Reiter, Fontenille & Paupy 2006). Con-
trary to Aedes Aegypti, the main vector of Dengue,
which also transmits the chikungunya virus, Aedes
Albopictus has developed capabilities to adapt to
non tropical region. Chikungunya is now a major
health problem. European health authorities are now
strongly engaged in the control of this disease. Since
there is no vaccine nor specific treatment, efforts are
mostly directed towards prevention measures and the
control of mosquito proliferation. Since these events,
several works and models are proposed to try to un-
derstand their emergence or re-emergence. Various
fields of research are concerned, such as epidemi-
ology, biology, medicine or mathematics. For in-
stance, Dengue, a vector borne disease mainly trans-
mitted by Aedes Aegypti mosquitoes was the subject

of several studies (Esteva & Vargas 1999, Esteva &
Vargas 1998).
Models for the chikungunya virus have been re-
cently proposed (Dumont, Chiroleu & Domerg 2008),
(Moulay, Aziz-Alaoui & Cadivel 2011).... Since the
models are recent, the not well-known parameters
have not yet been studied. In this paper, we propose
to take again the models proposed by (Moulay, Aziz-
Alaoui & Cadivel 2011) and to do an identifiability
study. For this, let us consider ordinary controlled or
uncontrolled dynamical systems described in a gen-
eral state-space form:

Γθ =

{
ẋ(t, θ) = f(x(t, θ), θ) + u(t)g(x(t, θ), θ),
y(t, θ) = h(x(t, θ), θ).

(1)

Here x(t, θ) ∈ Rn and y(t, θ) ∈ Rm denote the state
variables and the measured outputs, respectively and
θ ∈ Up the unknown parameters vector (Up is an
open subset in Rp). The functions f(., θ), g(., θ) and
h(., θ) are real, rational and analytic for every θ ∈ Up
on M (a connected open subset of Rn such that
x(t, θ) ∈M for every θ ∈ Up and every t ∈ [0, T ]). In
the case of uncontrolled system u is equal to 0.

Since the initial conditions are not considered, the
solution of Γθ may be nonunique and some solutions
might be of a degenerate character. Thus, the set
of nondegenerate solutions will be denoted by x̄(t, θ),
the set of corresponding outputs by ȳ(t, θ). The defi-
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nition introduced by (Ljung & Glad 1994) is adopted
here. For uncontrolled systems, one gets:

Definition 1.1. The model Γθ is globally identifiable
at θ ∈ Up if for any θ̄ ∈ Up, θ̄ 6= θ, ȳ(θ) 6= ∅ and
ȳ(θ) ∩ ȳ(θ̄) = ∅.

The identifiability definition of the controlled model
Γθ is the following:

Definition 1.2. The model Γθ is globally identifiable
at θ ∈ Up if for any θ̄ ∈ Up, θ̄ 6= θ, there exists an
input u, such that ȳ(θ, u) 6= ∅ and ȳ(θ, u)∩ȳ(θ̄, u) = ∅.

The identifiability of models has been extensively
studied (Ljung & Glad 1994), (Vajda, Godfrey &
Rabitz 1989), (Verdière, Denis-Vidal, Joly-Blanchard
& Domurado 2005) and different approaches have
been proposed for studying the global identifiability
of nonlinear systems. We can mention for example,
the Taylor Series approach of (Pohjanpalo 1978).
He proposed a method based on the analysis of a
power series expansion of the output which gives
rise to an algebraic system constituted of an infinite
number of equations. A second method is based
on the local state isomorphism theorem ((Walter
& Lecourtier 1982), (Chappell & Godfrey 1992),
(Denis-Vidal, Joly-Blanchard & Noiret 2001),
(Chapman, Godfrey, Chappell & Evans 2003)). It
leads to study the solution of a specific set of partial
differential equations. A third one is a method
based on differential algebra that was introduced
by (M. Fliess 1993), (Ljung & Glad 1994) and
(Ollivier 1997). It allows one to obtain relations
linking the observations, the inputs and the unknown
parameters of the system. These relations can be
used to obtain a first estimation of the unknown
parameters without a priori any knowledge of them
(Verdière et al. 2005). It is the latter method which
will be used in this paper for studying the parameters
identifiability.

The paper is organized as follows. In the second
section, models describing the transmission of the
chikungunya virus to human population are pre-
sented. Some results obtained in (Moulay, Aziz-
Alaoui & Cadivel 2011) will be recalled since they
will give us first, the framework of our study then,
the steps to study the models identifiability. In the
third section, the identifiability results are given.

2 Presentation of the models

In (Bacaër 2007) the author formulate several meth-
ods to compute the basic reproduction number for
epidemiological models. One of the first models de-

scribing the chikungunya transmission virus using SI-
SIR type models is proposed (these classical models
consist in the subdivision of a population depending
on its epidemiological state : Susceptible, Infective
or Removed). Moreover, some biological parameter
values are given. Another approach is described in
(Dumont et al. 2008), where a global aquatic stage
for the mosquito dynamics supplements a classical
transmission model. In (Dumont & Chiroleu 2010),
authors formulate an ordinary differential equation
system to study control of chikungunya virus using
mechanical and chemical tools. In (Moulay, Aziz-
Alaoui & Kwon 2011), control efforts are taken into
account through the formulation of an optimal con-
trol problem, where the objective is to control the
mosquito proliferation and limit the number of hu-
man and mosquito infections. This papers deal with
the Réunion Island epidemic.

The model given in (Moulay, Aziz-Alaoui & Cadivel
2011, Moulay, Aziz-Alaoui & Kwon 2011) takes into
account the mosquito biological life cycle and de-
scribes the virus transmission to human population.
For the reader convenience, we briefly recall the mod-
eling steps. The mosquito biological life cycle con-
sists in four stages: eggs, larvae, pupae and adults.
We use a stage structured model to describe the fol-
lowing stages: eggs number (E), larvae and pupae
number (L), two stages biologically close and female
adults number (A), only females can transmit the
virus stages. The density variation of each stage is
described by the following scheme:

density variation = entering − (leaving + death)

The egg density variation is then described by the
number of eggs laid by females b, by eggs becom-
ing larvae with a transfer rate s and by eggs death
with a natural mortality rate d. We assume that
the number of eggs is proportional to the number
of females b(t)A(t), and regulated by a carrying ca-
pacity KE since mosquitoes are able to detect the
best breeding site ensuring the egg development, then
b(t) = bA(t)(1 − E(t)/KE). Other stages, are de-
scribed in the same way. The input in the larvae
stage, given with a transfer s is also assumed to be
regulated by a carrying capacity KL which charac-
terizes the availability of nutrients and space. The
number of new larvae entering the L stage is then
given by s(t) = sE(t)(1−L(t)/KL). These larvae be-
come adult females with a transfer rate sL. Natural
deaths occur with a rate dL, dm for larvae and adults
respectively.

This model is then included in a classical SI-SIR epi-
demiological model to describe the virus transmission
to human population. To this aim, the adult stage
A is divided into two epidemiological states: sus-
ceptible Sm and infective Im, since mosquitoes carry
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the infection along their life. The human population
NH (for which we assume an exponential growth,i.e.
dNH

dt (t) = (bH − dH)NH(t) where bH and dH are , re-
spectively, the human birth and natural death rates)
is subdivided into three stages: susceptible SH , in-
fected IH and recovered (or immune) RH . We assume
that there is no vertical transmission for both humans
and mosquitos. This means that human birth, with
a rate bH from susceptible, infected and removed are
susceptible and eggs laid by susceptible or infected
mosquitoes are susceptible. The vector infection of
susceptible mosquitoes (S̄m) occurs during the blood
meal (necessary to the female egg laying) from infec-
tious humans (ĪH). The force of infection (or per-
capita incidence rate among mosquitoes) given by
βmĪH/NH depends on the fraction of infectious in-
dividuals ĪH/NH and the number of bites that would
result in an infection βm. Conversely, the chikun-
gunya infection among humans occurs when suscep-
tible humans (S̄H) are bitten by infectious mosquitoes
(Īm) during blood meal. The force of infection given
by (βH Īm/A(t)) depends on the fraction of infectious
mosquitoes (Īm/A(t)) and the number of bites that
would result in an infection βH . Infected humans are
infectious during 1/γ days, called the viremic period,
and then become immune.

All previous assumptions are summed up in Fig. 1.

Adult

Im SH

Sm IH

RH

dm

dm

dH

dH

dH

bH

bH

bH

γ

Immature

E

L

d

b(t)

b(t)

dL

s(t)

sL

Vector Model Human Model

βm NH

IH βH A

Im

Figure 1: Compartmental model for the dynamics of
Aedes albopictus mosquitoes and the virus transmis-
sion to human population. Stages E, L correspond
to the immature stages, eggs and larvae/pupae re-
spectively. The female adult stage A is described by
an SI model where S̄m and Īm designed the suscepti-
ble and infected mosquito stages, respectively.

Based on our model description (see Fig.1) and as-

sumptions, we establish the following equations:



E′(t) = bA(t)

(
1− E(t)

KE

)
− (s+ d)E(t)

L′(t) = sE(t)

(
1− L(t)

KL

)
− (sL + dL)L(t)

A′(t) = sLL(t)− dmA(t)

S̄′m(t) = sLL(t)− dmS̄m(t)− βm
ĪH(t)

NH(t)
S̄m(t)

Ī ′m(t) = βm
ĪH(t)

NH(t)
S̄m(t)− dmĪm(t)

S̄′H(t) = −βH
Īm(t)

A(t)
S̄H(t)− dH S̄H(t)

+bH(S̄H(t) + ĪH(t) + R̄H(t))

Ī ′H(t) = βH
Īm(t)

A(t)
S̄H(t)− γĪH(t)− dH ĪH(t)

R̄′H(t) = γĪH(t)− dHR̄H(t)

(2)

Let us consider the following variable changes Sm =
S̄m/A, Im = Īm/A, SH = S̄H/NH , IH = ĪH/NH and
RH = R̄H/NH and the fact that then Sm = 1 − Im
et RH = 1− SH − IH , we have :

S′H = (1/N2
H)
(
S̄′HNH − S̄HN ′H

)
= (1/N2

H)
(

(−βH
Īm
A
S̄H − dH S̄H + bHNH)NH

− S̄H(bH − dH)NH

)
=

(
−βH

Īm
A

S̄H
NH
− dH

S̄H
NH

+ bH

)
− S̄H
NH

(bH − dH)

= (−βHImSH − dHSH + bH)− SH(bH − dH)

= −βHImSH − bHSH + bH

With the same computation for the other variables,
system (2) reads as:




E′(t) = bA(t)

(
1− E(t)

KE

)
− (s+ d)E(t)

L′(t) = sE(t)

(
1− L(t)

KL

)
− (sL + dL)L(t)

A′(t) = sLL(t)− dmA(t)

(a)


S′H(t) = − (bH + βHIm(t))SH(t) + bH
I ′H(t) = βHIm(t)SH(t)− (γ + bH)IH(t)

I ′m(t) = −
(
sL
L(t)

A(t)
+ βmIH(t)

)
Im(t) + βmIH(t)

(b)

(3)

and it is defined on ∆× Ω where

∆ =

(E,L,A) ∈ (R+)3 |
0 ≤ E ≤ KE

0 ≤ L ≤ KL

0 ≤ A ≤ sL
dm

KL

 (4)
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and

Ω =

{
(SH , IH , Im) ∈ (R+)3 | 0 ≤ SH + IH ≤ 1

0 ≤ Im ≤ 1

}
.

(5)

The stability analysis of the model is detailed in
(Moulay, Aziz-Alaoui & Cadivel 2011). We briefly
recall some results about this model. The study was
conducted in two steps and they will be taken again
for the identifiability study. First, we analyze the
mosquito dynamics in the absence of virus, which
corresponds to the subsystem (3a). The mosquito
dynamics is governed by the following threshold:

r =

(
b

s+ d

)(
s

sL + dL

)(
sL
dm

)
(6)

obtained from computation of the equilibrium.

Theorem 2.1.

• System (3a) always has the mosquito-free equi-
librium (0, 0, 0), which is globally asymptotically
stable (GAS) if r ≤ 1 and unstable otherwise

• If r > 1 system (3a) has an endemic equilibrium
(E∗, L∗, A∗) wich is GAS, where

 E∗

L∗

A∗

 =

(
1− 1

r

)


KE

γE
KL

γL
sL
dm

KL

γL


γE = 1 + (s+d)dmKE

bsLKL
and γL = 1 + (sL+dL)KL

sKE

In both cases, the global stability is obtained by
using Lyapunov function theory.

Now we assume r > 1, the biological interesting case,
in order to ensure the persistence of mosquito popu-
lation and we consider the subsystem (3b).

The stability of equilibrium of the transmission dy-
namics model is described thanks to the basic repro-
duction number (Van Den Driessche & Watmough
2002, Diekmann & Heesterbeek 2000), computed in
the case r > 1 which is the biologically interesting
case:

R0 =
βmβH

dm(γ + bH)
(7)

We show the following result

Theorem 2.2. Assume r > 1 and let us denote
(E∗, L∗, A∗) the endemic equilibrium of (3a).

• System (3b) always has the disease-free equilib-
rium (1, 0, 0), which is GAS if R0 ≤ 1 and un-
stable otherwise.

• If R0 > 1 system (3b) has an endemic equilib-
rium (S∗H , I

∗
H , S

∗
m) which is GAS and where

 S∗H
I∗H
I∗m

 =


bH

βH + bH
+

βH
(βH + bH)R0

dmbH
βm(βH + bH)

(R0 − 1)

bH
βH + bHR0

(R0 − 1)


The first part of the theorem is obtained using Ly-
punov function theory. The case of the endemic equi-
librium needs more study. The idea here is that the
mosquito dynamic system drives the transmission dy-
namics. It may be assimilated to master-slave system.

The coupling term is sL
L(t)

A(t)
.

In order to study the equilibrium stability we use the
result of (Vidyasagar 1980) for triangular systems :

Theorem 2.3. Consider the following C1 system
dx

dt
= f(x)

dy

dt
= g(x, y),

(8)

with (x, y) ∈ Rn×Rm. Let (x∗, y∗) be an equilibrium
point. If x∗ is GAS in Rn for the system dx

dt = f(x)

and if y∗ is GAS in Rm for the system
dy

dt
= g(x∗, y),

then (x∗, y∗) is (locally) asymptotically stable for sys-
tem (8). Moreover, if all trajectories of (8) are for-
ward bounded, then (x∗, y∗) is GAS for (8).

The GAS of the endemic equilibrium (S∗H , I
∗
H , S

∗
m)

of system (3b) where sL
L(t)

A(t)
is replaced by sL

L∗

A∗
is

then shown using the theory of competitive systems
(Hirsch & Smale 1974), (Hirsch 1990), (Smith 1995)
and the Poincaré-Bendixson property (Thieme 1992).

3 Identifiability Analysis

Recall that the parameters identifiability study
consists in assessing whether the set of unknown
parameters can be uniquely determined from the
data. Thus, it is essential to determine what are the
state variables that can be considered as observable.
In the case of the chikungunya Réunion Island
epidemic, authorities have registered the average
number of eggs in each cottage. Thus, (E) can be
considered as an observable variable. Furthermore,
they estimate the number of new infections week
by week. More generally, it seems to be realistic
to assume that data about human population may
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be obtained. For instance, we know that the entire
Réunion island before the epidemic was susceptible.
Data indicating week per week new cases of the dis-
ease may be provided by the INVS (French Institute
for Health Care). We know that the epidemic was
declared over by April 2006. In the end, the INVS
counted 265,733 cases of chikungunya from March
2005 to April 2006 which represents more than 35%
of the total population of the Island. That is why
it seems reasonable to assume that susceptible (SH)
and infected human (IH) are observable.

The parameters whose values are not directly acces-
sible from the field are: s, sL, KE , KL for the system
(3a) and βH , βm for the system (3b). Let us recall
the main results in differential algebra for proving the
parameters identifiability.

3.1 Differential Algebra

This method consists in eliminating unobservable
state variables in order to get relations between out-
puts and parameters. Let us recall the methodology.
The system Γθ is rewritten as a differential polyno-
mial system completed with θ̇i = 0, i = 1, . . . , p, thus
the following system composed of polynomial equa-
tions and inequalities is obtained:

Γ


p(ẋ, x, u, θ) = 0,
q(x, y, θ) = 0,
r(x, y, θ) 6= 0,

θ̇i = 0, i = 1, . . . , p.

(9)

Let us introduce some notations:

• I is the radical of the differential ideal generated
by (9). I, endowed with the following ranking
which eliminates the state variables:

[θ] ≺ [y, u] ≺ [x] (10)

is assumed to admit a characteristic presenta-
tion C (i.e., a canonical representant of the ideal)
which has the following form:{

θ̇1, . . . θ̇p, P1(y, u, θ), . . . , Pm(y, u, θ), Q1(y, u, θ, x),

. . . , Qn(y, u, θ, x)}
(11)

C(θ) will denote the particular characteristic pre-
sentation C evaluated in θ.

• Iθ is the radical of the differential ideal generated
by (9) for the particular value of parameter θ and
Cθ is the characteristic presentation associated
with the ranking [y, u] ≺ [x].

• Finally, Ii0θ is the ideal obtained after eliminating

state variables and the set Ci0θ = Cθ∩Q(θ){U, Y }

is a characteristic presentation of this ideal.

The following proposition gives a necessary and
sufficient condition for having the global identi-
fiability.

Proposition 3.1. If the system Γ does not admit
non generic solution then the model is globally
identifiable if and only if for all θ̄ ∈ Up,

Ci0θ = Ci0
θ̄
⇒ θ = θ̄.

This proposition is difficult to verify since the
initial system woud have to be evaluated in ev-
ery parameter value as the associated caracter-
istic presentation Ci0θ . The authors in (Denis-
Vidal, Joly-Blanchard, Noiret & Petitot 2001)
have given some technical conditions for hav-
ing the equality Cθ = C(θ). Under these as-
sumptions, the characteristic presentation Cθ,
that is, Ci0θ of Ii0θ is proved to contain the dif-
ferential polynomials P1(y, u, θ), . . . , Pm(y, u, θ)
which can be expressed as

Pi(y, u, θ) = γi0(y, u) +

ni∑
k=1

γik(θ)mk,i(y, u) (12)

where (γik)1≤k≤ni
are rational in θ, γiu 6= γiv

(u 6= v), (mk,i)1≤k≤ni are differential polynomi-
als with respect to y and u and γi0 6= 0.

The list {γi1(θ), . . . , γini
(θ)} is called the exhaustive

summary of Pi. The size of the system is the num-
ber of observations. The identifiability analysis is
based on the following proposition (Denis-Vidal, Joly-
Blanchard, Noiret & Petitot 2001).

Proposition 3.2. If for i = 1, . . . ,m, 4Pi(y, u, θ) =
det(mk,i(y, u), k = 1, . . . , ni) is not in the ideal Ii0θ ,
then Γθ is globally identifiable at θ if and only if for
every θ̄ ∈ Up (θ̄ 6= p), the characteristic presentations
Ci0θ and Ci0

θ̄
are distinct.

The function belongs to allows us to verify that the
functional determinant does not vanish on the ze-
ros of the radical differential ideal generated by Γ.
Under this assumption, for proving that the model
is globally identifiable, it is sufficient to verify for
i = 1, . . . ,m and k = 1, . . . , ni:

γik(θ) = γik(θ̄)⇒ θ = θ̄.

This work will be done in using the Rosenfeld-
Groebner algorithm in the package Diffalg of Maple.
For studying the identifiability of the parameters s,
sL, KE , KL, βL, βm in (3a) and (3b), the two cou-
pled systems can be considered as a unique system
in which E, SH and IH are supposed to be observed.
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However, we will take again the procedure done in
(Moulay, Aziz-Alaoui & Kwon 2011). Indeed, for
studying the parameters of the second system it is
essential to know those of the first one. Besides, our
aim is to propose an identifiability study which can
be used for a numerical procedure. Indeed, recall that
the use of differential algebra (Verdière et al. 2005)
gives output polynomials usable for estimating the
unknown parameters.

3.2 Application to the Vector population

Since E is supposed to be observed, the equation y =
E is added to the sytem (3a). In using the elimination
order [y] ≺ [E,L,A], the package diffalg of Maple
gives the caracteristic presentation constituted of the
three following polynomials (13):

P1 = (−bKE + by)A+ ẏKE +KEsy +KEdy

P2 = (bK2
EsL − 2KEbysL + by2sL)L−K2

Edẏ
−K2

Esẏ −K2
E ÿ +KE ÿy −K2

Edmẏ −K2
Edmsy

−K2
Edmdy −KE ẏ

2 + dmKE ẏy + dmKEsy
2

+dmKEdy
2

P3 = (K3
EsLKLdmd+K3

EKLdLdms
+K3

EKLdLdmd+K3
EsLKLdms− bK3

EsLsKL)y
+(K3

EKLdLs+K3
EKLdmd+K3

EKLdLdm
+K3

EsLKLd+K3
EsLKLs+K3

EsLKLdm
+K3

EKLdLd+K3
EKLdms)ẏ + (K3

EKLdL
+K3

EKLd+K3
EKLdm +K3

EKLs+K3
EsLKL)ÿ

+KLK
3
E

...
y + (3K2

EbsLsKL − 2K2
EsLKLdmd

+K3
Esdmd− 2K2

EKLdLdms− 2K2
EKLdLdmd

+K3
Es

2dm − 2K2
EsLKLdms)y

2

+(−2K2
EKLdLdm +K3

Esdm −K2
EKLdLs

−K2
EKLdLd+K3

Esd−KLdmK
2
Ed−K2

EsLKLs
−K2

EsLKLd− 2K2
EsLKLdm −KLdmK

2
Es

+K3
Es

2)ẏy + (K2
EKLdL +KLdmK

2
E + 2K2

EKLs
+2K2

EKLd+K2
EsLKL)ẏ2 + (−2K2

EKLdL
−2KLdmK

2
E −K2

EKLs− 2K2
EsLKL −K2

EKLd
+K3

Es)ÿy + 3KLK
2
E ÿẏ − 2KLK

2
E

...
y y

+(sLKLdmKEs− 2K2
Es

2dm − 3KEbsLsKL

+KLdLdmKEs+ sLKLdmKEd− 2K2
Esdmd

+KLdLdmKEd)y3 + (−K2
Es

2 − 2K2
Esdm

−K2
Esd+ sLKLdmKE +KLdLdmKE)ẏy2

+(−KEKLdL +K2
Es−KEsLKL −KLdmKE)ẏ2y

+2KLKE ẏ
3 + (−2K2

Es+KLdmKE +KEKLdL
+KEsLKL)ÿy2 − 3KLKE ÿẏy +KLKE

...
y y2

+(s2dmKE + sdmKEd+ bsLsKL)y4

+sdmKE ẏy
3 − sKE ẏ

2y2 + sKE ÿy
3.

(13)

The polynomials P1 and P2 permit to express L and
A in function of y and the parameters of the model.
The third one, P3, links the output with the parame-
ters: it is the output polynomial. With the function

belong to, we verify that the functional determinant
4P3 is not in the ideal Ii0θ . The exhaustive sum-
mary is constituted of 21 expressions. In using the
Rosenfeld-Groebner algorithm, we obtain the identi-
fiability of the parameters s, sL, KE , KL. Thus, from
the observation of E, the unknown parameters can be
estimated.

3.3 Application to the population Model

The third equation of (3b) links the human popula-
tion to the vector population with the term L(t)/A(t).
According to the previous section, they can be ex-
plicitely determined from E(t). Thus the ratio
L(t)/A(t) can be considered as a known input u. As
previously, in adding y1 = IH , y2 = SH to (3b)
and in considering the elimination order [y1, y2, u] ≺
[IH , SH , Im], one gets for the two following output
polynomials:

P4 = y2ÿ2 − ẏ2
2 + (βHβm + βmbH)y1y

2
2

+sLuy2ẏ2 + sLbHuy
2
2 − sLbHuy2 + bH ẏ2

+βmy2y1ẏ2 − βmbHy2y1

P5 = ẏ2 + ẏ1 − bH + bHy2 + (bH + γ)y1.

(14)

Only the polynomial P4 contains the parameters βH
and βm and is used for studying their identifiability.
The functional determinant 4P4 is proved not to be
in the ideal Ii0θ . In studying the exhaustive summary
of P4, we conclude that the parameters βH and βm
are identifiable.

4 Conclusion

In this paper, the identifiability of models describing
the transmission of the chikungunya virus to human
population has been studied. According to the re-
emergence of this virus, the chikungunya becomes a
major health problem especially since the main vector
has developed capabilities to adapt to non tropical re-
gions. The identifiability is an important step in the
modeling. Indeed, the identifiability study enables
one to know if a model is well-posed and if the un-
known parameters can be assessed from some obser-
vations done in the field. For the chikungunya virus
models, the identifiability of the unknown parameters
has been established and the following step will be the
parameters estimation of this epidemiologic model.
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