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ABSTRACT: Prediction of physical particular phenomenon is based on partial knowledge of this phenomenon.
Theses knowledges help us to conceptualize this phenomenon according to different models. Hidden Markov
Models (HMM) can be used for modeling complex processes. We use this kind of models as tool for fault
diagnosis systems. Nowadays, industrial robots living in stochastic environment need faults detection to
prevent any breakdown. In this paper, we wish to find the best Hidden Markov Model topologies to be used in
predictive maintenance system. To this end, we use a synthetic Hidden Markov Model in order to simulate
a real industrial CMMS∗. In a stochastic way, we evaluate relevance of Hidden Markov Models parameters,
without a priori knowledges. After a brief presentation of a Hidden Markov Model, we present the most
used selection criteria of models in current literature. We support our study by an example of simulated
industrial process by using our synthetic model. Therefore, we evaluate output parameters of the various
tested models on this process: topologies, learning algorithms, observations distributions, epistemic uncertain-
ties. Finally, we come up with the best model which will be used to improve maintenance policy and worker safety.

KEYWORDS: Hidden Markov Models, model selection, learning algorithms, statistical test, uncertain-
ties, predictive maintenance.

1 INTRODUCTION

According to the Global Energy Statistical Yearbook
2011, Enerdata1 gives alarming conclusions: after the
1% decrease observed in 2009, energy consumption
soared by 5.5% in 2010, and results in a growth in
CO2 energy emissions close to 6%, to their highest
level ever.
Despite heavy investment to remain competitive,
most industry are not concerned with the green think-
ing, whereas implementing energy reducing measures
such as having an efficient maintenance policy, is not
so expensive and can save in energy costs. Obvi-
ously, fault diagnostics techniques can reduce main-
tenance downtime and thus reduce consumption of
energy. According to (Vrignat, Avila, Duculty &
Kratz 2010), we find two keywords in maintenance

∗Computerized Maintenance Management System
1An independent information and consulting company spe-

cializing in global energy

definition: maintain and restore. The first one refers
to preventive action. The second refers to correc-
tive action. Thus, maintenance optimization for reli-
ability determines “optimal” preventive maintenance.
Events preceding a problem in maintenance activi-
ties are often recurrent. Special events series should
inform us on next failure. For example, in mechani-
cal systems, noises, vibrations precede a failure. The
loss of performances reflects failure or technical faults.
We also show in (Vrignat et al. 2010) that our model
provides a good failure prediction. We make a refer-
ence model, named synthetic model, which fits to real
industrial processes. Our research consists in evaluat-
ing different Hidden Markov Models topologies, with
parameters outcoming from this industrial synthetic
model. In this work, the emphasis is on measuring rel-
evance of Hidden Markov Models parameters, based
on several criteria used in current literature. Then,
we try to give the best HMM topology. The struc-
ture of this paper is as follows: in section 2, we outline
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hidden Markov model and define its parameters. Af-
ter determining the stochastic nature of our synthetic
model, we present criteria used to evaluate relevance
and uncertainties of HMM, in section 3. We show the
evaluation process in section 4. Finally, we use our
synthetic model to compare several HMM topologies,
from among a candidate set with previous criterion
and try to give the best one, in section 5.

2 HIDDEN MARKOV MODEL

Hidden Markov Model ((Rabiner 1989), (Fox, Ghal-
lab, Infantes & Long 2006)) is an automaton with
hidden states which consists of unobservable variable.
This one represents the system status to be modeled.
Only output variable is observable. Moreover, we get
observations sequence from output of the automaton.
From now, we rename observations sequence as sym-
bols, representing these observations (see an example
of model topology in figure 1). This is precisely rele-
vance of these symbols that we attempt to evaluate.
Hidden Markov Model is characterized by:

• State number;

• Number of distinct observation symbols per
state, observation symbols corresponding to the
physical output of the system being modeled;

• Distribution probability of state transitions;

• Distribution probability of observation symbols;

• Initial states distribution.

S1 S2 S3 S4

Symbols production
1: SEC
2: OT
3: NTR
4: OBS
5: . . .

Symbols production
HMM

π

Figure 1: Four states Hidden Markov Model.

2.1 Markov Assumption

States prediction is not made more accurate by ad-
ditional a priori knowledge information, i.e. all use-
ful information for future prediction is contained in
present state of the process.

P (Xn+1 = j|X0, X1, . . . , Xn = i) =

P (Xn+1 = j|Xn = i).
(1)

2.2 Definitions for discrete Hidden Markov
Model

Let us describe variables for HMM:

• Let N , the number of workable hidden states and
S = {s1, s2, . . . , sN}, the set of this variable. Let
qt, the value of this variable at time t;

• Modeled process, must match to first-order
Markov assumption (see §2.1);

• Let T , the full number of observation symbols
and let X = {x1, x2, . . . , xT }, observations se-
quence of the modeled process;

• Let A = {aij}, distribution probability of state
transitions with:

aij = P (qt+1 = sj |qt = si)

1 ≤ i, j ≤ N,
(2)

• Let B = {bj(m)}, distribution probability of ob-
servation symbols in j state, with:

bj(m) = P (Xt = xm|qt = sj)

1 ≤ j ≤ N 1 ≤ m ≤ T,
(3)

with Xt, value of observation variable at time t.

• Let π = {πi}, initial states distribution with:

π = P (q1 = si) 1 ≤ i ≤ N, (4)

• Hidden Markov Model will be set as: (A,B, π).

2.3 Learning algorithms and decoding algo-
rithms

To achieve learning models, we use two different al-
gorithms:

• Baum-Welch learning (Baum, Petrie, Soules
& Weiss 1970), decoding by Forward Variable
(Rabiner 1989).

Estimate iteratively η = (A,B, π), with an ob-
servation sequence of X = {x1, x2, . . . , xT },

Maximize→ P (U = X|η), (5)

• Segmental K-means learning (Juang & Rabiner
1990), decoding by Viterbi (Vrignat, Avila,
Duculty, Aupetit, Slimane & Kratz 2011).

Optimizing probability→ P (X,S = Q∗|η). (6)

Q∗: Sequence of hidden states that most likely
generated the sequence as calculated by the
Viterbi algorithm. S = (S1, . . . , ST ) is a T tuple
of random values defined on S
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• Decoding algorithm by Forward Variable:

αt(j) = P (x1, x2, . . . , xt, Qt = sj |η). (7)

• Viterbi decoding algorithm:

δt(j) = max(q1,...,qt−1∈St−1){P (S1 = q1, . . . ,

St−1 = qt−1, St = sj), U1 = x1, . . . , Ut = xt|η}.
(8)

3 EVALUATION METHODS

A lot of criteria in model selection are proposed
in literature. We try to evaluate the best Hid-
den Markov Model topology proposed in (Vrignat
et al. 2010), by using Shannon’s entropy (Hocker,
Xiaohu & Iyengar 2011), especially maximum en-
tropy principle used in (Chandrasekaran, Johnson
& Willsky 2007). Calculation is made with states
and observations: symbols productions of synthetic
HMM. To emphasize our analysis, we also use some
criteria which penalize likelihood value, in order to
overcome over-parameterization models, like Akaike
(AIC) (Shang & Cavanaugh 2008) and Bayes (BIC)
(Chen & Gopalakrishnan 1998) criteria. We begin to
determine the stochastic nature of our given symbols.

3.1 NIST2 Tests

First of all, we have to establish that we use stochastic
density of probability. In (Rukhin, Soto, Nechvatal,
Barker, Leigh, Levenson, Banks, Heckert, Dray, Vo,
Rukhin, Soto, Smid, Leigh, Vangel, Heckert, Dray
& Iii 2010), the authors propose a statistical pack-
age of 15 different tests. These tests were developed
to test randomness of random number generators.
NIST has verified the performance of these tests us-
ing a Kolmogorov-Smirnov test of uniformity on the
p-values3 (see § 3.6.1). The purpose of this test is
to determine whether the number of ones and zeros
in a sequence is approximately the same as would be
expected to a truly random sequence. In our study,
we use the frequency test of the NIST. This test val-
idates that our synthetic model gives real stochastic
symbols. The Decision Rule of the test, at the 1%
Level, is: if the computed p-values is < 0.01, then
we conclude that the sequence is non-random. Oth-
erwise, we conclude that the sequence is random.

3.2 Shannon’s entropy

We now study notions of Shannon’s entropy. It is
a function which calculate the information rate con-

2National Institute of Standards and Technology
3The probability (under the null hypothesis of randomness)

that the chosen test statistic will assume values that are equal
to or worse than the observed test statistic value when consid-
ering the null hypothesis. The p-value is frequently called the
“tail probability”.

tained in an information source. This source can be
a text written in any language, an electrical signal or
an unspecified electronic file. . .

3.2.1 Entropy Definition

Shannon’s entropy is defined in (Cover & Thomas
1991) as follows:

H(S) = −
n∑
i=1

Pi logb Pi, (9)

Pi is the average probability to find the i symbol in
S.

3.2.2 Maximum entropy principles

The two principles of entropy’s maximization in
(Agouzal & Lafouge 2008) are the following:

• Principle of probabilities assignment to a distri-
bution when we haven’t enough informations on
it;

• For all probability distributions that satisfy the
constraints, we choose the one which has the
maximum entropy according to Shannon.

(Chandrasekaran et al. 2007) use this 2nd principle for
models selection, and (Arminjon & Imbault 2000) for
building even more accurate models, by adding infor-
mation. Our step consists in comparing the average
entropies for various models. Value of average en-
tropy would be then maximum for the most relevant
model.

3.2.3 Entropic Filter

We now introduce “Entropic Filter” concept. Accord-
ing to the 2nd principle of entropy stated in §3.2.2, we
choose the model whose average entropy is maximum.
On the other side, outliers values can generate mis-
calculation in real entropy value of the model. Espe-
cially NTR symbols (Nothing To Report) which are
not useful for evaluation (entropy is maximum). SP
(Stop Production) symbols have likewise been elimi-
nated (entropy is null). Indeed, they are totally dis-
criminated for S1 state of HMM. To improve calcu-
lation of entropy, it is therefore better to eliminate
these values. This approach is used through ID3 and
C4.5 (Quinlan 1993) algorithm when creating deci-
sion tree, removing recursively attribute with zero
entropy. In order to improve the calculation of en-
tropy, we propose to eliminate discriminated symbols
of zero entropy and the most representative symbols,
where entropy is maximum. This operation will be
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named “Entropic Filter”. We then calculate the aver-
age entropy of models to assess relevance of observa-
tion sequences. The best model is the one which has
the best average entropy, after entropic filtering.

3.3 Maximum likelihood

Let us now turn to studying maximum likelihood
principle. Let Pα, a statistical model, and X, an
observation sequence, the probability to see X ac-
cording to P can be measured by f(X,α) function
which represents the density of X when α appears.
Since α is unknown, it seems natural to promote val-
ues of α where f(X,α) is maximum: it is the notion
of likelihood of α for observation X.

– Expression of likelihood V :

V (x1, . . . , xn;α) =

n∏
i=1

f(xi;α), (10)

α is mathematical expectation.

A strictly increasing transformation does not change
a maximum. Maximum likelihood can also be written
as:

log(V (x1, . . . , xn;α)), (11)

Then

log(V (x1, . . . , xn;α)) =

n∑
i=1

log(f(xi;α)). (12)

– For a discrete sample:

f(X;α) = Pα(X = xi), (13)

Pα(X = xi) represents discrete probability where α
appears.

– Maximum likelihood for a discrete sample Pα(xi)
representing the discrete probability where α appears:

log(V (x1, . . . , xn;α)) =

n∑
i=1

log(Pα(xi)). (14)

Actually, we maximize the logarithm of likelihood
function to compare several models. According to
(Olivier, Jouzel, El Matouat & Courtellemont 1996),
principle of maximum likelihood results in over-
parameterization of the model to have good perfor-
mances. Penalization of likelihood value can over-
come this disadvantage. Most famous penalized log-
likelihood criterion is the AIC (Shang & Cavanaugh
2008), even if it is not completely satisfactory: it im-
proves maximum likelihood principle but also led to
an over-parameterization. Other traditional criteria,
BIC and HQC, ensure a better estimation by penal-
izing oversizing models.

3.4 Akaike Information Criterion

According to (Ash 1990), entropy of a random vari-
able is a regularity measurement. We can easily
extend this concept to a model having several ran-
dom variables. In their report, (Lebarbier & Mary-
Huard 2004) describe all assumptions necessary to its
implementation.

AIC = −2 lnV + 2k, (15)

k is the number of free parameters, 2k is the
penalty, V is the likelihood.

The best model is the one which has the weakest AIC.
This criterion uses maximum likelihood principle seen
in (14). It penalizes models with too many variables,
and avoids over-learning models. In the literature,
Akaike Information Criterion (AIC) is often associ-
ated with another known criterion, called Bayes In-
formation Criterion (BIC).

3.5 Bayesian Information Criterion

BIC penalizes more over-parameterized models. It
was introduced in (Schwarz 1978) and is different for
the correction term:

BIC = −2 lnV + k ln(n), (16)

k is the number of free parameters of Markov Model
(Avila 1996), n is the number of data, k ln(n) is the
penalty term.
Like AIC, the best model is the one which gets
the minimum value of BIC. Choosing between
these two criteria is to choose between a predictive
model and an explanatory model (Lebarbier & Mary-
Huard 2004). It checks the validity of a particular
model but it is mainly used to compare several mod-
els together. AIC criterion is less relevant than BIC
for over-learning models.

3.6 Statical tests

Most statistical tests assume that samples are taken
at random to achieve (Steinebach 2006). This sounds
easy but is actually quite difficult to achieve.

3.6.1 Kolmogorov-Smirnov test

Kolmogorov-Smirnov test is a statistical test that
may be used to determine if a set of data comes
from a particular probability distribution ((Rukhin
et al. 2010), (Bercu & Chafäı 2007)).

Empirical distribution function Fn(x) for X1, . . . , Xn
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sample is defined by:

Fn(x) =
1

n

n∑
i=1

δXi≤x, (17)

δXi≤x =

{
1 si Xi ≤ x,
0 sinon .

The Kolmogorov-Smirnov test statistic is defined as
follows:

Dn = sup
x
|Fn(x)− F (x)|. (18)

3.6.2 Aspin-Welch test

Aspin-Welch’s test (Welch 1951), is defined by t
statistic in the following formula:

t =
x1 − x2√

σ2(
1

n1
+

1

n2
)

, (19)

σ2 =
n1σ

2
1 + n2σ

2
2

n1 + n2 − 2
. (20)

• xi: the ith sample mean,

• σ: an estimator of the common standard devia-
tion of the two samples,

• σi: samples standard deviation,

• ni: sample size.

3.7 Epistemic uncertainties

This uncertainty is explicitly due to the design of the
mathematical model. It is related to the human in-
terpretation of the phenomenon which leads to imper-
fections in the design. We examine epistemic errors
on our synthetic model and determine elements with
the lowest uncertainty.

For a n measures series of x1, x2, . . . , xi, . . . , xn, the
uncertainty on the average according to (Pibouleau
2010) is:

∆x =
σ√
n

=

√√√√ 1

n(n− 1)

n∑
i=1

(xi − x)2. (21)

• σ: samples standard deviation.

3.8 Evaluation process

We try to evaluate the best Hidden Markov Model
topologies presented in figure 2, by using all criteria
shown above. Calculation is made with states and
observations of three different HMM topologies (fig-
ure 2). Symbols (= i.e. observations) are produced
by a synthetic HMM (the reference model), using two
different learning algorithms and two different distri-
butions of symbols.
Stochastic automata represent the degradation level
of an industrial process, S4 to S1, see figure 2. {S4,
S3, S2} states, when process is running (“RUN”), and
{S1} state, when process is stopped (“STOP”). Tran-
sitions (S4 → S3) and (S3 → S2) show progressive
degradations of the process.

RUN

S1 S2 S3 S4

Symbols production
1: SEC
2: OT
3: NTR
4: OBS
5: . . .

Symbols production
HMM 1

π

!

µ1

λ1

µ2

λ2

µ3

λ3

µ4

λ4

µ5

λ5

µ6

λ6

(a) Topology 1

RUN

S1 S2 S3 S4

Symbols production
1: SEC
2: OT
3: NTR
4: OBS
5: . . .

Symbols production
HMM 2

π

!

µ1

λ1

µ2

λ2

µ3

λ3

µ5

µ6

(b) Topology 2

RUN

S1 S2 S3 S4

Symbols production
1: SEC
2: OT
3: NTR
4: OBS
5: . . .

Symbols production
HMM 3

π

!

λ1

µ2

λ2

µ3

λ3

µ5

µ6

(c) Topology 3

Figure 2: Four states Hidden Markov Models.

4 EVALUATION PROCESS

We use synthetic model to produce about 1000 data
events. These simulated symbols, according to real
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Synthetic model
Hidden Markov

Model 2
(reference)

Symbols generated
by Uniform
distribution

Symbols generated
by Normal
distribution

Topologies 1, 2 & 3

– Shannon’s entropy,
– Maximum likelihood, AIC, BIC,
– Kolmogorov-Smirnov & Aspin-Welch tests.

Sequence analysis of 3 Topologies

Give the most
relevant model

– Epistemic uncertainties.

Uncertainty Analysis

Estimation of HMM Decoding sequences

Baum–Welch

Segmental
K–means

Forward
Variable

Viterbi

Symbols generated
by Uniform
distribution

Symbols generated
by Normal
distribution

Baum–Welch

Segmental
K–means

Figure 3: Matching model method, using synthetic
model.

industrial process, are obtained by using uniform
and normal distribution. Correlatively, we produce
states for others topologies by using the same pro-
cess. Afterwards, these states are used to compare
states models. Insofar as states are obtained by dif-
ferent learning and decoding algorithms (diagram of
this process is given in figure 3): Baum-Welch learn-
ing, decoding by Forward Variable and Segmental K-
means learning, decoding by Viterbi.

4.1 Simulated industrial Computerized
Maintenance Management System

Nowadays, every industrial factory uses preventive
maintenance. Maintenance agents can consign their
actions and observations in a centralized database
(see table 1). For example, symbols “PM, OT,
SP, . . . ” could characterize maintenance activities

Name Date Ope. Cd IT N Code

Dupond 11/01/2007 Lubrication PM 20 1 9
Dupond 11/01/2007 Lubrication PM 20 2 9
Dupond 12/01/2007 Lubrication SEC 30 3 5
Dupond 12/01/2007 Lubrication PM 30 4 5
Dupond 13/01/2007 Padlock PM 10 5 6
Dupond 13/01/2007 Padlock NTR 30 6 5
Dupond 13/01/2007 Padlock NTR 30 7 5
Dupond 16/01/2007 Lubrication SP 90 8 1
Dupond 19/01/2007 Padlock OT 10 9 3

Table 1: Example of recorded events from a mainte-
nance database.

carried out on industrial process. We recall the mean-
ing of selected symbols resulting from observations, in
table 2. “SP”symbol corresponds to a stop of produc-
tion units: process state = “STOP” in table 2. It is a
critical condition that our research tries to minimize.
Process state = “RUN” when production units are
running without failure. We study here this kind of

Process states

RUN
STOP

Interventions type

1 SP (Troubleshooting / Stop Production)
2 SM (Setting Machine)
3 OT (Other)
4 OBS (Observation)
5 PM (Preventive Maintenance, Production not stopped)
6 SEC (Security)
7 PUP (Planified Upgrading)
8 CM (Cleaning Machine)
9 PMV (Preventive Maintenance Visit)
10 NTR (Nothing to report)

Table 2: Symbolic coding system of maintenance in-
terventions.

maintenance by using synthetic model (§4.2) to sim-
ulate real industrial environnement. We choose “λi”
(failure rate) and “µi” (repair rate) of HMM parame-
ters (Vrignat et al. 2010), to match as possible, with
maintenance recording (table 1).

4.2 Synthetic model

We make our synthetic model with Matlab by us-
ing four states oriented topology 2 presented in fig-
ure 2(b). We use this model feature because it has
good performance in maintenance activities (Vrignat
et al. 2010). Then, we build sequences of data (also
named “signature”) using this model as the reference
model, by injecting stochastic symbols in this HMM.
We use these symbols sequences as Markov chain (see

Label 1

Stop

Estimating
rate of
system

degradation

Run
with

degradation
level

Estimating - system
degradation

2 3 4 5 6 7 8 9 10

N Obs 10

NT
R

10

NT
R

9

PM
V

9

PM
V

5

PM

5

PM

6

SE
C

5

PM

5

PM

10

NT
R

N11

10

NT
R

12

1

SP

Figure 4: Degradation of process.

table 3), to model degradation level of a process (ex-
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ample in figure 4).

PM PM SEC PM PM NTR NTR SP . . .

Table 3: Sequence of a message from maintenance
database.

These simulated symbols, according to real industrial
process (Vrignat et al. 2010), are obtained by using
uniform and Normal (Gaussian) distribution (see fig-
ures 5 and 6). We use these symbols to train three
different HMM topologies, described in figure 2, by
using two different learning and decoding algorithms:
Baum-Welch learning, decoding by Forward Variable,
and Segmental K-means learning, decoding by Viterbi
seen before.
About 1000 symbols were produced by reference
model (see figures 5 and 6). Each sequence ends
with a stop of production (symbol SP in red) see fig-
ure 4. We get 11 sequences in our 1000 simulated
symbols. You can see distribution symbols/states for
the first sequence of HMM 1: HMM 1/Baum-Welch
and HMM 1/Segmental K-means algorithms, in fig-
ure 10. Finally, we obtain states sequences for each
HMM outside. Later, these states are used to make
comparisons between 3 different HMM topologies (fig-
ure 2), with statistical tests studied in section 3. Re-
sults are shown in section 5. Diagram of our evalua-
tion process is given in figure 3.

seq1 seq2 seq3 seq4 seq5 seq6 seq7 seq8 seq9 seq10 seq11

SP
SM
OT
OBS
PM
SEC
PUP
CM
PMV
NTR

0
10

20
30

40
50

HMM 3 sequences, normal distribution

Figure 5: HMM sequences example, Normal distribu-
tion.

seq1 seq2 seq3 seq4 seq5 seq6 seq7 seq8 seq9 seq10 seq11

SP
SM
OT
OBS
PM
SEC
PUP
CM
PMV
NTR

0
10

20
30

40
50

HMM 3 sequences, uniform distribution

Figure 6: HMM sequences example, Uniform distri-
bution.

5 RESULTS AND DISCUSSION

We first discuss the choice of synthetic model refer-
ence as the oriented model 2. Knowing transition
probabilities of states/symbols, we tested several
different topologies on different learning algorithms.
At the end of the comparatives tests, we concluded
that the best topology, according to failure detec-
tion, among different learning algorithms, was the
topology 2 (Vrignat et al. 2010).

SP SM OT OBS PM SEC PUP CM PMV NTR

1
2
3
4

0
50

10
0

15
0

States / Symbols, Normal distribution

Figure 7: HMM sequences example, Normal distribu-
tion.

SP SM OT OBS PM SEC PUP CM PMV NTR

1
2
3
4

0
50

10
0

15
0

States / Symbols, Uniform distribution

Figure 8: HMM sequences, Uniform distribution.

Afterwards, we verified the randomness of stochastic
states generated by the synthetic model (figures 8 and
7). The random number generator is tested by fre-
quency test § 3.1. Results in table 4, showed that all

NIST Test P-value
HMM Uniform law Normal Law

Topology 1 0.47 0.06
Topology 2 0.30 0.02
Topology 3 0.47 0.06

Table 4: p-value of states generated by synthetic
model.

p-value ≥ 0.01 for all HMM figure 2. Then we could
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consider that sequences of the generator are random
enough to apply others tests.
Without a priori knowledge, we could give the most
relevant model in the way of Shannon. Namely,
we verified that the best model (which provided
the better estimation of degradation level (Vrignat
et al. 2010)) obtained a good“entropic” score through
entropic filter, illustrated in figure 9(a). The best one
was topology N◦2 with Baum–Welch learning, where
entropy is maximum. It also highlight the best learn-
ing algorithm recommended in (Vrignat et al. 2010):
Baum–Welch with Forward variable decoding, with
normal distribution of symbols.
Afterwards, we evaluated likelihood (or probability)
of observations sequences given by synthetic HMM.
Results of maximum likelihood and BIC highlight
the most relevant topology: HMM 2, fig 2(b). That
corroborates (Vrignat et al. 2010) results. On the
other side, our results did not show clearly, differ-
ences between algorithms, we could not conclude for
the best learning and decoding algorithm. Neverthe-
less, with Segmental K–means algorithm, in figure
10(c), the reader can see a bad distribution of sym-
bols. AIC does not penalize our 1000 data, thats
why BIC is more suitable, because of “k ln(n)” term
of equation 16.
Next, we applied statistical tests on our three HMM
topologies. Aspin-Welch and Kolmogorov-Smirnov
figure 9(b) give the same results: most relevant model
is topology 2, Baum-Welch learning algorithm with
Forward Variable decoding is the best learning algo-
rithm and finally, stochastic symbols generated with
normal distribution is the best one.
Finally, epistemic uncertainties depicted in fig-
ure 9(c), highlight once more that topology 2, Baum-
Welch learning algorithm with Forward Variable de-
coding and Normal distribution gives the lowest error
rate. Reader can find all results in table 5. Unfor-
tunately, we failed to establish any ranking between
these various criteria.

Topology Learn algo Distribution
Evaluation criteria 1 2 3 BW SK Nor. Uni.

Shannon’s Entropy × × ×
Maximum likelihood × No finding No finding
AIC × No finding No finding
BIC × No finding No finding
Aspin-welch test × × ×
Kolmogorov-Smirnov × × ×
Best uncertainty × × ×

Table 5: General results for some criteria.

6 CONCLUSION

After testing randomness of our synthetic model gen-
erator, we have applied all criteria studied above on
three different HMM topologies. We have success-
fully applied this method to three different models.
The first one, uses Shannon’s entropy and entropic
filter. Given a set of observations sequences simu-
lated by our synthetic model, we verified that the
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most relevant model obtained a good“entropic”score.
That corroborates (Vrignat et al. 2010) results which
showed that topology N◦2 was the one which came
closest to real industrial process. This criterion also
showed that Baum–Welch learning algorithm with
Forward Variable decoding gave best results. More-
over Shannon’s entropy showed that Normal distri-
bution was the best one to simulate industrial obser-
vations. Maximum likelihood and BIC emphasized
that HMM 2 was the best topology. Unfortunately,
these criteria were too near each other to make con-
clusions about learning algorithm. With Aspin-Welch
and Kolmogorov-Smirnov test, we could verify that
the most relevant model had the “goodness of fit”
i.e. how well model fits the set of observations se-
quences. The statistical way told us the same con-
clusions than entropic results (topology, learning al-
gorithm and distribution). Same goes for errors of
epistemic uncertainties: topology N◦2, Baum-Welch
learning algorithm with Forward Variable decoding
and normal distribution of stochastic symbols gave
the lowest error rate. Thus, we specified our analysis
from (Roblès, Avila, Duculty, Vrignat & Kratz 2011)
paper.
We gave heterogeneous methods to help expert of
maintenance to choose and select the best way to op-
timize his maintenance policy. Indeed, when HMM
output will indicate an orange level (S2), the expert
would decide for a preventive maintenance before the
breakdown. Good relevance and good errors rate for
topology N◦2, Baum-Welch algorithm / decoding by
Forward Variable and a Gaussian distribution of ob-
servation sequences, allow us to apply these results as
part of preventive maintenance applications. Indeed,
in our work on industrial breakdown prediction, de-
termining the best model is expected to reduce sig-
nificantly failure rate in production. Minimizing fail-
ure rate, will reduce dangerous human intervention in
maintenance, especially in an unsafe working environ-
ment. Decreasing machines failures will furthermore
reduce power consumption and thus reduce release of
CO2.

In further work, we will try to test robustness of our
synthetic model with different noises. Our research
goals are to validate a real choice of a model: topol-
ogy, symbol,. . . without a priori knowledge on results.
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Bercu, B. & Chafäı, D. (2007). Modélisation stochas-
tique et simulation - Cours et applications,
Collection Sciences Sup - Mathématiques ap-
pliquées pour le Master, Société de Mathéma-
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Figure 10: First sequence, using normal distribution.
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