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ABSTRACT: The pickup and delivery problem (PDP) is a special class of transportation problems. The
objective of the PDP is to satisfy at minimum cost a set of transport requests while respecting a set of
constraints. A variant of the PDP is the pickup and delivery problem with transshipment (PDPT). In PDPT,
a request can be satisfied by more than a vehicle. For instance, one vehicle picks up a load at the supplier
location, drops it off at a transshipment point with short storage and another vehicle carries and delivers this
load to the final destination. In this paper, we propose a multi-start heuristic with path relinking (PR) and
variable neighbourhood descend (VND) to solve the PDP and we use a local search based on transshipment to
optimize the solution of the PDP. Our approach is tested using benchmark instances from the literature.

KEYWORDS: Pickup and delivery problem, transshipment, Multi-start heuristic, Path relinking, Variable
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1 INTRODUCTION

In a sluggish economy and increased competition,
companies try to optimize their supply chain in gen-
eral and transportation activity in particular. Trans-
port plays a major and important role in the perfor-
mance of the supply chain. For this reason, compa-
nies need to develop innovative, efficient and effective
approaches for the management of their transporta-
tion activities. To meet this challenge, several re-
search lines on the issue of transportation studied as
an important contribution to the supply chain per-
formance have emerged. On technological plan, we
can quote the development of initiatives regarding
ICT (Information and Communication Technologies)
such as RFID (Radio Frequency Identification), GPS
(Global Positioning System) promote effective trace-
ability of products during transportation. On oper-
ational plan, research initiatives are more oriented
on routing problems including cross-docking (Boysen
and Fliedner, 2010) and transshipment as an efficient
way to provide flexibility in the organisation of trans-
portation activities.

Transshipment is a practice used to optimize the rout-
ing of products to their address by allowing a demand
(request) of transport to be satisfied by more than
one vehicle. For instance, one vehicle picks up a load

at the supplier location, drops it at a transshipment
point with short storage (warehouses) and another
vehicle carries and delivers this load to the final des-
tination. This practice is particularly used in trans-
portation systems with ”cross-docking”, where the ob-
jective is to reduce the storage time of products at the
distribution centre by better coordinating the pickup
of products upstream, and the distributions of those
products downstream.

Transshipment remains, however an expensive opera-
tion; a consumer of time and resources. Nevertheless,
it but offers certain flexibility while authorizing a re-
duction of the total distance travelled, the number of
used vehicles, and by projection in the field of the sus-
tainable development, a better control of the carbon
footprint associated with a transported load.

By starting from this premise, the objective of this
paper is to propose a multi-start heuristic with path
relinking (PR) to solve the PDP with and without
transshipment in order to minimize primarily the
number of vehicles used and secondarily the total
travelled distance. At each iteration of the multi-start
heuristic a PDP solution is computed. Then, this so-
lution is destroyed and repaired to obtain PDPT solu-
tion. The destruction process and the repair process
is a local search based on transshipment. The best
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solution found during all iterations of the multi-start
heuristic is returned as the solution of the problem.

This paper is structured as follows: In section 2, we
present a literature review and we discuss some previ-
ous works related to the PDP and the PDPT. Section
3 is dedicated to the formalization of the PDP and
the PDPT. Section 4 presents the multi-start heuris-
tic with variable neighbourhood descent and path re-
linking approaches to solve the PDP and PDPT. Sec-
tion 5 shows experimental results, their analysis and
points out some concluding remarks.

2 LITERATURE REVIEW

The pickup and delivery problem (PDP) addresses
the construction of optimal routes to satisfy trans-
portation requests (each request is defined by a couple
of pickup and delivery points), precedence constraints
(it is mandatory to pick up before delivering), vehicle
capacity constraint, pairing constraint (each request
is executed by the same vehicle), and time windows
(PDPTW) constraints.

A mathematical model and an exact algorithm based
on a column generation scheme with a constrained
shortest path as the sub problem was proposed by
(Dumas et al., 1991) to solve the PDPTW. A more
recent and interesting survey for the PDPTW was
offered by (Parragh et al., 2008a, Parragh et al.,
2008b). Pickup and delivery problem is also known
to be a NP-hard combinatorial optimization problem
(M.W.P. et al., 1995). For this reason, exact meth-
ods are restricted to optimally solve only small size
problems. To overcome this difficulty, for many years,
researchers develop heuristics and metaheuristics ca-
pable of giving solutions of good quality in reason-
able time. (Lu and Dessouky, 2006) have developed a
parallel construction heuristic for the PDPTW. Their
main contribution was to define new criteria to evalu-
ate requests insertion based on reduction of time slack
comparing to the classical one based on the incremen-
tal distance measure. (Li and Lim, 2001) have devel-
oped a hybrid metaheuristic based on tabu search and
simulated annealing to solve the PDPTW. They have
also generated several test instances for the PDPTW.
A two stage hybrid algorithm for the PDPTW was
designed by (Bent and Hentenryck, 2006). To re-
duce the number of used vehicles, simulated annealing
(SA) is used at the first stage and large neighbour-
hood (LNS) algorithm is applied at the second stage
to decrease total travelled cost.

The PDPT is a variant of PDP such that each request
can be served by more than one vehicle (pairing con-
straint is relaxed) by dropping a good at a transfer
point and picking it up by another vehicle. There
is little literature on the PDPT. (Cortés et al., 2010)
have proposed a MIP model for the dial-a-ride version

of the PDPT. The authors have also implemented a
branch-and-cut able to handle any number of transfer
points and solved to optimality instances with up to
six customers and one transshipment point. (Mues
and Pickl, 2005) have developed a column genera-
tion approach for a particular case of the problem
and they solved instances with up to 70 requests.
(Mitrovic-Minic and Laporte, 2006) have developed
a two phase heuristic algorithm for the PDPT with
time windows; the first phase is a greedy construc-
tion using cheapest insertions, and the second one is
an improvement phase based on request reinsertions.
The heuristic was launched with instances involving
up to 100 requests, and results have showed that sig-
nificant savings can be obtained if the requests are
clustered. (Shang and Cuff, 1996) have worked on
multi objective PDPT where patient record, equip-
ment, and supplies can be transferred between ve-
hicles. The objectives are to minimize vehicle ex-
pense, tardiness and travel time. They developed a
look ahead heuristic to solve the PDPT. Firstly, mini-
routes based on shipment request are constructed and
then incorporate into vehicle routes with a special in-
sertion procedure. (Qu and Bard, 2012) were the first
to propose a metaheuristic based on the GRASP and
adaptive large neighbourhood search (ALNS) for the
pickup and delivery problem with transshipment. In
the construction phase of the GRASP, they used a
sequential insertion procedure to insert new request
on route and the improvement phase was based on
the ALNS developed and proposed in (Ropke and
Pisinger, 2006).

Multi-start methods are typically used to solve com-
binatorial problems. Multi-start methods have two
phases (Mart́ı et al., 2010): the first one in which the
solution is generated and the second one in which the
solution is improved. At the end of each global itera-
tion a local optima solution is produces and the best
overall is keep as the final solution. This approach
was successfully applied to resolve several combina-
torial problems (Crainic et al., 2011, Bräysy et al.,
2004, Boese et al., 1994, Brønmo et al., 2007).

To clarify and define our contribution following the
analysis of the state of the art, we make the following
assumptions:

• Vehicle fleet is homogenous, and vehicle capacity
is bounded.

• The number of vehicle is not fixed.

• Travel time between each location is symmetric.

• Each location is associated with a time window.

• If a vehicle arrives before the earliest pickup or
delivery time of a customer, it is allowed to wait
until the start of the time window.
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• Each pickup location has to be visited before vis-
iting its corresponding delivery location.

• The pickup location and the delivery location
are visited by the same vehicle, unless the cor-
responding request is transhipped between ve-
hicles.

• The transshipment incurs additional travel un-
loading and loading time/cost.

• Each location can be used as a transshipment
point.

• A vehicle cannot load and unload the same prod-
uct in the same transshipment point.

3 PROBLEM FORMULATION

This section presents different notations and concepts
used to describe the PDP and the PDPT.

3.1 Formulation of the PDP

Let n be the number of customers and let N = P ∪D
a set of 2n elements partitioned into two subsets:
P = {1, ..., n} the set of pickup nodes and D =
{1 + n, ...2n} the set of delivery nodes. Each cus-
tomer request is characterized by a pair of nodes
(i, i+ n) . The origin or pickup node of the request
is represented by (i ∈ P ) and the destination or de-
livery node is represented by (i+ n) ∈ D. We define
R = {(i, i+ n) , i ∈ P, i+ n ∈ D} as the set of re-
quests. Any node j ∈ N is associated with a time
windows [aj , bj ]. To satisfy the request (i, i+ n) of
a customer i ∈ n, a positive quantity li of products is
collected at node i ∈ P , and a quantity li+n of prod-
ucts is delivered at (i+ n) ∈ D such that li = −li+n.
We define sj as the service lead time at each pickup
or delivery node j ∈ N . The set of homogeneous ve-
hicles is denoted K and each vehicle has a capacity Q.
The depot o = o1 ∪ o2 from where vehicles start and
end their routes is modelled by two nodes o1 and o2
representing the origin and destination of each vehicle
route.

The PDP is characterized and defined by a graph G =
V ∪E such as: V = N ∪ o1 ∪ o2 is the set of vertices,
E = V ×V is the set of edges. Between each couple of
vertices (j1, j2) ∈ V there exists both a nonnegative
distance dj1j2 and a travel time tj1j2 . xkj1j2 is a binary
variable used to specify if edge (j1, j2) ∈ E is taken
by vehicle k ∈ K. It is equals to 1 if true and 0
otherwise; dtkj is a real variable used to specify the
time at which vehicle k ∈ K reaches the customer
j ∈ V ; Lk

j is used to specify the load of vehicle k ∈ K
upon servicing customer j ∈ V .

The main constraints that a solution of PDP has to

satisfy are time windows constraints:

dtkj ∈ [aj , bj ] , ∀j ∈ V, k ∈ K (1)

vehicle capacity:

Lk
j ≤ Q, ∀j ∈ V, k ∈ K (2)

precedence constraints: it is mandatory to pickup be-
fore delivery:

dtki ≤ dtki+n, ∀i ∈ P, k ∈ K (3)

and pairing constraints:

∑
j∈N

xkij −
∑
j∈N

xk(i+n)j = 0, ∀i ∈ P, k ∈ K (4)

3.2 Formulation of the PDPT

To formalize the PDPT, we keep the notations previ-
ously introduced, and we add the following variables
and parameters: Let T (|T | ≥ 1) be the set of trans-
shipment points. Each transshipment point t ∈ T
is split into two separate nodes, et (start node) and
st (finish node). If the request of customer i ∈ n
has to be transhipped, when a vehicle passes through
transshipment point t ∈ T , it first enters node et to
drop a quantity li, i ∈ N that must be transferred
to a different vehicle. The vehicle then proceeds to
node st, where others products possibly on hold are
loaded into the vehicle. We call et the inbound door
for the transshipment point t and we denote by st it
outbound door. We define B ≥ 0 as the unit time
for unloading and reloading product (or a pallet) at
the transshipment point. The PDPT is then charac-
terized and defined by a graph G = V ∪ E such as:
V = N ∪o∪T is the set of vertices, E = V ×V is the
set of edges. Every solution must satisfy each trans-
port request and constraints such that each route
starts at o1 and finishes at o2. The main constraints
that a solution of PDPT has to satisfy are identical
to those used in PDP, except precedence constraint
at the transshipment points. For instance, if request
(i, i+ n) is executed by two vehicles through the use
of transshipment point t, then vehicle k1 ∈ K first
pickups li at i, delivers it to et before vehicle k2 ∈ K
reloads li at st and transports it to customer n+ i.

In the following, we use the following notations. H:
total number of vehicles used to satisfy the requests;
r (k): route of vehicle (sequence of stop locations as-
signed to one vehicle) k ∈ K; ND (k): total number
of nodes visited by a vehicle k ∈ K; Rcost (k): total
travel distance of route k ∈ K; cost (i, i+ n): inser-
tion cost of request(i, i+ n) ∈ R; Sol: PDP solution;
TSol: PDPT solution TD: total travelled distance.
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Within the framework of this work, we used the eval-
uation function defined by (Bent and Hentenryck,
2006). Let F (Sol) be the evaluation function.

F (Sol) = αH + βTD − γ
H∑

k=1

ND (k)
2

(5)

The constants α, β, γ are weights assigned to each
term in the evaluation function, and (α, β, γ) ∈
[0, 1] , α+β+γ = 1. As the objective consists in mini-
mizing primarily the number of vehicles and secondar-
ily the total travelled distance, we choose α > β > γ.
The first component consists of minimizing the num-
ber of vehicles used. The second part consists of min-
imizing the total travelled distance. The third one
is the square of number nodes visited by each vehi-
cle during it tour. The purpose of this last compo-
nent is that each vehicle must serve as much as pos-
sible the maximum of transport requests in the same
route. This allows during the use of different neigh-
bourhoods to promote the solutions using a minimum
number of vehicles.

4 HYBRID HEURISTIC FOR THE PDP

PDP and PDPT are both hard combinatorial opti-
mization problems. The heuristics for such problems
must avoid being trapped by local optimum. To over-
come local optimality, a diversification procedure is
needed. We can obtain diversification by re-starting
local search based on Variable Neighbourhood De-
scent (VND) and an intensification procedure using
Path Relinking (PR), from a new solution once a so-
lution space region has been explored. Indeed, for ev-
ery calculation step, requests are randomly ordered.
According to this order, every request is introduced
into the solution under construction by a constructive
and parallel greedy heuristic. The proposed heuristic
is considered as hybrid because it combines several
techniques and methods issued from different meta-
heuristics such as: path relinking, variable neighbour-
hood descent. The solving principle is based on the
following steps:

• Random ordering of requests.

• An initial PDP solution (Sol) is calculated by
gradually inserting the requests in routes asso-
ciated to vehicles.

• The Variable Neighbourhood Descent method is
applied to improve the initial solution, before us-
ing Path Relinking.

• Transshipment is then used to “destroy” and “re-
pair” PDP solution to obtain a better solution
(PDPT solution).

• The whole procedure is restarted until a maxi-
mum number of iterations is reached. Overall
PDP solutions and PDPT solutions are com-
pared and the best one corresponds to the heu-
ristic’s output.

The general principle of the hybrid multi-start heuris-
tic is detailed in the pseudo-code described by the
algorithm 1.

Algorithm 1: MULTISTART

input : Set of request R; Paramater
MaxIter; Paramater λ; Set of
Transfer point T

output: Sol

1 Pool←− ∅; Sol←− ∅; Sol1 ←− ∅;
F (Sol)←−∞ ;

2 for i←− 0 to MaxIter do
3 Random (R) ;
4 foreach request (i, i+ n) in R do
5 Sol1 ←− PARA ((i, i+ n) , Sol1);
6 end
7 Sol1 ←− V ND (Sol1) ;
8 if i < λ then
9 Pool←− Pool + {Sol1};

10 end
11 Solg ←− Guiding (Pool);
12 Soli ←− Sol1;
13 Soli ←−

PATHRELINKING (Soli, Solg);
14 if F (Soli) < F (Sol1) then
15 Sol1 ←− Soli;
16 end
17 UPDATE (Pool, Sol1);
18 Sol1 ←−

TRANSSHIPMENT (R,Sol1, T )
19 if F (Sol1) < F (Sol) then
20 Sol←− Sol1;
21 end
22 Sol1 ←− ∅
23 end
24 Return Sol ;

Each complex operation, constituting the multi-start
heuristic and represented here by a function will be
considered separately and described in detail in the
following.

4.1 Random order of Requests

As we have stated above, since every request possesses
a time windows, a service time and because the ca-
pacity of vehicles is limited, the order in which every
request is executed has an impact on the quality of
the solution. This process allows us to have diver-
sity. In order to avoid having very similar solutions,
and guarantees a certain degree of difference we use
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memory mechanism.

4.2 Initial solution for the PDP

The proposed constructive heuristic operates in a par-
allel and greedy way to insert a request. The ini-
tial solution Sol = {r (a)} is consisting of a single
route containing only the starting point and the end-
ing point of each route ( r (a) = {o1, o2}). Requests
are then successively introduced into the tour of a
vehicle offering the minimal increase of the cost of
transport. If no vehicle can satisfy a request because
of the non compliance with constraints (vehicle ca-
pacity, time windows, etc.), a new route is created
to welcome the considered request. The pseudo-code
of the parallel constructive algorithm for the PDP is
shown in the algorithm 2.

Algorithm 2: PARA

input : Request (i, i+ n); Sol
output: Sol; Cost (i, i+ n)

1 Cost (i, i+ n)←−∞;
2 route←− ∅ ;
3 foreach r (k) in sol do
4 A←− The cost of the best insertion of i

and i+ n in r (k) ;
5 if A < Cost (i, i+ n) then
6 Cost (i, i+ n)←− A ;
7 route←− r (k) ;

8 end

9 end
10 if Cost (i, i+ n) 6=∞ then
11 Insert request (i, i+ n) at the best

insertion slots of route ;

12 else
13 Create new trip r (h) ;
14 Cost (i, i+ n)←− The insertion cost of

(i, i+ n) in r (h) ;
15 Insert (i, i+ n) at the best slots in route

r (h) ;
16 Sol←− Sol + {r (h)} ;

17 end
18 Return Sol; Cost (i, i+ n) ;

4.3 Variable neighbourhood descent (VND)

The VND is an improved local search described in
(Hansen and Mladenović, 2001). The VND is used
to explore the neighbourhood of the current solu-
tion, which is based on three operators defined be-
low: N1(ADR),N2(RNR), andN3(SWR). With these
three operators, we can explore the solution space
more intensively. An operator is a move that trans-
forms one solution to another with small modifica-
tions. The VND is described in algorithm 3.

In Algorithm 3 (ligne 4), LS (X,Ni) refers to the local

Algorithm 3: VND

input : Set of Neighborhood structure
Nn (n = 1, ..., 3); Initial Solution X

output: X

1 repeat
2 n←− 1 ;
3 repeat

4 X
′ ←− LS (X,Ni);

5 if F
(
X

′
)
< F (X) then

6 X ←− X ′
;

7 else
8 n←− n+ 1;
9 end

10 until n = 3;

11 until No improvement is obtained ;
12 Return X;

search procedure in the operators defined by Ni. The
VND used best improvement local search for RNR
and ADR. For ADR the VND used first improve-
ment local search. In best improvement operators the
whole neighbourhood is analysed and the best solu-
tion is kept. In first improvement local search the first
better solution found in the neighbourhood is keep.
In the following, we described the three neighbour-
hoods used to construct the VND.

SWR (swap requests between routes): In SWR
neighbourhood, two requests belonging to two
different routes are exchanged together pro-
vided that all PDP constraints are satisfied. If
(i, i+ n) ∈ r (a) and (j, j + n) ∈ r (b) with a 6=
b, withdraw (i, i+ n) from r (a) and (j, j + n)
from r (b). Insert (i, i + n) at the best slots of
r (b) and (j, j + n) at the best slots r (a). Figure
1 depicts SWR moves. In figure 1, request 2 and
5 are swapped with the aim to reduce travelled
costs.

Figure 1: SWR moves

RNR (remove and insert a request): In RNR neigh-
bourhood, provided that all PDP constraints are
satisfied, request belonging to one route is re-
moved and inserted in another route. Suppose
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that we have two routes r (a) and r (b) such that
(i, i+ n) ∈ r (a), with RNR we remove (i, i+ n)
from r (a) and insert it at the best slots to r (b).
In figure 2, request 2 is removed from its current
route and inserted into another route with the
aim to reduced total number of vehicles used.

Figure 2: RNR moves

ADR (advance or delay a request): In ADR neigh-
bourhood, requests belonging to one given route
is advanced or delayed in the same route if PDP
constraints are all satisfied. In figure 3, the exe-
cution of request 1 is delayed while the execution
of request 3 is advanced with the aim of reducing
total travelled distance.

Figure 3: ADR moves

4.4 Path relinking

Path relinking (Mart́ı et al., 2006, Resende et al.,
2010) is a method where solutions of a combinatorial
problem are generated by combining elements of other
solutions. As noted by (Ho and Gendreau, 2006),
path relinking operates on the basis of three com-
ponents: reference set, initial and guiding solutions,
neighbourhood structure for moving along paths.

Reference set of elite solutions or pool of elite solu-
tions is initializing during the first λ iterations of the
heuristic. While the number of iterations is less than
λ, the best PDP solution provided by the VND is
automatically integrated in the pool. For the remain-
ing iterations, if the solution provided by the VND is
better than the worst solution in the pool, the pool is
updated by replacing the worst solution by the new

one provided by the VND. We used λ as a parameter
to define the length of the pool and to ensure the di-
versity of solutions. The value of is adjusted during
the computational phase.

To build a path, the PDP solution obtained in each
iteration is used as the initial solution and a guiding
solution is randomly chosen in the pool. Once the
initial solution and the guiding solution are identified,
we progressively transform the initial solution (I) into
a guiding solution (G). For example, in figure 4, the
objective is to minimize a cost function. The path
from I (initial solution) to G (guiding solution) using
red line provide one solution improving I but not G
while the path with green line provide three better
solutions.

Figure 4: the technique of path relinking

The transformation process is based on a constructor
operator called RouteMap. RouteMap is a procedure
that takes as parameters two routes r (a) and r (b),
then gradually transformed r (a) into r (b). This op-
erator uses the following movements: remove (remove
a node from a route), replace (replace one node in a
route with another node), and insert (insert a node in
a route). Table 1 shows how RouteMap works. Sup-
pose that two routes r (a) = 〈x, b, c, d, e, f, g〉 and
r (b) = 〈b, c, f, x, m, o〉.

r (b) Move apply on r (a) r (a) in progress
b remove x bcdefg
c no movement bcdefg
f remove c dbcfg
x replace g by x bcfx
m insert m bcfxm
o insert o bcfxmo

Table 1: RouteMap

At each step of the transformation process, when a
node is removed from r (a), the node with which it
is coupled by a request is also removed. The cor-
responding request is then reinsert in the solution on
which r (a) belongs. The obtained solution undergoes
a local search. The pseudo-code of the transformation
process is depicted in algorithm 4.
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Algorithm 4: PATHRELINKING

input : I: Initial solution; G : Guiding
solution

output: Sol1;

1 foreach route r (k1) in G do
2 foreach route r (k2) in I do
3 Sol1 ←− RouteMap (r (k1) , r (k2))
4 end

5 end
6 Return Sol1 ;

4.5 The transshipment heuristic

At each iteration, the transshipment heuristic is used
to improve the PDP solution and obtain a solution
to the PDPT. From the current PDP solution, each
request (i, i+ n) ∈ R; is removed from the solu-
tion. Then, (i, i+ n) is split into two different re-
quests (i, et) and (st, i + n), where et and st are the
inbound/outbound doors of a transshipment point
t ∈ T . The best reinsertion cost of (i, i+ n) in the
solution is computed. The best insertion cost to in-
sert (i, et) following by insertion of (st, i + n) in the
solution is computed. The cost to insert (st, i+n) fol-
lowing by the insertion of (i, et) at their best position
is computed. Between the three possibilities, the in-
sertion or the reinsertions offering the minimum cost
is performed. The local search based on transship-
ment principle is presented in algorithm 5.

5 COMPUTATIONAL RESULTS

The multi-start hybrid heuristic was coded in java
with NetBeans IDE 7.0.1. Experiments were done on
a windows seven PC of 2.53 GHz, Intel(R) Core(Tm)
2 Duo CPU with 3.49 GO of RAM. The validation
method is structured into two phases: initially, the
quality of the hybrid multi-start heuristic is validated
on the PDP data sets without transshipment. Secon-
darily, the principle of transfer and gains it brings are
studied through the application of the multi-start hy-
brid heuristic on a new PDPT data set. We have per-
formed experiments on two types of instances: PDP
and PDPT instances. The PDP data set was used to
validate the multi-start heuristic without transship-
ment possibility. The PDPT data set was used to
test all the hybrid multi-start heuristic. Multi-start
heuristic is allowed to run for 20 minutes. The value
of parameter λ was fixed to 4.

5.1 PDP data set results

To test the hybrid multi-start heuristic without trans-
shipment (PDP), we used several instances from (Li
and Lim, 2001). The instances are available on the
site: www.top.sintef.no/vrp/benchmarks.html. This

Algorithm 5: TRANSSHIPMENT

input : R; Sol; T ;
output: TSol;

1 TSol←− Sol ;
2 Tbest←− F (Sol) ;
3 foreach (i, i+ n) in R do
4 Sol1 ←− Sol − {(i, i+ n)} ;
5 foreach t in T do
6 Sol2 ←− Sol1, Sol3 ←− Sol1,

Sol4 ←− Sol1;
7 Sol2 ←− PARA ((i, i+ n) , Sol2) ;
8 Sol3 ←− PARA ((i, et) , Sol3) +

PARA ((st, i+ n) , Sol3) ;
9 Sol4 ←− PARA ((st, i+ n) , Sol4) +

PARA ((i, et) , Sol4) ;
10 COST ←−

Min (F (Sol1) , F (Sol2) , F (Sol3)) ;
11 if Tbest > COST ) then
12 Tbest←− COST ;
13 TSol←− X ∈ {Sol2, Sol3, Sol4}

with F (X) = COST
14 end

15 end
16 Sol←− TSol
17 end
18 Return Tsol ;

site lists the best results found by different authors on
those instances. One can see (Li and Lim, 2001) for
the detailed description of instances. Three classes
of instances are considered: instances with random
distributed customer (LR), instances with clustered
customer (LC) and instances with partially and ran-
dom distributed customers (LRC). Instances associ-
ated with number 1 have tight time windows; for
example LC101. Instances associated with number
2 have large time windows. The results are sum-
marized in the following table, where the columns
are defined as follows: Name describes the name
of instances, AK the average number of vehicles
found with Multi-start, BK the best number of ve-
hicles found with Multi-start, AD the average dis-
tance travelled by vehicles with Multi-start, BD the
best travelled distance by vehicles found with Multi-
start; WK the best result in term of vehicles, pro-
vided in the literature (best known results), WD the
best result in term of distance provided in the litera-
ture. The informations on the best known solutions
WK and WD are also given at the following address:
www.top.sintef.no/vrp/benchmarks.htm.

Six solutions on twenty night tested do not give the
best result, found by the authors having participated
in the construction of the benchmark. The difference
between the solutions we found and the best know
solutions in literature remains however minimal be-
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Name BK BD WK WD
lc101 10 828,9 10 828,9
lc102 10 828,9 10 828,9
lc103 9 1038.3 9 1035,3
lc104 9 864.1 9 860,0
lc105 10 828,9 10 828,9
lc106 10 828,9 10 828,9
lc107 10 828,9 10 828,9
lc108 10 826,4 10 826,4
lc109 9 1070.2 9 1000,6

Table 2: PDP: results

Name BK BD WK WD
lc201 3 591,5 3 591,5
lc202 3 591,5 3 591,5
lc203 3 591,2 3 585,5
lc204 3 590.6 3 590,6
lc205 3 588,9 3 588,8
lc206 3 588,5 3 588,4
lc207 3 588,3 3 588,2
lc208 3 588,3 3 588,3

Table 3: PDP: results

Name BK BD WK WD
lr101 19 1650,8 19 1650,8
lr102 17 1487,5 17 1487,5
lr103 13 1292,6 13 1292,6
lr104 9 1013,3 9 1013,3
lr105 14 1377,1 14 1377,1
lr106 12 1252,6 12 1252,6
lr107 10 1111,3 10 1111,3
lr108 9 968.9 9 968,9
lr109 11 1208.9 11 1208,9
lr110 11 1169 10 1159,3
lr111 10 1108,9 10 1108,9
lr112 10 1030.4 9 1003,7

Table 4: PDP: results

cause corresponding unless 1 %. For the twenty three
other solutions, we were able to find the best know
solution in a minimal time.

5.2 PDPT data set results

To validated the multi-start heuristic an analyse the
advantage to practice transshipment, we have use new
instances proposed by (Qu and Bard, 2012). For
this experiment, the transshipment heuristic is used
as post optimisation process to improve the overall
PDP solutions found during all iteration. However,
we cannot compare directly our results to those ob-
tained by them because their working hypotheses are
different from ours see (Qu and Bard, 2012). In the
tables 2, we summarize the results obtained by the
multi-start heuristic on different instances. We com-

pare the pickup and delivery problem (PDP) against
the pickup and delivery problem with transshipment
(PDPT). The first two columns of the following ta-
bles are dedicated to PDP result and the two sec-
ond one are dedicated to the PDPT. NV is the total
number of vehicles used to satisfy customer request
without transshipment, TD is the total travelled dis-
tances without transshipment, NVT is the total num-
ber of vehicles used with transshipment, and TDT is
the total travelled distances with transshipment (post
optimization).

Name NV TD NVT TDT
newdata401 3 2835,08 3 2835,08
newdata402 3 2841,30 3 2823,23
newdata403 3 2932,50 3 2928,25
newdata404 3 2846,42 2 2405,80
newdata405 3 2822,81 3 2822,81
newdata406 3 2844,65 3 2844,65
newdata407 3 2908,20 3 2908,20
newdata408 3 2896,22 3 2896,22
newdata409 3 2890,18 3 2890,18
newdata410 3 2765,53 3 2765,53

Table 5: PDPT: results

The analysis of all these results allows of us to show
the positive impact of the transshipment on trans-
portation. On practically all the instances, we have
an improvement of the total travelled distance. At
a time when the gas prices and energy costs become
more and more expensive, this can be a source of re-
lief for the finances of companies. For the instance
newdata404 for example, the transshipment allows to
reduce the number of used vehicles. Without trans-
shipment the necessary number of vehicles is 3. With
transshipment we only need 2 vehicles to satisfy the
same number of requests. The consequence is imme-
diate on the carbon footprint and on the costs of func-
tioning of the company in terms of rent of vehicles.
For the same instance, the transshipment reduces the
total travelled distance by 16 %.

5.3 Conclusion

In this paper, we have introduced the principle of
transshipment as a possible strategy to improve PDP
solution. Due to the NP-hard characteristic of the
problem, we have provide a multi-start hybrid heuris-
tic based on variable neighbourhood descent and path
relinking to tackle the pickup and delivery problem
with and without transfer. The proposed heuristic
was able to find almost altogether best know solution
for the test problems. Will have also show the positive
impact to practice transshipment. The continuation
of this work will consist in studied the transshipment
in a dynamic context.
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