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ABSTRACT: This paper considers a selective maintenance policy for multi-component systems for which a minimum 

level of reliability is required for each mission. Such systems need to be maintained between consecutive missions. The 

proposed strategy aims at selecting the components to be maintained (renewed) after the completion of each mission 

such that a required reliability level is warranted up to the next stop with the minimum cost, taking into account the 

time period allotted for maintenance between missions. This strategy is applied to binary-state systems subject to 

propagated failures with global effect, and failure isolation phenomena. A numerical example based on such a system is 

presented to illustrate the modeling approach.    
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1 INTRODUCTION 

Maintenance strategies for systems made of one 

component or being possibly assimilated to single-

component systems have been extensively treated in the 

literature for several decades. However, in the last years, 

an increasing interest has been focused on the 

development and optimization of maintenance policies 

for multi-component systems. This is related to the fact 

that in real life, industrial as well as transport systems 

and many other types of equipment are generally made 

of many components which may have one or more types 

of dependence (economic, stochastic or structural). 

Economic dependence means that jointly maintaining 

some components may be cheaper than maintaining 

them separately. Stochastic dependency implies that 

failure or degradation of one component can affect the 

state of one or more other components of the system. 

Structural dependency is the fact that maintaining one 

component may imply the maintenance or at least the 

disassembly of one or more other components.  Cho and 

Parlar (1991), Van der Duyn Schouten (1996), Dekker et 

al.(1997) and more recently Nicolai and Dekker (2006) 

provide overviews of optimal maintenance policies of 

multi-component systems with and without dependency.    

In the present work, we focus on multi-component 

systems for which a high reliability level is required for 

each mission of known duration to be accomplished. 

Such systems (like manufacturing equipment, aircrafts, 

ships, computer systems, military weapons, etc.) must be 

maintained between consecutive missions. The problem 

consists in selecting the components to be maintained 

after the completion of each mission such that a required 

reliability level is warranted up to the next stop with the 

minimum cost and taking into account the limitations on 

maintenance time and resources before the start of the 

next mission. This problem has been tackled by Cassady 

et al.(2001a) in the case of series-parallel systems and 

for more general structures displaying redundancy with 

stochastically independent components. They developed 

a method to decide which failed components should be 

repaired before the next mission and which components 

should be left in a failed condition. They also optimize 

these selective maintenance decisions in situations where 

the objective is to maximize the system’s reliability 

under budget and time constraints, and also in the case 

where maintenance time is minimized under the 

constraints of cost and reliability. This work has been 

extended by the same authors Cassady et al.(2001b) 

considering not only renewal of failed components but 

also the possibility to perform minimal repairs on failed 

components and preventive replacement of functioning 

ones. They addressed the case of system reliability 

maximization under budget and time constraints 

considering time dependent failure rates for all 

components whose failures are stochastically 

independent and whose lifetimes follow a Weibull 

distribution. They also used simulation in combination 

with their analytical model to be able to deal with a 

succession of missions. 

More recently, Rajagopalan and Cassady (2006) 

considered the problem of finding the number of failed 
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components which should be replaced in order to 

maximize the system reliability for next mission under a 

maintenance time constraint. The considered systems 

have a series-parallel structure with constant failure rate 

components and stochastically independent failures.  The 

authors improved the original total enumeration method 

proposed by Rice et al.(1998). The need of speeding up 

the solving procedure becomes of first importance when 

large-size problems (systems with great number of 

components) are addressed. For such cases, Galante and 

Passannanti (2009) developed an exact algorithm for 

solving the same selective maintenance problem 

allowing a drastic reduction of the solution space for 

series-parallel systems. 

As it can be noticed through the above mentioned papers 

and others in the literature, it is always supposed that the 

maintenance actions are performed one after the other, 

making the time constraint expressed in terms of the sum 

of the replacement durations of each component. In this 

paper, we consider situations, often encountered in 

practice where the maintenance actions on different 

components start at the same time and they are carried 

out simultaneously.  Moreover, most if not all the works 

on selective maintenance consider series-parallel 

systems or more general system structures involving 

redundancy with components failures being local and 

stochastically independent. In this work, we model the 

selective maintenance concept considering, on one hand, 

economic dependency and on the other hand, we apply it 

to complex systems, with functional dependence, subject 

to failure propagation and isolation effects. Propagated 

failures are common cause-failures originated from a 

component of a system causing the failure of the entire 

system (global effect) or the failure of some of its sub-

systems (selective effect). Propagated failures with 

global effect can be caused by imperfect fault coverage 

despite the presence of adequate redundancy and fault 

tolerant mechanism (see Amari and  al.(1999)). They can 

also simply be due to a destructive effect of failures of 

some components of the system.  

Moreover, in practice, many systems experience what is 

called failure isolation. Xing and Levitin (2010) define 

this phenomenon as follows “the failure of one 

component (referred to as a trigger component) can 

cause other components (referred to as dependent 

components) within the same system to become isolated 

from the system, which on one hand, makes the isolated 

dependent components unusable; and on the other hand, 

prevents the propagation of the failures originated from 

those dependent components”. I/O controllers of 

peripheral devices in a computer system are part of many 

real-world systems with isolation effect. Indeed, when 

the I/O controller fails, the connected peripheral devices 

become unusable and at the same time the computer 

becomes insensitive to any failure originated from those 

peripheral devices (Xing et al., 2009). Another example 

displaying both propagated failures with global effect 

and isolation is a computer network (Xing and Levitin 

(2010)). Indeed, computers communicate through 

Network Interface Cards (NIC). In case a NIC fails 

(considered here as the trigger), a connected computer 

(considered as a dependent component) becomes 

inaccessible but at the same time it prevents the 

propagation of failures like viruses for example from this 

computer to the network. This happens only if the 

propagated failure (the virus) originated in the computer 

occurs after the NIC failure, otherwise the virus could go 

into the entire network and crash it completely. This 

example illustrates the competition in time between the 

failure of the trigger components and failures initiated 

from the dependent components. Xing and Levitin 

(2010) established an analytical and combinatorial 

method to assess the system reliability in this case of 

competing propagated failures and failure isolation effect 

due to the functional dependence. Systems of this kind 

are considered in this paper within the context of 

selective maintenance with no limitation on the type of 

component’s time to failure (local or propagated) 

distributions. 

The remainder of the paper is organized as follows. The 

mathematical model corresponding to the considered 

selective maintenance problem is presented in next 

section along with the working assumptions and used 

notation. Section 3 reports the method developed by 

Xing and Levitin (2010) to assess the reliability of the 

considered type of systems subject to failure isolation 

and propagation effects. A numerical example is 

presented in section 4 to illustrate the developed model. 

Finally, the paper is concluded in section 5 with 

indications on current and future related research.  

 

2 THE MATHEMATICAL FORMULATION OF 

THE PROBLEM 

Consider a multi-component system required to perform 

a series of successive missions and whose components 

can be maintained during scheduled downtime periods 

between successive missions. The problem consists in 

selecting the components to be maintained (renewed) 

after the completion of any mission (k) and before the 

start of the next mission (k+1), such that a required 

reliability level is warranted up to the next stop after Dk+1 

time units, with the minimum cost and without exceeding 

the time Δk scheduled for maintenance between missions 

k and k+1. This should be done considering that it is 

possible to pay a penalty cost for extending this 

maintenance period between missions to a certain extent.  

The following assumptions are made: 

 

- At the end of a given mission period, each 

component (as well as the system) is either 

functioning or failed. 

- All maintenance actions consist in components 

renewals. They could be preventive renewals of 

working components or renewals of failed ones.  

- The replacement actions of the selected 

components start at the same time. Hence, the 

required duration to complete all replacements 
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is equal to the largest required period per 

selected component. 

 

The following notations are used: 

fil : Probability density function associated with time to 

local failure of component i. i=(1,2,…,n) , n being the 

number of components of the system. 

Ril : The reliability function associated with time to local 

failure of component i. 

fip : Probability density function associated with time to 

propagated failure of component i. 

Rip: The reliability function associated with time to 

propagated failure of component i. 

Fs: The unreliability function associated with time to 

failure of the system. 

ti: The time required to replace the component i between 

missions. 

Dk: The duration of mission k. 

∆k : The downtime period between missions k and k+1 

allotted to perform maintenance actions. 

βk: the extension coefficient of maintenance periods ∆k 

(βk 0),  i.e. a maintenance period  ∆k  can be extended 

by a maximum of (∆k .βk). 

Cp: The penalty cost per time unit due to the extension of 

a maintenance period ∆k. 

Cri: The replacement cost of component i. 

Cw: The maintenance labor cost per time unit. 

Cf : A fixed cost incurred for dismantling and 

reassembling the system in case at least one component 

is to be replaced. This cost is incurred only one time in 

case more than one component is replaced. 

C(k): The total maintenance cost incurred to maintain the 

system between mission k and mission k+1. 

Ei(k) : The age of component i at the end of mission k. 

Ai(k+1): the age of component i at the beginning of 

mission k+1. 

M(k): The maintenance decision vector made of n 

elements, each one is either equal to 1 (replace the 

corresponding element) or equal to 0 (do not replace the 

corresponding element).  k k k

1 2 nM(k) m ,m ...,m . 

The binary variables: 

mi (k): The replacement decision of component i at the 

end of mission k. 

i

1 if component i is replaced

between missions k and k 1.
m (k)

0 if component i is not replaced

between missions k and k 1.





 

 

 

Yi (k): The component i state at the end of mission k. 

i

1 if component i is functioning at

the end of mission k.
Y (k)

0 if component i is in failed state at

the end of mission k.





 



 

Xi (k+1) : The state of component i just before the start 

of mission k+1. 

i

1 if component i is functioning

at the start of mission k 1.
X (k 1)

0 if component i is in failed

state at the start of mission k 1.





  


 

    

       

1 if is lower than the largest required 
k

z(k) replacement period per component. 

0 otherwise.




 



      

     i

n
1 if m (k) 1

(k) i 1

0 otherwise.


  






 

 

Φ(k) = 1 corresponds to the situation of replacing at least 

one component. In this case, the setup cost is incurred 

only one time (i.e. economic dependency). 

At the end of mission k, the decision maker should 

consider both possible states (working or failed) and the 

age of each component. Table 1 shows the effects of 

performing or not performing a replacement of a 

component on its state and age. Suppose ‘a’ being the 

age of the component at the end of mission k. 

 Component i state and age 

State and 

age at the 

end of 

mission k 

 

Yi(k)=0 

 

Ei(k)=a 

 

 

Yi(k)=1 

 

Ei(k)=a 

 

State and 

age in case 

replacement 

is performed 

 

Xi(k+ 1)=1, 

 

Ai(k+1)=0 

 

 

Xi(k+ 1)=1, 

 

Ai(k+1)= 0 

 

State and 

age in case 

replacement 

is not 

performed 

 

Xi(k+ 1)=0, 

 

Ai(k+1)=a 

 

 

Xi(k+ 1)=1, 

 

Ai(k+1)= a 

 

Table 1.  Effect of replacing or not replacing a 

component. 

The total cost incurred by the replacement of a 

component i is expressed as follows: 

 

 Wf ri i
C C C t      (1) 

 

Hence, the problem can be formulated mathematically as 

follows: 
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Min C (k) = 

  
n

C C t m (k) Max t m (k)i i kwri i ii 1

C z(k) C (k)p f


     



  

  

   

    

(2)

 Subject to. 

*
F (D ) Fs sk 1


  (3) 

 

Max(t m (k)) (i 1,..., n)
i i k k k
     

 (4)  

Equation (3) expresses the reliability constraint. Fs
* 

being the probability of failure of the system not to be 

exceeded for mission (k+1). Equation (4) expresses the 

fact that for a given maintenance option (vector M(k)), 

the longest maintenance period among those of the 

components to be maintained should be smaller than the 

maintenance scheduled period Δk plus its maximum 

extension period. 

For each component i with age Ai(k+1) and state Xi 

(k+1) just before initiating mission (k+1), the reliability 

function related to local failures is expressed as follows:
 

il
il i

i
il i

R (D A (k 1))
k 1R (D ) X (k 1)

k 1 R (A (k 1))

  
  

 
 (5)

 

For the components which may also cause propagated 

failures, the corresponding reliability function is given 

by: 

ip i

ip i
ip i

R (D A (k 1))
k 1

R (D ) X (k 1)
k 1 R (A (k 1))

  


  
 

 (6)
 

The age Ai (k+1) is obtained as follows: 

i i i i
A (k 1) E (k) E (k) m (k)   

  (7) 

And the state Xi (k+1) is given by: 

i i i i
X (k 1) Y (k) m (k) (1 Y (k))    

  (8) 

Hence, given the state and age of each component 

observed at the end of mission k, for each possible 

maintenance decision vector M(k) among the theoretical 

number of 2n, the decision maker can evaluate the cost 

C(k) and check the reliability constraint using the 

proposed mathematical model presented above. The best 

decision will be the one allowing the minimum cost 

while satisfying both constraints.  

The proposed formulation holds for any type of system 

structure with any given number of components with any 

type of time to failure distributions. In next sections, we 

apply it to a particular type of complex binary-state 

systems subject to propagated failures with global effect, 

and failure isolation phenomena.  

 

3 RELIABILITY ASSESSMENT OF SYSTEMS 

SUBJECT TO COMPETING PROPAGATED 

FAILURES AND FAILURE ISOLATION EFFECT.  

We consider binary-state multi-component systems 

displaying functional dependence with competing 

propagated failures and failure isolation effect. Failure 

isolation happens when the failure of one component 

(the trigger component) causes other components 

(dependent components) to become unusable. Isolation 

prevents the propagation of failures initiated from those 

dependent components. All components can experience 

local failures and some of them may also be at the origin 

of propagated failures. The local failure and the 

propagated failure of the same component are mutually 

exclusive.  

The evaluation approach proposed by Xing and Levitin 

(2010) to assess the reliability of such systems or sub-

systems is summarized below in 3 steps. It is based on 

the total probability theorem. 

Step1: Define the three different events (Ri) representing 

the order of failures in the trigger component and its 

corresponding dependent components. R1: ’the 

isolating/trigger element does not fail at all’; R2: ‘at least 

one dependent element fails globally before the failure of 

the isolating element’ and R3: ‘the trigger element fails 

before any global failure originated in the dependent 

components’. Then, evaluate the occurrence probabilities 

for R1 and R2, and calculate Pr(R3) =1- Pr(R1) - Pr(R2). 

Step2: using conventional dynamic fault tree analysis 

methods (Dugan and Doyle, 1997), determine the 

conditional probabilities of system failure given the 

occurrence of Ri: Pr(systemfails R1) , Pr(systemfails R2) , 

Pr(systemfails R3) . Step3: Compute the unreliability of 

the system as follows: 

i i

3
F (t) Pr(system fails R ) *Pr(R )s

i 1
 


  (9) 

This reliability assessment method is used in this paper 

to evaluate the system reliability for mission k+1 

s k 1F (D )
to check the constraint expressed by equation 

(3). 

4 NUMERICAL EXAMPLE 

In order to illustrate our approach, let us consider a 

relatively simple four-component system with competing 

failures subject to failure isolation and propagation 

effects. The fault tree model of this example system is 

shown in figure 1 below. It is composed of four 

components A, B, C and D. The same system has been 

used by Xing and Levitin (2010) as an illustrative 

example considering all components as new (Age = 0). 
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The special gate in figure 1 is called functional 

dependence gate (FDEP) (Dugan and Doyle, 1997) is 

used to model the functional dependence. In this 

example, when the trigger component A fails the 

dependent components (B and C) become unusable. All 

the components can experience local failures and only 

the dependent components (B and C) can also cause 

propagated failures with global effect.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Fault tree model of the considered system. 

 

For any given situation before the start of mission k+1 

regarding the state Xi(k+1) and the age Ai(k+1) of each 

component (i=A,B,C,D), applying the reliability 

assessment method presented in section 3 in combination 

with equations (5) and (6), the probability of failure of 

the considered system over the duration Dk+1 is expressed 

as follows : 

 

The details of the development of this expression are 

given in (Maaroufi et al. 2011).  

We suppose the time to local and propagated failures 

follow Weibull distributions with scale parameter  and 

shape parameter α as shown below. When α = 1 it 

reduces to an exponential distribution. 

Al Al

Bl Cl Bl Cl

Bp Cp Bp Cp

Dl Dl

0.01and 1;

0.012 and 3 ;

0.001 and 1;

0.02 and 3 ;

   

       

       

   

 

The following arbitrarily chosen input data are 

considered. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2. Input parameters. 

  

 (10) 

Let’s suppose that at the end of mission k, the state and 

the age of each component are given by: 

Yi(k) YA(k) = 0 YB(k) = 1 YC(k) = 0 YD(k) = 1 

Ei(k) EA(k) = 10 EB(k) = 16 EC(k) = 11 ED(k) = 15 

Table 3. Input parameters regarding the state and age of 

each component at the end of mission k. 

Maintenance labor cost 

per time unit Cw 
400 $ 

Replacement cost for 

each component i, Cri 

1200 $ 

Penalty cost per time 

unit, Cp  
200 ($ / time unit) 

The setup cost, Cf 50 $ 

Time ti required to 

replace the component i, 

in time units.
 

 

(tA=0.5 , tB=1.2 

,tC=0.9, tD=0.8) 

Time allotted for 

maintaining the system 

before the start of 

mission k+1, ∆k  

 

1 time unit 

Expected duration of 

mission k+1, Dk+1 

 

25 time units 

The extension coefficient 

of the maintenance 

period βk 

1  

System 

Failure 

And 

D 
C B 

FDEP 

A 

OR 

(1 ( )) ( ( ) (1 ( ))
1 1 1

( ) ( ) 1 ( ( ) ( )) ( ( ) (1 ( )) (1 ( )))
1 1 1 1 1 1 1

(1 ( ))))
1

1

( ( 1)) ( ( 1)) (
Bp B Cp C Al

R D R D R DBpDl k k Bl k
F D R D R D R D R D R D R Ds Bp Cp Cpk Al k k k k Dl k Bl k

R D
Cl k

R A k R A k R A

  
         

  
         

       
 




   

  
  
  
    

 

1 1 1

1 2

1

0 0 min ,

min

1 2 3 3 2 1

1 2

( ( 1)) ( ( 1)) ( ( 1))
( 1))

1
( ( 1)) ( ( 1))

( ( 1)) ( ( 1)) ( ( 1))((1 ( )) 1 ( )
1 1

k k kD D D

C

C

B Cp A
A

B Cp

f A k f A k f A k d d dBp Alk

f A k f A kBp
R A k R A k R A kR D R D Bp B Cp C AAlDl k Al k

 



     

 

  

      


     
        

 

 
 
  

  

 

1 1 1

20 0 ,

3 3 2 1
( ( 1))

k k kD D D

A
f A k d d d
Al



   

  

 

  
  
  
  

  

  
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It is interesting to notice that this state of the system is 

possible in case the failure of component C has been a 

local failure (if it was a propagated one, all components 

would have been in a failed state) and it certainly 

happened before the failure of component A because if 

the latter failed before, it would have isolated component 

C.  

The decision maker must select the components to be 

replaced such that the probability of failure of the system 

during next mission k+1 does not exceed the maximum 

allowed failure probability Fs
*
 = 0.15 (reliability 

requirement of 85%) with the minimum cost. 

Using the mathematical model combined with equation 

(10), and considering all feasible maintenance options 

vectors M(k), we obtain the optimal solution M(k)* = 

(mA
*
= 0, mB

*
= 0, mC*= 0, mD* =1) which corresponds to 

a replacement of component D only. This solution yields 

the minimum cost C(k)*= 1570$ with system failure 

probability during next mission Fs(Dk+1) = 12.22 % 

(lower than 15%). As shown in table 4, the other 

components remain in the same state found at the end of 

mission k with the same age (only D is preventively 

renewed).  

 

Table 4. Components State and age before starting 

mission k+1. 

Note that in order to find out if there is at least one 

feasible solution satisfying the reliability constraint 

(equation 3), one has first to check if the vector M(k) = 

(1,1,1,1) corresponding to a renewal of all components 

allows the satisfaction of the constraint. In case it does 

not, there is no need to test any other maintenance 

option. The operations manager should find a way to 

shorten the next mission duration such that the reliability 

requirement can be met.  

5 CONCLUSION 

This paper proposed a formulation of the problem of 

selective maintenance for multi-component systems to 

help the decision maker selecting the components to be 

maintained between consecutive missions such that a 

required reliability level is guaranteed up to the next stop 

with the minimum cost and taking into account 

limitations on available time for maintenance. In this 

respect related to the time constraint, we considered 

situations where all the components replacements start at 

the same time.  Also, the proposed approach takes into 

account economic dependence on one hand, and on the 

other hand, it has been applied to the case of complex 

multi-component systems with stochastic dependence 

subject to failure isolation and propagation effects. 

Though, the mathematical model can be applied to any 

kind of system structure with any kind of components 

failure time distribution, provided one can assess the 

system’s reliability function with new or aged 

components.  

This work is currently being extended in some respects 

including the consideration of a planning horizon with 

several successive planned missions, the possibility of 

performing imperfect maintenance actions between 

missions and the development a procedure which 

minimizes the number of maintenance decision vectors 

M(k) to be explored given any combination of state and 

age for each component, hence minimizing the 

computation time of the optimal solution.  

REFERENCES 

 

Amari SV., JB. Dugan and RB.  Misra, 1999. A 

separable method for incorporating imperfect fault-

coverage into combinatorial models. IEEE 

Transactions on Reliability, 48(3), p.267–74. 

Cassady CR, EA. Pohl and Jr WP. Murdock, 2001a. 

Selective maintenance modeling for industrial 

systems. Journal of Quality in Maintenance 

Engineering, 7(2),p.104–17.  

Cassady CR., Jr WP. Murdock and EA. Pohl, 2001b. 

Selective maintenance for support equipment 

involving multiple maintenance actions. European 

Journal of Operational Research, 129, p. 252–8.  

Cho D and M.  Parlar, 1991. A survey of maintenance 

models for multi-unit systems. European Journal of 

Operational Research, 51, p.1–23.  

Dekker R, FA. Schouten and R. Wildeman, 1997. A 

review of multi-component maintenance models 

with economic dependence. Mathematical Methods 

of Operations Research, 45(3), p. 411–35.  

Dugan J.B. and S.A. Doyle , 1997. New results in fault-

tree analysis Tutorial notes of the Annual 

Reliability & Maintainability Symposium. 

Galante G and G. Passannanti, 2009. An exact algorithm 

for preventive maintenance planning of series-

parallel systems. Reliability Engineering and 

System Safety, 94,  p.1517–1525. 

Maaroufi G, Chelbi A, Rezg N, 2011. Reliability 

assessment of multi-components systems with 

stochastic dependence. Technical report, Higher 

School of Science and Technology, University of 

Tunis. Tunisia.   

Nicolai RP and R. Dekker, 2006. Optimal maintenance 

of multi-component systems: a review. 

Econometric Institute Report, 29, p.1–30. 

Xi(k+1) XA(k+1)=0 XB(k+1)=1 XC(k+1)=0 XD(k+1)=1 

Ai(k+1) AA(k+1)=10 AB(k+1)=16 AC(k+1)=11 AD(k+1)=0 



MOSIM’12 - June 06-08, 2012 - Bordeaux - France 

 

Rajagopalan R. and CR. Cassady, 2006. An improved 

selective maintenance solution approach. Journal of 

Quality in Maintenance Engineering, 12(2), p. 172–

85.  

Rice WF., CR. Cassady and JA. Nachlas, 1998. Optimal 

maintenance plans under limited maintenance time. 

In: Proceedings of the seventh industrial 

engineering research conference (May 1998), Banff 

(Alberta), Canada. 

Van Der Duyn Schouten F. A., 1996. Maintenance 

policies for multi-component systemes: An 

overview. Reliability and Maintenance of complexe 

systems, edition S. Ozekici, NATO ASI Series vol. 

154, Springer, Berlin; 117-136.   

Xing L., JB. Dugan and BA. Morrissette, 2009. Efficient 

reliability analysis of systems with functional 

dependence loops. Maintenance and Reliability, 

3(43), p.65–9. 

Xing L and G. Levitin, 2010. Combinatorial analysis of 

systems with competing failures subject to failure 

isolation and propagation effects. Reliability 

Engineering and System Safety, 95, p.1210–121. 

 



 

 


