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ABSTRACT: This paper proposes a model to compute confidence of reported information level (CRIL) in
the domain of logic diagnosis. This level of confidence is provided by a diagnosis module allowing to quickly
identify the origin of equipment failure. We studied the factors affecting CRIL, such as measurement system
reliability, production context, position of sensors in the acquisition chains, type of product, reference metrology,
preventive maintenance and corrective maintenance based on historical data and reported information generated
by production equipment. We have introduced a new ’CRIL’ concept based on the Bayesian Network approach,
Näıve Bayes model and Tree Augmented Näıve Bayes model. Our contribution includes an on-line confidence
computation module for production equipment data, and an algorithm to compute CRIL. We suggest it be
applied to the semiconductor manufacturing industry.

KEYWORDS: Diagnosis, Confidence, Bayesian networks, Näıve Bayes, Semiconductor Manufactur-
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1 INTRODUCTION

Nowadays, Semiconductor Manufacturing operates
in an intense competitive environment. Companies
working in this industry are striving to improve pro-
cess quality while also improving production equip-
ment effectiveness. However, virtual metrology, dy-
namic control plan, and maintenance, etc are remain
challenging areas. In this paper, we introduce the
concept of CRIL to improve the method for an on-
line diagnosis to quickly detect the origin of equip-
ment failures. The CRIL is computed from the pro-
duction equipment data with Bayesian Network. An
automated tool is also developed and proposed to be
used in the semiconductor manufacturing industry.

This paper is divided in 6 sections. The semicon-
ductor manufacturing process and CRIL concept are
presented in section- 2 and section- 3, respectively.
Bayesian network approach is discussed in section-
4 followed by the algorithm and CRIL computation
model in section- 5. Section- 6 includes conclusion
and the future works.

2 SEMICONDUCTOR MANUFACTUR-
ING SYSTEM

Semiconductor manufacturing is a complex process,
based on a variety of equipment (as shown in Figure

1). They include production and metrology equip-
ment, that continuosly demonstrate a natural drift. If
this drift becomes larger than the threshold value, it
might result in propagation of significant failures, im-
mediately affecting the production process and lead-
ing to a large number of products in the manufactur-
ing process being scrapped. Therefore, it is critical to
precisely and quickly locate the causes of failures for
repair and maintenance purposes.

Figure 1: Semiconductor manufacturing process

Semiconductor manufacturing is an Automated Man-
ufacturing System (AMS), structured around CIM
architecture (Jones & Saleh 1989) with three main
parts: controlled system, control system and prod-
uct flow (Figure 2). The controlled system is a set
of elementary functional chains (FCs) (Deschamps
& Zamai 2007) where its operating parts are con-
trolled by the control system based on the informa-
tion collected from the controlled system. Conse-
quently, the behavior of the control architecture is
generic and is based on the principle of observability
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(Cambacau 1991). It allows use of the remote pro-
cedure call (RPC) principle to launch the requests
which are sent to the lowest level (customer request)
i.e. level 1 within the control system.
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Figure 2: Diagram on an AMS

In reality, an AMS consists of hardware, software, or-
ganizational and human elements. It is subjected to
uncertainties due to its operating parts (failures of
sensors, actuators, etc.) and customer requests (vari-
ations in production and product specifications). In
order to guarantee reactivity of the AMS, the reactive
loop in the control system and dynamic reconfigura-
tion are proposed in papers (Michel. & Courvoisier
1990) and (Henry, Zamai & Jacomino 2012). The re-
active loop is characterized by collaboration of several
supervision, monitoring and control (SM&C) func-
tions such as detection, diagnosis, prognosis, deci-
sion, and automatic control (Zamai, Chaillet-Subias
& Combacau 1998). Consequently, depending on the
operating mode (normal or abnormal running), the
purpose of the coordination level is to manage a set
of FCs by using services offered by these FCs (Fig-
ure 2). In case of propagated failure in the product,
detected by metrology equipment, the coordination
level has to locate the origin of failure in the produc-
tion equipment used in the failure.
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Figure 3: Semiconductor production system

Figure 3 illustrates a classical production system of
a semiconductor with four production (M1, M2, M3,
M4) and one metrology equipment item. A final prod-
uct in such a system often requires more than 700
processing steps (Byungwhan & May 1995). Product
quality is ensured by the inspections carried out in a

large number of steps during the production process
with the metrology equipment (inside M1, M2, M3,
M4). Each control step returns a report on process
execution status to the coordination control module.
Nevertheless, this metrology equipment in manufac-
turing systems implies a lack of confidence in reported
information derived from production equipment, es-
sentially due to location and quantity of sensors in
production equipment.
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Figure 4: Internal Equipment Structure

In Figure 4, we present the problem associated
with the open loop that may introduce doubts (un-
certainties) as to the success of the operated ser-
vice, thus implying an increased risk of (Not OK)
product parts not being observed. This will result
in the default response (OK) by the control mod-
ule. A failure detected by the metrology equip-
ment guarantees that one or more process steps
have failed. Hence, to locate the origin of failure
within production equipment, a large number of ap-
proaches (Lafortune, Teneketzis, Sampath, Sengupta
& Sinnamohideen 2001, Deschamps & Zamai 2007,
Fanti & Seatzu 2008) have been proposed. Par-
ticularly, (Deschamps & Zamai 2007) proposed the
on-line diagnosis function providing information on
the capacities of operating parts and incorporating
generic rules for fault diagnosis. In this method, the
response against each executed request is inserted in
the diagnosis model finding the possible origin of the
failure (inconsistent operation execution) and its con-
sequence on the other services based on the doubt
propagation principle. Doubt corresponds to the in-
formation that must be qualified as suspect: this
mechanism (Deschamps & Zamai 2007) is referred to
propagation-before and propagation-after of a diag-
nosis model. This approach offers a binary evaluation
of the reported confidence depending on presence or
absence of the product sensors within the equipment,
which is a drawback. Therefore, we propose refining
this confidence to between 0 and 1 via the Bayesian
Network. In this approach, we consider significant
factors directly impacting the confidence value such
as reliability of many sensors in measurement sys-
tems, production context, maintenance activities, hu-
man expertise and type of products and its historical
metrology, etc.
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Figure 5: Module for the computation of CRIL

Accurate computation of confidence of reported in-
formation level based on collected data plays an im-
portant role in the final diagnosis. We thus suggest
the on-line module for computation of the CRIL in
real time (Figure 5). Furthermore, the BN approach
allows probability computation based on knowledge
gained (Niculescu & Mitchell 2006, Ben-Gal 2007).
Next, we present the definition of the confidence of
reported information level (CRIL), the characteriza-
tion of CRIL and its model.

3 THE CONFIDENCE OF REPORTED IN-
FORMATION LEVEL (CRIL)

Confidence of the reported information received from
the local controlled system of Automated Manufac-
turing Systems (AMS) is based on previous and cur-
rent data of the operating parts, followed by the com-
putation of CRIL at coordination level.

3.1 Definition

The Confidence of Reported Information Level
(CRIL) corresponds to the capacity of the functional
chains that have correctly performed the requested
services. It is a probability value between 0 and 1.
The purpose of CRIL computation is to support diag-
nosis and provide relevant information about correct
actions confidence of reported information.

3.2 Characterization of CRIL

To study confidence of reported information de-
rived from equipment, we have developed a part-
nership with the internationally reputed semiconduc-
tor manufacturer within the European IMPROVE
project. This project aims at improving European
semiconductor fabrication efficiency by providing bet-
ter methods and tools to control process variability,
thus reducing cycle time and enhancing equipment
effectiveness. Based on the information provided by
industrial partners (STMicroelectronics, LPFundary,
INTEL), we mainly focus on analyzing the factors
which directly affect the CRIL based on Fault De-
tection Classification (FDC), Failure Modes and Ef-
fects Analysis (FMEA), and Statistical Process Con-

trol (SPC), etc. An analysis of equipment life from
FDC data (Table 1) is given as an illustration, and
represents monitoring of evolution of equipment pa-
rameters. For confidentiality reasons the table is vol-
untarily limited and some information is hidden. For
a given item of equipment, table 1 shows the start
and end time of the event, the type of product, the
type of maintenance processing, etc.

EQ Event Start
Time

End
Date

Maint
state
name

Maint
previous
state

...

EQ01FAILURE9:18:12 10:15:03 REPAIRFAIL ...
EQ01 MAINT 10:58:16 11:21:38 PM IDLE ...
EQ01 PROD 18:27:19 19:22:46 NONE NONE ...

... ... ... ... ... ... ...

Table 1: Equipment life from FDC data

Initial data analysis and brainstorming sessions held
with engineers have resulted in the following seven
main parameters with high impact on the CRIL:

- Measurement system reliability (R).

- Production context (C).

- Position of sensor (P) in the acquisition chain.

- Type of product (TP).

- Reference metrology for each type of product (Me).

- Preventive maintenance activities (PM).

- Corrective maintenance activities (CM).

These parameters are clearly different from the be-
havior issues as the whole production process is fully
automated in most of the semiconductor production
facilities. The production context and the product
mix are well recorded, and preventive maintenance is
clearly characterized. However, sensor data from the
production and metrology equipment have an inher-
ent temporal value that must be utilized to improve
confidence of reported information level. The relia-
bility of a measurement system (Maquin, Huynh, Lu-
ong & Ragot 1994) is highly temporal and varies ac-
cording to usage and operating conditions. It is thus
difficult to determine the relationship between mea-
surement system reliability and real time reported in-
formation. In this paper, we propose CRIL as an
estimation of the probability distribution function of
a metrology system with respect to reported infor-
mation. It is highly impacted by corrective mainte-
nance as this type of maintenance cannot be sched-
uled. However, we present a methodology to improve
and compute a real time CRIL. To accurately model
the relationship between the above mentioned param-
eters affecting the CRIL, we have relied on the ex-
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pert’s knowledge and on probabilistic methods e.g.
Expectation Maximization (EM) (Dempster, Laird &
Rubin 1977), Markov chain Monte Carlo (MCMC)
(Gilks, Richardson & Spiegelhalter 1995), Neural
Network (Nauck, Klawonn & Kruse 1997). Some
important probabilistic analysis methods are men-
tioned (Bouaziz, Zamai, Duvivier & Hubac 2011) in
the European IMPROVE project. We have adopted
a Bayesian approach to model the CRIL. A real time
CRIL computation module, presented in this paper,
combines knowledge representation in a graphical
form (direct dependence relationships: cause→ effect
→ failure) and probabilistic knowledge uncertainty
(Populaire 2000). This method is used to model a di-
rected acyclic graph (DAG) as causal dependencies of
information even if they are imperfect or missing. It
is thus ideally adapted to the context of our study, as
learning and inference of this real time CRIL compu-
tation module are powerful features enabling merging
of incomplete data with assistance of an expert. We
assume that the effects of these elements on CRIL are
dependent and discrete.

4 BAYESIAN NETWORK

BNs are a family of probabilistic graphical models
providing joint distribution for a set of random vari-
ables (Ben-Gal 2007). Known as a DAG, they are
used to represent uncertain knowledge in artificial in-
telligence (Korb & Nicholson 2004). The structure of
a DAG combines sets of nodes and arcs where nodes
represent a set of random variables from a domain.
A set of directed arcs (or links) connects pairs of
nodes, representing direct dependencies between vari-
ables, where variables are defined over several states.
Assuming these are discrete variables, the strength
of the relationship between variables is estimated by
conditional probability distributions associated with
each node. BNs are applied in cases of uncertainty,
when we know certain conditional probabilities and
seek unknown probabilities for given specific condi-
tions. To achieve this goal, one of the BN mod-
els is widely used as a Näıve Bayes model (Lowd &
Domingos 2005). This model is based on the sim-
plest assumption that variables are conditionally in-
dependent in a given node (class): the Näıve Bayes
model is presented by a single common parent node
to all the variable nodes. It has certain advantages
such as an intuitive technique that does not require a
large amount of data before learning can begin, and
fast computation, etc (Ben-Gal 2007). Therefore, the
Näıve Bayes model provides reasonably good results
in some practical problems and is particularly suit-
able for our analysis and hypotheses in this paper for
real time CRIL computation. We will describe Näıve
Bayes in more detail in the next section.

4.1 Näıve Bayes models for probability

The näıve Bayes method is a widely used classification
and clustering method based on the Bayesian theory.
It is a special form of Bayesian network relying on an
important simplifying assumption of independence.
It has a single node (class) that directly influences
other variables, and other variables are independent
for a given class.

C

x1 x2 xn

Figure 6: The structure of Näıve Bayes classifier

Figure 6 shows a Näıve Bayesian classifier for the
class variable C. Using Bayes’s theorem, we have:

P (C|xi) =
P (xi|C)P (C)

P (xi)
(1)

Where: C : hypothesis; P (C) : prior probability
(probability of hypothesis C before seeing any data);
P (xi|C) : conditional probability (likelihood proba-
bility); P (xi) : probability of occurrence of record xi;
P (C|xi) : posterior probability estimating the prob-
ability of C given xi.

Let us have a set of classes C = c1, c2, .., cm repre-
senting the observed training set. All variables (train-
ing set) X = x1, x2, . . . , xn are assumed to be mutu-
ally independent given C. If variable C is observed
in the training data, Näıve Bayes can be used by as-
signing training set (x1, x2, . . . , xn) to compute max-
imum P (C|xi). If C is unobserved then the data
can be clustered using the Expectation Maximiza-
tion (EM) algorithm (Dempster et al. 1977) alternat-
ing between computing expectations for unobserved
values using current parameters and the maximum
likelihood. Since the training set has n independent
features, we estimate by the conjunction of all condi-
tional probabilities of the features as shown in ( 2).

P (X|C) =

n∏
i=1

P(xi|C) (2)

The Näıve Bayes model is a simple and efficient
approach for classifying new training set instances.
Näıve Bayes is very efficient in computation mod-
els for the probability of classifying new training sets
as its structure is easily constructed by an expert.
Besides, it outperforms analysis of a set of sophis-
ticated classifiers over a large set of data, notably
where features are not strongly correlated (Lowd &
Domingos 2005). Unfortunately, their features are
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not always independent and we can find a correla-
tion. Tree Augmented Näıve Bayes (TAN) was intro-
duced by (Friedman, Geiger & Goldszmidt 1997) as
a natural extension to the Näıve Bayesian classifier.

4.2 Tree Augmented Näıve Bayes (TAN)
models

Just like Näıve Bayes models, TAN models are a spe-
cial family of Bayesian networks that allow computa-
tion with correlated features. A specific TAN model
presents dependence features. In this case, we show
7 features in the model as they are suitable for our
study in the following chapters. Figure 7 comprises
nodes C, x1, x2, ..x7 and arcs from C to all nodes.
These nodes are dependent on features x1, x2, ..x7 and
we can compute P (C|x1, x2, ..x7) for each feature as
the evidence node.

C

x1 x2 x7

x3

x4 x5 x6

Figure 7: The structure of specific TAN

Based on the approach presented by (Friedman et al.
1997) and the transformation for coherence with the
model in Figure 7, we get the posterior probability
as follows:

P (C |x1, x2, x3, x4, x5, x6, x7) =

= P (x1,x2,x3,x4,x5,x6,x7|C ).P (C)
m∑
j
P (x1,x2,x3,x4,x5,x6,x7,C=cj)

;

C = {c1, cj , ...cm}

(3)

Where:

P (x1, x2, x3, x4, x5, x6, x7 |C ) =
= P (x1 |C )× P (x2, x3, x4, x5, x6, x7 |C , x1)

= P (x1 |C )× P (x2 |C , x1)× P (x3 |C , x2)×
×P (x4 |C , x3)× P (x5 |C , x3)×
×P (x6 |C , x3)× P (x7 |C , x3)

(4)

Equation 4 is derived from the Bayes theorem and
the structured model in Figure 7.

The basic TAN yields good model probability that
could address the factors in a reasonable fashion, as
well as weak independence assumption in the Näıve
Bayesian approach.

Through the analysis of the probability computation
method described in this section, we build a CRIL
computation model in section 5 below.

5 CRIL COMPUTATION MODEL

5.1 CRIL model

We propose the CRIL computation model based on
our analysis in section 3 & 4 using a heritage ap-
proach. We use the NBC model (Figure 6) as a basic
model to build a computation model. Then, to re-
move dependence assumptions of the Näıve model,
we consider application of the TAN model (Figure
7) and build a better computation model. In this
section, we present the methods for building a CRIL
computation model based on the TAN approach.

The computation model is built based on Tree Aug-
mented Näıve Bayes models presented in section 4.2.
CRIL is the posterior probability that estimates the
probability of CRIL with impact factors such as R,
P, C, TP, PM, CM and Me (see 3.2). According to
the arguments and assumptions given in the previous
section, we can model each of these effects-elements
as a node (variable). In particular, the Report (Re)
variable is the parent node (C) in the structure of
the TAN model for probability (Figure 7). An arrow
from the generic node Report (Re) to node R or P, etc
means that R or P is conditionally dependent on the
reported information level. For each node, a condi-
tional probability quantifies the effect of the parents
on that node. One thing to note in Figure 8 is that
dependence between nodes, e.g. type of product (TP)
at time t, has a specific metrology (Me) value. The
structure of the TAN model in this case is developed
by experts from correlation in data and experience.

Re

R C CMP TP Me PM

Figure 8: Modeling the CRIL by a TAN approach

Mathematically speaking, CRIL is the posterior prob-
ability computed as follows:

CRIL(Re) = P (Re|R,P,C,TP,Me,PM,CM) (5)

Combining ( 3) with ( 4) to compute CRIL(Re),
x1, ..., x7 and corresponding to R, P, C, TP, Me, PM,
CM, respectively, we have ( 6).

P (Re |R,C, P, TP,Me, PM,CM) =
= Ω∑

j
P (R,C,P,TP,Me,PM,CM,Rej)

Ω = P (Re)× P (R |Re)× P (C |Re)×
×P (P |Re)× P (TP |Re)× P (Me |Re, TP )×
×P (PM |Re)× P (CM |Re)

(6)

According to equation 3 we have the expression
for the probability that (Re Corresponding to C
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in equation 3) will take on (Re = OK) or (Re
= Not OK). In equation 6 we need to compute
P (Re), P (R|Re), P (C|Re), P (P |Re), P (TP |Re),
P (Me|Re, TP ), P (PM |Re) and P (CM |Re)
where P(Re) is computed from the training set
(data) by counting the number of occurrences
of the Reported event, for example (Reported
= OK) or (Reported = Not OK). The probability
P (C|Re), P (P |Re), P (TP |Re), P (PM |Re), P (CM |Re)
can be estimated by counting how often each value
C, P, TP, PM, CM occurs within a class in the
training set.

The computation model for the CRIL that we present
in this section takes into account the observed data
such as: C, P, TP, PM and CM. However, reliabil-
ity of the measurement system varies over time. We
thus propose a model for the measurement system
and the approach EM algorithm to find the correla-
tion between measurement system reliability and Re-
port (P (R|Re). This is presented in section 5.1.1.
The probability P (Me|Re, TP ) in equation 6 is de-
veloped in section 5.1.2.

5.1.1 Measurement system reliability

Sensor reliability is defined as the probability r(t) of
the non-failure of the sensor at time t, which repre-
sents the intrinsic quality of the sensor. It is a main
factor in CRIL calculation as lower sensor reliability

means lower CRIL. r(t) = 1 −
t∫

0

f(t)dt , f(t): failure

density function.

Sensor time to failure is described by the probability
density function. For exponentially distributed times
to failure of sensor (Dhillon 2002), sensor reliability
can be written as, λ: failure per a time unit. The
measurement system is made up of many sensors, and
is represented by a block diagram. The probability of
failure or success of one of these sensors is estimated
to calculate the probability of failure or success of the
overall system. In this case, the system consisting
of m sensors with respective reliabilities ri(t) may
define the reliability of a measurement system by R =
f (ri (t) , r2 (t) , . . . , rm (t)).

Depending on the functions and tasks of the measure-
ment system, the system block diagram could be se-
ries, parallel or bridge systems (Dhillon 2005). There-
fore, we need to determine the structure to calculate
the associated reliability of a measurement system.
For example, in an automated production as shown
in figure 9, we consider the activity part of the ma-
chine M2 with sensor setting as in figure 9 to define
the block diagram. This is supposed to transfer the
wafer process in reactors. Our goal is to find reliabil-
ity of a measurement system over time. With a con-
stant failure rate and exponentially distributed times

to failure of sensor i (i=1,..5), at time t, the equation
of the parallel system for dependent sensor reliability
is presented as follows:

R(t) = 1− (1− eλ1t)(1− eλ2t)2(1− eλ4t)2 (7)

Figure 9: The structure of measurement system

How does reliability of the measurement system
(R(t)) affect the CRIL? This factor is one of many
factors that we need to consider. The problem is how
to determine the relationship between them from the
information provided by historical production data.
This relationship should be standardized according
to a specific function, taking change over time into
account in real time. At a certain time with fixed
reliability of the measurement system R(t), we can
identify a Report event that is (OK) or (Not OK).
However, at a random time in the report, it is diffi-
cult to find the probability of the Report event. To
achieve this, relying on historical production data,
we compute the probability distribution function R(t)
and the probability of Report event occurrence. Now,
we use the EM algorithm (D’Souza 2002) to deter-
mine the parameters of the Gaussian Mixture such as
τi, µi, σi:

f(x) =

k∑
i=1

τi
1

σi
√

2π
e
− (x−µi)

2

2σ2
i (8)

Where: τi: mean and µi: covariance, σi: variables are
indicator variables that are multinomial distributions,

(
k∑
i

τi = 1).

We performed this task on MATLAB. To ensure that
accuracy and computation times were not too long
and complex, we chose the numbers of Gaussian as 3.
We then obtained the following results.

In Figure 10, the X-axis represents measurement sys-
tem reliability at time t, while the Y-axis represents
probability of the P (R|Re) one.
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Figure 10: The relationship between measurement
system reliability and reported information

5.1.2 Metrology activities for each type of
product

As presented in the above section, the metrology ma-
chine is located at the end of a process to decide
whether end products are OK or Not OK. Our goal
in this part is to analyze the relationship between the
metrology decision, the type of product, and the re-
ported information (Re) to show elements affecting
confidence of reported information. We assume cor-
rect report by the metrology machine, random test-
ing in a batch of products, and existence of a fixed
late time comparison with the report of manufactur-
ing machines.

Date and time Type of product Reported in-
formation

21:57 06-Jan-2005 TypeA Not OK
22:04 06-Jan-2005 TypeC Ok
01:32 07-Jan-2005 TypeA Not OK
02:44 07-Jan-2005 TypeB Not OK
02:49 07-Jan-2005 TypeC Not OK
03:27 07-Jan-2005 TypeC Ok
08:09 07-Jan-2005 TypeB Ok
15:09 07-Jan-2005 TypeA Not OK
16:00 07-Jan-2005 TypeC Ok
16:12 07-Jan-2005 TypeA Not OK
17:50 07-Jan-2005 TypeB Ok
18:05 07-Jan-2005 TypeB Not OK
01:42 08-Jan-2005 TypeB OK
02:56 08-Jan-2005 TypeC Not OK

Table 2: Production data

For example (as shows in Table 2, 3), we consider
three types of products, A, B and C, which pass
through production machines M3. The historical pro-
duction data for three dates are shown in Table 2.
The first column shows data on the random time re-
ceiving reports from M3. The results of the metrology
machine are shown in Table 3. The metrology ma-

chine randomly tests all types of products with, on
average, one time per date. Column 3 in table 3 sup-
plies two possible values (Metrology = Pass) or (Re
= Not Pass). Pass means that the quality of a prod-
uct manufactured by the machine is good, while Not
Pass means the opposite. Considering a particular
case at 01:42:00, 08-jan-2005, product type B after
the production process at machine M3 had received
the report (Re = OK). However, after a fixed late
time at 17-jan-2005, the metrology report received
was Not Pass. This means that there is a difference
between the reports of M3 and the metrology machine
resulting in an uncertainty of reported information on
production machines. We thus need to analyze the
impact of reported information and metrology in the
CRIL model.

Date Type of product Metrology

08-Jan-2005 TypeA Pass
17-Jan-2005 TypeB Not Pass
24-Jan-2005 TypeC Pass

Table 3: Metrology data

In Equation ( 6), to calculate the CRIL, we need to
define P (Me|Re, TP ).

Considering the Bayes’ theorem, we obtain as follows:

P (Me |TP,Re) = P (Me,TP,Re)
P (TP,Re) = P (Me,TP,Re)

U∑
j
P (TP,Re,Mej)

;

U = {Pass,Not Pass}
(9)

Production and metrology data are required in the
same survey period to compute P(Me,TP,Re) from
equation ( 9). However, we faced difficulties as to
the time reported in Tables 2 and 3 such as the
difference in format and the number of reports (pro-
duction data time reports on average 10 times/day,
whereas metrology data reports once every day). We
can solve this problem by integrating the data (Table
4) on the sampling principle. The result of metrology
in the production system reflects the quality of the
product in one day. In other words, the time before
the new results or the result in (t-1) will be true at
any time before it.

P(Me,TP,Re) is computed from Table 4 by counting
the number of occurrences (simultaneous appearance
of values) in Table 4, e.g. {TypeA,OK,Pass}.
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Date and time Type of productReport Metrology

21:57 06-Jan-2005 TypeA Not OK Pass
22:04 06-Jan-2005 TypeC Ok Pass
01:32 07-Jan-2005 TypeA Not OK Pass
02:44 07-Jan-2005 TypeB Not OK Not Pass
02:49 07-Jan-2005 TypeC Not OK Pass
03:27 07-Jan-2005 TypeC Ok Pass
08:09 07-Jan-2005 TypeB Ok Not Pass
15:09 07-Jan-2005 TypeA Not OK Pass
16:00 07-Jan-2005 TypeC Ok Pass
16:12 07-Jan-2005 TypeA Not OK Pass
17:50 07-Jan-2005 TypeB Ok Not Pass
18:05 07-Jan-2005 TypeB Not OK Not Pass
01:42 08-Jan-2005 TypeB OK Not Pass
02:56 08-Jan-2005 TypeC Not OK Pass

Table 4: Mixing the data

5.2 Algorithm and Implementation

5.2.1 CRIL Computation Algorithm

In this section, we propose an algorithm to compute
CRIL in real time from the structure presented in
Figure 16, based on the characteristics and formu-
las given by the CRIL TAN Model. We started with
data analysis to identify the relationships and impacts
on reported information through the experience and
knowledge of experts who built the Bayesian network
structure. The same data are used to compute con-
ditional probabilities from the training data set dur-
ing the learning step. The CRIL is computed in real
time by the computation model to report the (report
+ training set) information prior to sending it to the
diagnosis module.

Offline Online

Database

 

Operator experience

Model Bayesian Network
Diagnosis module

Learning Calculating the
confidence

Opetation parts

Product flow

Up date the data

CRIL model

Structured    knowledge

Report

Order

CRIL

Report

Fault loaction

Origin of the 

Failure

Figure 11: The structure of the CRIL Computing
Algorithm

The proposed algorithm presented in figure 12 per-
forms two main tasks: (i) learning and (ii) testing.

With respect to learning, it estimates the conditional
probabilities of each component by multiplying it
with equations 6, whereas for testing, after receiving
a new vector of parameters, it computes the condi-
tional probabilities based on the TAN model. The
final value output of the algorithm is CRIL.

Figure 12: Computing CRIL TAN algorithm

5.2.2 Implementation program on MATLAB

In an AMS as shown in Figure 5, we consider the his-
torical data collected from production equipment M3
and the metrology data fed from the files as shown
in frame (1) on Figure 13. After completion of the
production process on machine M3, its control sys-
tem reports process end at the coordination level.
This report provides information about the param-
eters of M3 and its current operating status. If the
received report is (OK) then the control system ends
the process considering the processed product to be
OK. However, if the report is (Not Ok), the product
in M3 will be considered (Not Ok). In both cases, we
consider the effects of metrology equipment on the
production process and its associated confidence of
reported information.

After implementing the program with algorithms and
mathematical formulas expression, we obtain the re-
sults of the interface of the CRIL computing model
as shown in Figure 13.

In Figure 13: R = {0÷ 100%}; P = {Open-
Loop (OL), Pre-Actuator (PA), Actuator (AC), Pre-
Actuator + Actuator (PA.AC), Effectors (EF), Ef-
fectors + Pre-Actuator (EF.PA), Effectors + Actua-
tor (EF.AC), Effectors + Actuator + Pre-Actuator
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Figure 13: Interface of confidence of reported information computing model

(EF.AC.PA)}; C={ Normal production (N), Mass
production (MP), Change recipes (CR) }; PM =
{0÷m}; CM = {0÷ k}.

We introduce some main frames in the interface as
follows: (1). Input data (Production and Metrology
data). (2). Description of the model structure. (3).
The temporary result of equation 6 . (4). The re-
ported information at time t. (5). Presentation of
probability P (R|Re) over time. (6). The temporary
result of probability P(Me,TP,Re). (7). Show all the
calculated results.

In line 18, of frame 7, the CRIL of Report is (OK)
with the current parameters of M3, e.g. R(7391h)
= 0.1196. This means that reliability of the mea-
surement system, considering its operated time as
7391 hours is 0.1196. We can infer value P (R|Re) =
0.56714 from R(7391h). C = MP, P = EF.AC.PA,
TypeC, PM = 9 CM = 10, and association with the
backward reference metrology activity (Me = Pass)
is computed as 49.68%.

In this case, the CRIL of equipment M3 that has
correctly performed the requested services (Reported
= OK) is 49.68% at the time of computation, with
the current equipment parameters and the production
context. It helps automation engineers to locate the
process equipment leading to product failure detected
by the Metrology. Change over time in the current
parameters of M3 results in different CRILs(frame 7).

Based on process data and the expert’s knowledge,
we are now able to evaluate the confidence of all
the reported information taken from the equipment.
The resulting CRIL is a value between 0 and 1
that extends the diagnosis inference proposed by
(Deschamps & Zamai 2007).

6 CONCLUSIONS

This paper proposes a concept of confidence of re-
ported information level (CRIL) to help automation
engineers locate the process equipment leading to
product failure detected by the Metrology. The pro-
posed CRIL index is a value between 0 and 1 and
is computed based on the BNs approach which is
widely accepted as a methodology to learn uncertain-
ties. Furthermore, we have developed an algorithm
and a computation module for real time computa-
tion of the said CRIL index. Based on the algorithms
and the TAN model, a tool developed in Matlab is
presented and proposed for use in the semiconductor
manufacturing industry. Our work is an extension
to the diagnosis approach proposed by (Deschamps
& Zamai 2007). Based on the our analysis, we have
highlighted seven main factors that impact the CRIL.
Our proposed TAN model processes the inherent un-
certainty reported information and obtain the poste-
rior probabilisty of the reported information. It is
thus able to provide the diagnosis module with the
information it need to facilitate locate of the origin
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of an equipment failure in a given production pro-
cess. In future, we focus on validating the model on
the data collected from a world reputed semiconduc-
tor manufacturing industry (partner in the European
IMPROVE project). Furthermore, we are working on
the extension of the proposed TAN model with the
inclusion of continuous and temporal variable using
Dynamic Bayesian network.
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Université de Technologie de Compiègne.
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