
HAL Id: hal-00728647
https://hal.science/hal-00728647v1

Submitted on 30 Aug 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Consistent Neighborhood Search for Constrained
Assignment Problems

Michel Vasquez, Nicolas Zufferey

To cite this version:
Michel Vasquez, Nicolas Zufferey. Consistent Neighborhood Search for Constrained Assignment Prob-
lems. 9th International Conference on Modeling, Optimization & SIMulation, Jun 2012, Bordeaux,
France. �hal-00728647�

https://hal.science/hal-00728647v1
https://hal.archives-ouvertes.fr

9
th International Conference of Modeling, Optimization and Simulation - MOSIM’12

June 6-8, 2012 - Bordeaux - France

”Performance, interoperability and safety for sustainable development”

CONSISTENT NEIGHBORHOOD SEARCH FOR

CONSTRAINED ASSIGNMENT PROBLEMS

Michel Vasquez Nicolas Zufferey

École des Mines d’Alès HEC - University of Geneva

LGI2P Research Center Blvd du Pont-d’Arve 40

30035 Nimes cedex 01 - France 1211 Geneva 4 - Switzerland

michel.vasquez@mines-ales.fr nicolas.zufferey-hec@unige.ch

ABSTRACT: Many optimization problems require the use of a local search to find a satisfying solution in a
reasonable amount of time, even if the optimality is not guaranteed. Usually, local search algorithms operate in
a search space which contains complete solutions (feasible or not) to the problem. In contrast, in Consistent
Neighborhood Search (CNS), after each variable assignment, the conflicting variables are deleted to keep the
partial solution feasible, and the search can stop when all the variables have a value. In this paper, we formally
propose CNS, a new heuristic solution method. We then discuss, with a unified view, the great success of some
existing heuristics, which can however be considered within the CNS framework, in various fields: graph color-
ing, frequency assignment, satellite range scheduling and vehicle fleet management with maintenance constraints.

KEYWORDS: local search heuristics, combinatorial optimization

1 INTRODUCTION

An exact method guarantees the optimality of the
provided solution. However, for a large number of ap-
plications and most real-life optimization problems,
such methods need a prohibitive amount of time to
find an optimal solution, because such problems are
NP-hard. For these difficult problems, one should
prefer to quickly find a satisfying solution, which
is the goal of heuristic solution methods. There
mainly exist three families of heuristics: constructive
heuristics (a solution is built step by step from
scratch, like the greedy algorithm), local search
heuristics (a solution is iteratively modified: this
will be discussed below) and evolutionary heuristics
(a population of solutions is managed, like genetic
algorithms and ant algorithms). In this paper, only
the context of local search methods will be considered.

A local search heuristic starts with an initial solution
and tries to improve it iteratively. At each iteration,
a modification, called move, of the current solution is
performed in order to generate a neighbor solution.
The definition of a move, i.e. the definition of the
neighborhood structure, depends on the considered
problem. Popular local search methods are simulated
annealing (Kirkpatrick et al., 1983), tabu search
(Glover, 1989), threshold algorithms (Charon &
Hudry, 1993), variable neighborhood search (Mlade-
novic & Hansen, 1997), and guided local search

(Voudouris & Tsang, 1999).
Within a local search context, the usual approach
consists in working with complete solutions, i.e.
each variable has a value and the solution might
be feasible or not. In the latter case, a penalty
function is often used, which depends on the number
of violated constraints. In contrast, in Consistent
Neighborhood Search (CNS), partial feasible solutions
are used. Thus, not every variable has a value but
there is no constraint violation. In such a case,
the goal is to minimize the number of non assigned
variables, and a move is performed in two phases:
(1) give a value to an unassigned variable si, and (2)
delete the value of the created conflicting variables
(i.e. the variables different from si involved in a
constraint violation). In this paper, we formally
introduce the CNS methodology and the adaptation
of tabu search within its framework, then we discuss,
with a unified terminology, the great success of
some existing heuristics, which can be considered
as belonging to the CNS methodology, for various
NP-hard constrained assignment problems.

The paper is organized as follows. In Section 2, the
CNS methodology is proposed. Then, heuristics for
various problems are presented within a CNS envi-
ronment: graph coloring (Section 3), frequency as-
signment (Section 4), satellite range scheduling (Sec-
tion 5), and car fleet management with maintenance
(Section 6). We end up the paper with a conclusion.

MOSIM’12 - June 06-08, 2012 - Bordeaux - France

2 CNS METHODOLOGY

Let (P) be the considered problem with n vari-
ables s1, . . . , sn, let f be the objective function to
minimize, and let C be the set of constraints to
satisfy. Each variable si can only have a value in
its value domain Di. A solution of (P) is denoted
s = (s1, . . . , sn), where si ∈ Di. Solution s is feasible
if it satisfies all the constraints in C. In most local
search methods, the search space contains complete
solutions, i.e. each variable si has a value in Di, and
the solutions can be feasible or not. If the search
space only contains feasible solutions, the goal is
generally to directly minimize the given objective
function f associated with (P); otherwise, the aim
often consists in minimizing f(s) + α · p(s), where
p(s) penalizes the constraint violations associated
with s and α is a parameter which gives more or less
importance to the constraint violations. In contrast,
a specificity of CNS consists in working with partial
and feasible solutions, i.e. where some si’s do not
have a value but all the constraints are satisfied. In
such a case, the goal is to minimize the number f̂(s)
of non assigned variables in s, and the process stops
of course if f̂(s) = 0.
Therefore, three search spaces are possible: (1) the
complete and feasible search space S(feasible); (2)
the complete and non necessarily feasible search
space S(penalty), where unfeasible solutions are
penalized; and (3) the partial and feasible search
space S(partial). When working in S(feasible), it can
be very difficult to define a move which maintains
the feasibility of the solution. When working in
S(penalty), it is challenging to: define a move which
does not augment too much p(s), tune the above
mentioned parameter α, and find a feasible solution
because S(penalty) is much larger than S(feasible).
We will see that such drawbacks are avoided when
working in S(partial).

An important feature of CNS is the definition of the
neighborhood structure in S(partial). In most local
search methods, in order to generate a neighbor solu-
tion s′ from the current solution s, a move m consists
in changing the value of one (or more) variable(s) of
s. The set of neighbor solutions of s is denoted N(s).
In contrast, any move m is performed in two phases
in CNS.

1. Assignment phase. A value of Di is assigned to
a non assigned variable si. Let C(m) be the set
of conflicting variables (excluding si) created by
move m (a variable is in conflict if it is involved
in at least a constraint violation).

2. Repairing phase. In order to keep the partial so-
lution feasible, remove the value of all the vari-
ables of C(m).

We have now all the ingredients to formulate a
pseudo-code of CNS in Algorithm 1.

Algorithm 1 CNS

Initialization: generate an initial solution s, set
s∗ = s and f̂∗ = f̂(s);

While a time limit is not met and f̂∗ > 0, do

1. initialize the value of the best move: set g = +∞;

2. generate the best move: for each non assigned
variable si and each value dj ∈ Di, test move
m = (si, dj) on s as follows:

(a) assignment phase: give value dj to variable
si and compute the associated set C(m) of
conflicting variables;

(b) let scand be the so obtained candidate neigh-
bor solution (which might be non feasible at
this stage);

(c) update the best candidate move: if
|C(m)| < g, set s′ = scand and g = |C(m)|;

3. repairing phase on the best move: remove the
value of the g conflicting variables of s′ and let s
be the resulting new current solution;

4. update the record: if f̂(s) < f̂∗, set s∗ = s and

f̂∗ = f̂(s);

Output: solution s∗ (which is a complete feasible

solution if f̂∗ = 0);

Many local search methods (e.g., tabu search, simu-
lated annealing, random walk, threshold algorithms,
etc.) can be adapted within the environment of
CNS. The adaptation of tabu search within the
framework of CNS is now discussed. A generic and
standard version of tabu search can be described as
follows, assuming f has to be minimized. First, tabu
search needs an initial solution as input. Then, the
algorithm generates a sequence of neighbor solutions.
When a move is performed from s to s′, the inverse of
that move is forbidden during the following t (param-
eter) iterations (with some exceptions). The solution
s′ is computed as s′ = arg min

s′′∈N ′(s)
f(s′′), where

N ′(s) is a subset of N(s) containing all solutions s′

which can be obtained from s either by performing
a move that is not tabu or such that f(s′) < f(s∗),
where s∗ is the best solution encountered along the
search so far. Usually, N ′(s) is too large and only a
sample of neighbor solutions are selected from N ′(s)
to be evaluated. The choice of the sample often has
a strong impact on the final results. The process
is stopped for example when an optimal solution is
found (when it is known), or when a fixed number of
iterations have been performed. Many variants and
extensions of this basic algorithm can be found for

MOSIM’12 - June 06-08, 2012 - Bordeaux - France

example in (Glover & Laguna, 1997).
Tabu search adapted within the framework of CNS
has the following specificities: working in S(feasible);
minimizing f̂ instead of f ; exploring the whole neigh-
borhood of the current solution; using an efficient
and straightforward incremental computation; after
each move when a value is given to a variable si, it
is then tabu to remove the value of si for a certain
number of iterations.

In the four next sections, we present existing tabu
search methods, but within a CNS unified frame-
work. Four fields are involved: graph coloring, fre-
quency assignment, satellite range scheduling and car
fleet management. For each problem, CNS was im-
plemented in C/C++ and the allocated time limits
were always fair when compared to the other meth-
ods. All the details on the experimental conditions
of the compared methods (e.g., time limit, computer
type, programming language) can be found in the cor-
responding papers.

3 GRAPH COLORING

The main reference associated with this section is
(Bloechliger & Zufferey, 2008). The authors proposed
a tabu search heuristic for the graph coloring prob-
lem, which we denote here CNS-GCP for sake of sim-
plicity.

3.1 Description of the Problem

Given a graph G = (V,E) with vertex set V and edge
set E, the k-coloring problem (k-GCP) consists in as-
signing an integer (called color) in {1, . . . , k} to every
vertex such that two adjacent vertices have different
colors. The Graph Coloring Problem (GCP) consists
in finding a k-coloring with the smallest possible value
of k (called the chromatic number and denoted χ).
Both problems are NP-hard (Garey & Johnson, 1979)
and many heuristics were proposed to solve them. For
a recent survey, the reader is referred to (Malaguti
& Toth, 2010). Currently, no known exact solution
method is able to solve all instances with up to 100
vertices (Herrmann & Hertz, 2002). For larger in-
stances, upper bounds on the chromatic number can
be obtained by using heuristic algorithms. Starting at
most with k = |V |, an upper bound on the chromatic
number of G can be determined by solving a series
of k-GCPs with decreasing values of k until no feasi-
ble k-coloring can be obtained. Only such a strategy,
which leads to the best results, will be considered be-
low.

3.2 Description of a CNS Approach

The best k-coloring heuristics are based on two
approaches. In S(penalty), the constraint that the
endpoints of an edge should have different colors
is relaxed. Thus, the strategy consists in allowing
conflicts (a conflict occurs if two adjacent vertices
have the same color) while minimizing the number of
conflicts. In a local search context, a straightforward
move is thus to change the color of a conflicting
vertex, as proposed in (Hertz & de Werra, 1987).

In contrast, in S(partial), the constraint imposing that
all vertices should be colored is relaxed but con-
flicts are forbidden. We have Di = {1, . . . , k} for
each si. In such a case, the value si of a solution
s = (s1, . . . , sn) in S(partial) indicates the color of ver-
tex i, which is in the set {1, . . . , k}, and there is no
value (or an artificial value 0) if vertex i is not colored.
The goal is to minimize the number of uncolored ver-
tices. A move m = (si; c) consists in first assigning
a color c to a uncolored vertex i (assignment phase),
and then (repairing phase) to remove the color of the
created conflicting vertices (i.e. all the vertices ad-
jacent to i which have color c). Then, all the moves
which will remove the color c of vertex i are tabu for a
certain number of iterations. This number is dynam-
ically managed and is proportional to the variation of
the objective function f̂(s) = |s| = |{si | si > 0}|. At
each iteration, the best non tabu move is performed
(ties are randomly broken).

3.3 Comparisons with Other Methods

In Table 1 are considered difficult benchmark in-
stances from the DIMACS Challenge (see ftp:

//dimacs.rutgers.edu/pub/challenge/graph/).
Below, CNS-GCP is compared with other state-of-
the-art coloring heuristics, which are: Tabucol (Hertz
& de Werra, 1987), GH (Galinier & Hao, 1999),
MOR (Morgenstern, 1996), and MMT (Malaguti
et al., 2008). Tabucol is a standard tabu search
working in S(penalty). GH, MOR and MMT are all
population based methods which use local search
procedures. GH uses Tabucol to improve offspring
solutions, whereas MMT uses a procedure close to
CNS-GCP. MOR works in the same search space as
CNS-GCP, but uses simulated annealing instead of
tabu search, and much more sophisticated moves.

A CPU time limit of 60 minutes on a Pentium 4 (2
GHZ, 512MB of RAM) was considered for CNS-GCP.
The first two columns of Table 1 respectively indicate
the name and the number n of vertices of the graph.
The third column contains two numbers, the first one
being the chromatic number (a ”?” is put when it is
not known), and the second one the best upper bound

MOSIM’12 - June 06-08, 2012 - Bordeaux - France

k⋆ ever found by a heuristic. Then, for every algo-
rithm is reported the smallest k such that a feasible
k-coloring was found. We can observe that CNS-GCP
is rather competitive with the best coloring methods.
However, it is much simpler.

Table 1: CNS-GCP versus other methods

Graph n χ, k⋆ CNS-GCP Tabucol MMT GH MOR
DSJC1000.1 1000 ?,20 21 20 20 20 21
DSJC1000.5 1000 ?,83 89 89 83 83 88
DSJC1000.9 1000 ?,224 226 227 226 224 226
DSJC500.1 500 ?,12 12 12 12 12 12
DSJC500.5 500 ?,48 49 49 48 48 49
DSJC500.9 500 ?,126 127 127 127 126 128
DSJR500.1c 500 ?,85 85 85 85 - 85
DSJR500.5 500 ?,122 126 126 122 - 123
flat1000 50 0 1000 50,50 50 50 50 50 50
flat1000 60 0 1000 60,60 60 60 60 60 60
flat1000 76 0 1000 76,82 88 88 82 83 89
flat300 28 0 300 28,28 28 31 31 31 31
le450 15c 450 15,15 15 16 15 15 15
le450 15d 450 15,15 15 15 15 15 15
le450 25c 450 25,25 27 26 25 26 25
le450 25d 450 25,25 27 26 25 26 25

4 FREQUENCY ASSIGNMENT

The main reference associated with this section is
(Dupont et al., 2004), where the Frequency Assign-
ment Problem with Polarization (FAPP) was consid-
ered. The authors proposed a tabu search approach
working in S(partial), denoted CNS-FAPP below.

4.1 Description of the Problem

The FAPP concerns a Hertzian telecommunication
network made up of antennae located at a set of geo-
graphical sites. A Hertzian liaison joins two sites by
one or more paths. Hence, a path is a unidirectional
radio-electric bond, established between antennae
at distinct sites, which has a given frequency and
polarization. A frequency resource for a path is a
pair (frequency, polarization), whose components are
respectively associated with the carrying frequency
of the transmitted signal and the wave polarization.
The polarization is a binary variable (i.e. only ver-
tical or horizontal). With each path si is associated
a set of available resources {(fi,pi), fi ∈ Fi and
pi ∈ Pi}, where Fi is the ordered frequency domain
representing the authorized wave band, and Pi is
the polarization information which may include a re-
quired polarization. Thus, let Fi and Pi respectively
be the allowed frequency set and polarization set for
path i, where Pi ∈ {{−1},{1},{−1, 1}}. The FAPP
consists in finding, for each path, a frequency and a
polarization satisfying the following set of constraints.

Let IC be the set of the Imperative Constraints,
which are of four types: pi = pj , pi 6= pj , |fi −
fj | = εij , and |fi − fj | 6= εij , where εij ≥ 0. In

addition, some Electromagnetic Compatibility Con-
straints (ECC) require a minimal distance between
frequencies of two paths: |fi−fj| ≥ γij if pi = pj, and
|fi − fj| ≥ δij if pi 6= pj . This constraint controls the
interference phenomenon, which is why the required
distance between frequencies depends on their polar-
izations: it is smaller if the polarizations are different
(i.e. δij ≤ γij). Unfortunately, most problems do not
have feasible solutions because the domains are too
restrictive or the requirements too numerous. Con-
sequently, some deterioration is allowed by permit-
ting some interference, which have to be minimized.
With this aim, for the ECC constraints, a progressive
relaxation is authorized and expressed by relaxation
levels: level 0 corresponds to no relaxation, and going
from level k to level k + 1 involves the relaxation of
some or all the frequency gaps, the maximum relax-
ation level being 10. Formally, we have:

|fi − fj | ≥

{

γ0
ij ≥ . . .≥γk

ij ≥ . . .≥γ10
ij ifpi = pj

δ0ij ≥ . . .≥ δkij ≥ . . .≥ δ10ij ifpi 6= pj

since in the 11th level, γ11
ij = δ11ij = 0, so there is no

ECC.

Let ECCk be the set of ECC constraints at level k
(for 0 ≤ k ≤ 10). This means that each constraint
belonging to ECCk is affected to its γk

ij and δkij gaps.

More precisely, |fi − fj | ≥
|pi+pj |

2 γ
(k)
ij +

|pi−pj |
2 δ

(k)
ij .

Accordingly, a feasible solution at level k is an
assignment of all the paths satisfying all the strong
constraints IC and all the ECCk constraints. If such
a solution exists, the problem is said to be k-feasible.
Every problem is assumed to be 11-feasible.

Consequently, the objective function of the problem
is, in order of priority: (1) minimize the lowest re-
laxation level k for which a k-feasible solution ex-
ists; (2) minimize V (k−1): the number of constraints
of ECC(k−1) violated at level k − 1; (3) minimize

∑

0≤i<k−1

V (i): the sum of the constraints of ECCi vi-

olated at all levels i less than k − 1.

4.2 Description of a CNS Approach

The strategy adopted for the resolution consists in
transforming the FAPP optimization problem into
11 decision problems according to the relaxation
level on the ECC: each FAPP(k) contains both
the IC and the ECCk constraints. This enables to
introduce some filtering treatments to reduce the
frequency and the polarization domains. Starting
from level k = 11 where an initial solution is pro-
vided by a greedy constructive method, the general
algorithm works in a downward fashion: each time a
k-feasible solution is found, a lower level is considered.

MOSIM’12 - June 06-08, 2012 - Bordeaux - France

A solution s = (s1, . . . , sn) indicates for each path
i its associated resource (fi,pi), where fi ∈ Fi and
pi ∈ Pi. Thus, Di = Fi × Pi. In the assignment
phase, a pair (fi, pi) is given to the chosen non
assigned candidate path i. Then, in the repairing
phase, this affectation is propagated to its neighbors
in the constraint network and, if necessary, the
conflicting neighboring values are deleted in order to
satisfy the IC and ECCk constraints. This was done
efficiently using incremental computing on specific
data structures, allowing variable domains to be
dynamically reduced.

A tabu list is needed to prevent cycling, which
occurs when there is an attempt to instantiate the
last deleted variables in the current partial solution.
Indeed, all the values (fj , pj) likely to delete the
variable si = (fi, pj) affected by the move are
classified tabu during some iterations: the tabu
tenure is proportional to the number of times this
resource was affected.

4.3 Comparisons with Other Methods

The considered problem was the subject of the
Challenge ROADEF 2001 (organized by the French
Society of Operations Research and Decision
Analysis), involving 27 research teams (see http:

//uma.ensta.fr/conf/roadef-2001-challenge/).
In Table 2 are presented the results obtained by the
four best teams. During the competition, only one
run was allowed and the computing time was limited
to one hour on a Pentium 3 (500 MHZ, 128 MB
of RAM). Table 2 details the hierarchical objective
function, by giving first the relaxation level k, then
the sum of all the unsatisfied ECCk−1, and finally
the sum of all the unsatisfied ECCi, where i varies
from 0 to k − 2. The first column indicates the
instance names with the instance number and the
number n of considered paths. For example, 02-0250
is instance 2 with 250 paths.

The first approach, developed by Bisaillon’s team and
referred to as TS-VN , is a local search based on tabu
search with a variable neighborhood. The algorithm
H+CP , developed by Caseau, combines constraint
propagation with heuristics such as Large Neighbor-
hood Search and Limited Discrepancy Search. Clas-
sical tabu search procedures (simply denoted Tabu)
working with complete solutions were implemented
by Schindl’s team. Finally, the last column gives the
results obtained by CNS-FAPP.
We can observe the efficiency of CNS-FAPP when
compared to the other methods. Care is needed be-

cause the indicated values are the best among 10.
CNS-FAPP finds the optimal k level for 37 instances
out of 40. And last but not least, CNS-FAPP was the
winner of the Challenge.

Table 2: CNS-FAPP versus others methods

FAPP TS-V N H+CP Tabu CNS-FAPP

k V1 SV2 k V1 SV2 k V1 SV2 k V1 SV2
01-0200 4 4 56 4 6 279 5 1 281 4 14 233
02-0250 2 7 86 2 18 248 11 1 1274 2 20 195
03-0300 7 10 341 7 27 1076 7 13 589 7 32 892
04-0300 1 31 0 1 164 0 7 1 3678 1 184 0
05-0350 11 1 372 11 892 12364 11 7 2284 11 364 5694
06-0500 5 12 246 5 53 1029 7 15 1210 5 31 811
07-0600 9 22 714 9 132 4419 9 33 1585 9 106 3375
08-0700 5 16 266 5 53 1359 5 26 625 5 73 1225
09-0800 3 28 195 3 63 937 10 1 3678 3 104 846
10-0900 6 18 475 6 82 2365 8 5 2871 6 103 2003
11-1000 8 8 1015 8 119 5206 10 1 5108 8 119 4191
12-1500 3 83 1698 7 180 6538 9 70 7682 2 62 1310
13-2000 3 49 2003 7 229 7503 10 13 9651 5 132 3645
14-2500 4 35 3485 8 18 10661 10 101 15718 5 217 5045
15-3000 5 15 1569 7 333 9988 10 61 14010 5 192 4727
16-0260 11 5 56 11 572 5779 11 5 57 11 514 5189
17-0300 4 4 34 4 4 36 4 4 34 4 4 36
18-0350 8 4 55 8 4 55 8 4 55 8 4 59
19-0350 6 2 51 6 3 79 6 2 51 6 3 70
20-0420 10 5 97 10 6 145 10 5 97 10 7 142
21-0500 4 2 10 4 2 12 4 2 10 4 2 12
22-1750 7 15 187 7 16 356 7 15 187 7 25 503
23-1800 9 16 187 9 17 197 9 16 187 9 17 197
24-2000 7 6 71 7 7 90 7 6 71 7 9 91
25-2230 3 7 32 3 7 33 3 7 32 3 7 33
26-2300 7 9 74 7 10 81 7 9 74 7 10 86
27-2550 11 4 64 5 7 46 5 4 20 5 11 54
28-2800 3 13 32 3 32 129 3 13 32 3 42 142
29-2900 6 25 239 6 28 351 6 25 212 6 25 310
30-3000 11 1166 12029 7 17 602 7 13 148 7 48 1045
31-0400 5 4 1180 5 161 2131 5 16 1400 5 117 1896
32-0550 10 52 1739 6 16 388 11 25 2166 6 10 235
33-0650 5 7 66 5 16 332 11 5 1310 5 10 235
34-0750 4 2 46 4 35 767 10 1 1701 4 22 565
35-1500 7 3 1280 6 74 1919 11 24 5870 6 62 1375
36-2000 7 99 2153 9 3 2478 11 16 4652 7 63 1643
37-2250 11 3 12229 5 56 1745 11 14 10353 5 51 1288
38-2500 11 79 14058 3 39 572 11 53 13355 9 125 6717
39-2750 3 356 2844 3 2567 10470 11 36 13267 11 3947 40473
40-3000 11 39 16755 4 77 1562 11 867 13684 4 64 1252

5 SATELLITE SCHEDULING

The main reference associated with this section is
(Zufferey et al., 2008), where the Multi-Resource
Satellite Range Scheduling Problem (denote here by
SAT for sake of simplicity) is tackled.

5.1 Description of the Problem

Consider a set of satellites and a set {R1, R2, . . . , Rk}
of ground stations. Ground stations are communi-
cation facilities (e.g. antennae). Several operations
must be performed on spacecrafts, related to satellite
control or payload. These operations require ground-
to-space communications, called jobs. Therefore, a
job is associated with some information represent-
ing the corresponding on-board operation. The SAT
is a NP-hard problem (Barbulescu et al., 2004) for
which a set J = {1, . . . , n} of jobs have to be sched-
uled. Each job j is characterized by the following

MOSIM’12 - June 06-08, 2012 - Bordeaux - France

parameters: the (unique) satellite satj requested by
j; the set Mj of ground stations able to process j;
the duration pj of communication j; the time rj at
which j becomes available for processing; the time
dj by which j must be completed. Note that pj, rj
and dj may depend on the considered ground station.
An important application is the one encountered by
the U.S. Air Force Satellite Control Network, where
more than 100 satellites and 16 antennae located at
9 ground stations are considered. In such an context,
customers request an antenna at a ground station for
a specific time window along with possible alterna-
tive slots. The problem is in general oversubscribed,
i.e. all the jobs can not be performed. The goal is
to schedule as many jobs as possible within its time
window, such that the processing of two jobs can not
overlap on the same resource (unit capacity): in such
a case, there is a conflict and one of the conflicting
jobs has to be removed from the schedule. Minimiz-
ing the number of conflicting jobs (more precisely, the
number of bumped jobs) is of crucial importance in
a practical standpoint, because human schedulers do
not consider any conflicting job worse than any other
conflicting job (Parish, 1994). The human schedulers
themselves state that minimizing the number of con-
flicts reduces (1) their workload, (2) communication
with outside agencies, and (3) the time required to
produce a conflict-free schedule (Barbulescu et al.,
2004).

5.2 Description of a CNS Approach

The component sj of solution s indicates the re-
source on which job j is scheduled if j is scheduled
(otherwise, an artificial value 0 can be given). For
each solution s, there is an associated vector g

where component gj indicates the starting time
of job j performed on resource sj . As constraint
violation are forbidden, for each resource Ri (with
i ∈ {1, . . . , k}), all the jobs are scheduled within
their time windows and there are no overlapping jobs.

In order to generate a neighbor solution s′ from s, a
bumped job j is first scheduled within its time win-
dow on a resource Ri ∈ Mj. More precisely, the as-
signment phase is the following. Assume that jobs
j1, . . . , jr are already scheduled (in that order) on re-
source Ri. In order to schedule job j in Ri within
its time window, two main situations may occur. In
the best situation, it is possible to successively ad-
just the schedules of jobs j1, . . . , jr within their own
time windows (while keeping the same relative order
j1, . . . , jr) in order to add job j to Ri without creat-
ing any conflict (no overlapping). Otherwise, in the
repairing phase, some non tabu jobs have to be re-
moved from Ri. The goal is to remove the smallest
number of non tabu jobs. If there are several pos-

sibilities, the main idea is to remove the set of jobs
with the largest average flexibility (where the flexibil-
ity of a job is number of resources it can be scheduled
on). The larger is the flexibility of a job, the easier it
would be to re-schedule it on another resource.

5.3 Comparisons with other Methods

It is relevant to compare the three following heuris-
tics: CNS-SAT (which also uses diversification
procedures), AMA (which is an adaptive memory
algorithm using CNS-SAT as intensification pro-
cedure) and GENITOR (Barbulescu et al., 2004).
The latter method is a genetic algorithm which
usually provides the best solutions for the SAT up to
2007. GENITOR is based on the permutation search
space, where, as proposed by several researchers (e.g.
(Globus et al., 2004), (Barbulescu et al., 2004)),
a solution is encoded as a permutation π of the n

jobs to schedule. Let S(permutation) be the search
space containing all the possible permutations. From
a permutation π in S(permutation), it is possible to
generate a schedule in S(feasible) by the use of a
schedule builder, which is a greedy constructive
heuristic.

The most difficult benchmark instances are of size
500 (i.e. n = 500) with k = 9 resources (as de-
scribed in (Zufferey et al., 2008)). Each instance was
built by a well-known generator described and used
in (Barbulescu et al., 2004). It produces instances of
the SAT by modeling realistic features. A maximum
time limit of 15 minutes Pentium 4 (2 GHZ, 512 MB
of RAM) is considered in Table 3, which is consis-
tent with the ones used in (Barbulescu et al., 2004),
and is appropriate in a practical standpoint. In Ta-
ble 3, we compare the average number of bumped
jobs of GENITOR, CNS-SAT and AMA, respectively
denoted fGEN , fCNS and fAMA. For each method
and each instance, 30 runs were performed. We can
easily compute that in average, there are 110 bumped
jobs by GENITOR, 51.68 bumped jobs by CNS-SAT,
and 51.5 bumped jobs by AMA. Such results obvi-
ously show that CNS-SAT is more efficient than the
previous best existing algorithm for the SAT.

Table 3: CNS-SAT versus other methods

Instance fGEN fCNS fAMA Instance fGEN fCNS fAMA

1 115.75 55.75 55.5 11 106 51.75 52
2 101.5 54 54 12 106.25 46.5 46.75
3 125.75 65.75 63.5 13 111 56.75 56.75
4 117 49.5 50.25 14 112 58 57.5
5 113.75 52.25 51.75 15 108.75 42.5 42.75
6 121 59 58.75 16 119.75 58 58.25
7 120.5 53.25 52.5 17 107.25 50.25 50.5
8 103.5 49.5 48.75 18 112.25 53.25 52.5
9 97 38.25 38.5 19 100.25 47.5 47
10 104 50.75 51.5 20 96.75 41 41

MOSIM’12 - June 06-08, 2012 - Bordeaux - France

6 FLEET MANAGEMENT

The main reference associated with this section is
(Hertz et al., 2009), where a rather complex solution
method was proposed for a problem which can be
formulated as a car fleet management problem with
maintenance constraints (but denoted here by CAR
for sake of simplicity). The particularity of the prob-
lem is that feasible solutions are very easy to find, but
can cost a lot. Thus, S(partial) was designed to avoid
to assign the most expensive value to each variable.

6.1 Description of the Problem

The problem retained for the Challenge ROADEF
1999 was an inventory management problem
(see http://www.roadef.org/content/roadef/

challenge.htm for the details), where a cost func-
tion has to be minimized. A car rental company
manages a stock of cars of different types. It receives
requests from customers asking for cars of specific
types for a given time horizon. Basically, a request
is characterized by its start and end times, by a
required car type, and by the number of required
cars. All requests are supposed to be known for
the considered time horizon. The satisfaction of
all customer requests is mandatory. If there are
not enough cars available in stock, the company
can react in three different ways: (1) upgrading: it
can offer a better car type to the customer (but
the company encounters the additional associated
cost); (2) subcontracting: the company can decide
to subcontract some requests to other providers,
which is generally the most expensive alternative; (3)
purchasing new cars, which then belong to the stock
of the company for the rest of the time horizon.

Two types of maintenance constraints make the prob-
lem difficult: (1) a maximum time of use without
maintenance is given for each car type (each mainte-
nance has a duration, a cost and a number of workers
needed to perform it); (2) the company has a fixed
number of maintenance workers, which means that
the maintenances should be scheduled so that the ca-
pacity of the workshop is never exceeded. In addition,
the following costs are also known: the costs (fixed
and time dependent) associated with the assignment
of a car to a request, and the inventory cost per day
of a car in stock (rented or not). The goal is to satisfy
all the requests while minimizing the total cost.

6.2 Description of a CNS Approach

The general pseudo-code of the method, denoted
CNS-CAR is summarized in Algorithm 2. First, an
initial solution is greedily generated. Step 1 of the
main loop tries to improve the current solution with-

out changing the set of purchased cars (with the use
of two tabu search procedures working in S(partial),
denoted TS1-CAR and TS2-CAR below), while the
second step generates a new solution with a different
set of purchased cars. The stopping criterion is a time
limit of one hour, as imposed by the organizers of the
Challenge.

Algorithm 2 Algorithm CNS-CAR

Initialization: generate an initial solution s;

While the time limit is not reached, do

1. try to improve s without changing the set of pur-
chased cars, with the successive use of TS1-CAR
and TS2-CAR;

2. update s by purchasing a car or by removing a
previously purchased car (the requests associated
with a removed car are initially subcontracted).

In TS1-CAR, a solution s can be modeled as follows.
Let sr = t if request r is performed by a car of type t
of the fleet (purchased or not), and sr has no value (or
an artificial value, say 0) if request r is subcontracted
to another provider. Thus, S(partial) is defined in
order to minimize the number of subcontracted
requests. A neighbor s′ of a solution s is obtained by
assigning a car c of type t to a subcontracted request
r (i.e. the corresponding sr equals t instead of 0).
To make such a change feasible, in the repairing
phase, requests covered by c that overlap with r are
subcontracted (i.e. the associated sj values are set
to 0), and the maintenances of car c are possibly
rescheduled in a greedy fashion while satisfying the
maintenance constraints. If it is not possible, other
sj ’s such that sj = t might be set to 0 in order to
create more room to schedule the maintenances. If
it is still not possible to generate a feasible schedule
for the maintenances (because of the maintenances
schedule of the other car types), such a move is not
considered further.

TS2-CAR is an extension of TS1-CAR in the follow-
ing sense: (1) it works on several car types during
the same move; (2) it tries to reduce the total cost
not only by assigning cars to subcontracted requests,
but also by avoiding upgrades; (3) a reassignment
phase is performed; (4) the repairing phase has
more options to validate the move proposed in the
assignment phase. A neighbor s′ of a solution s is
obtained by assigning a car of type t to a request r,
where r is subcontracted or covered by a car of type
t′ 6= t in s, where type t′ is an upgrade of type t.
In other words, sr equals t instead of 0 or t′. The
reassignment and repairing phases are performed
simultaneously as follows: all the requests Ct covered

MOSIM’12 - June 06-08, 2012 - Bordeaux - France

by the cars of type t might be reassigned within
car type t (while considering an exact method for
a specific case of the graph coloring problem), and
it is allowed to subcontract some requests of Ct. In
such a phase, the maintenance schedule of all the
cars might change (in a greedy fashion or by the use
of an exact method). In the two tabu procedures,
when a request r is assigned to a car type t (i.e. sr
is set equal to t), it is then tabu to remove the value
t from sr for a certain number of iterations.

Diversification procedures were also used, based on
the following idea: the requests which were not sub-
contracted from a large number of iterations are sub-
contracted, in order to make room for other requests
in the schedule.

6.3 Comparisons with Other Methods

In Table 4 and Table 5 are reported the results for the
16 benchmark instances of the Challenge. CNS-CAR
is compared with the four best methods (among the
thirteen proposed heuristics) of the Challenge. The
winners of the contest were Briant and Bouzgarrou.
Their algorithm mainly combines linear program-
ming ignoring the maintenance constraints, and then
adjust the solution according to the maintenance
constraints. The name of an instance is coded with a
triplet (x, y, z, w), where x is the number of requests,
y is the number of car types, z is the capacity of
the workshop, and w is equal to b if purchases are
allowed, and to nb otherwise. The time horizon of
all instances is [0, 730] corresponding to a period of
2 years.

The algorithm was run with the time limit equivalent
to one hour on a Pentium Pro (200 MHZ, 64 MB of
RAM), as imposed by the organizers of the Challenge.
The results are shown in Table 4 (for instances where
purchases are forbidden) and Table 5 (associated with
the same instances, but where purchases are allowed).
The column labeled Best contains the best known
solution for each instance. An asterisk is put when
CNS-CAR was able to equal or improve the previous
best known solution. Some of these best results have
been obtained when using different parameters from
those mentioned above (for tuning purposes) or by
running CNS-CAR for more than one hour. The next
four columns contain the percentage gap with respect
to Best obtained by the four best methods, labeled
with the initials of the members of each team, namely
BB (for Briant and Bouzgarrou), AGHKU (for As-
demir, Karslioğlu, Gürbüz and Ünal), B (for Bayrak)
and DD (for Dhaenens-Flipo and Durand). The next
column contains the percentage gap with respect to
Best obtained with CNS-CAR. For each instance, ten
runs of CNS-CAR were executed and average results

are reported. The last line of each column indicates
average results. We can observe CNS-CAR gives in
average better results than those obtained by the four
best competitors of the Challenge.

Table 4: Results on the instances without purchase

Instance Best BB AGHKU B DD CNS-CAR
(80,8,2,nb) 1162285∗ 0.00% 0.05% 1.31% 8.47% 0.00%
(150,7,2,nb) 3280230∗ 0.87% 5.85% 5.03% 9.73% 0.00%
(160,12,2,nb) 3333599∗ 14.63% 19.68% 29.56% 20.51% 0.81%
(200,12,2,nb) 5450785∗ 7.77% 22.56% 25.52% 26.02% 2.59%
(200,7,2,nb) 5156915∗ 6.36% 12.61% 21.02% 31.93% 3.62%
(200,7,4,nb) 4558728∗ 0.00% 0.66% 3.26% 14.45% 0.00%
(210,9,2,nb) 5810288∗ 5.67% 10.76% 18.48% 27.11% 2.42%
(210,9,4,nb) 5135237∗ 1.82% 1.44% 3.46% 13.09% 0.12%
Average 4236008 4.64% 9.20% 13.46% 18.91% 1.20%

Table 5: Results on the instances with purchase

Instance Best BB AGHKU B DD CNS-CAR
(80,8,2,b) 1145181∗ 0.00% 1.55% 2.82% 7.23% 0.04%
(150,7,2,b) 2811138 0.00% 9.40% 3.98% 13.23% 0.01%
(160,12,2,b) 3064397∗ 11.99% 29.40% 26.08% 21.98% 1.47%
(200,12,2,b) 4517706∗ 12.42% 34.97% 35.93% 38.13% 4.88%
(200,7,2,b) 4990499∗ 6.88% 15.36% 27.76% 31.38% 4.98%
(200,7,4,b) 4092002∗ 0.00% 3.00% 3.46% 12.76% 0.01%
(210,9,2,b) 5380588∗ 7.38% 18.91% 29.31% 34.15% 3.52%
(210,9,4,b) 4147087∗ 8.71% 10.92% 9.19% 14.91% 0.01%
Average 3787302 5.92% 15.44% 17.32% 21.72% 1.86%

7 CONCLUSION

In this paper, we propose and discuss a generic
method, CNS, for constrained assignment problems.
Its consideration within various fields shows that
CNS is efficient, robust, quick and relatively easy
to implement. Other heuristics, which were not
discussed here, can obviously be considered as be-
longing to the CNS environment (e.g., (Morgenstern,
1996), (Vasquez & Hao, 2001b), (Vasquez & Hao,
2001a), (Dupont et al., 2009)).

CNS is especially well adapted when the optimiza-
tion problem can be divided into a series of decision
problems. It was the case for three of the presented
applications. Graph coloring can be tackled by the
search of k-colorings with decreasing values of k. The
frequency assignment problem can be approached at
level k by only considering interference constraints at
level k and imperative constraints. Then, if a feasible
solution is found at level k, level k − 1 is considered.
The car fleet management problem can be considered
with a fixed number k of cars in stock (k being first
equal to the existing cars in stock), and the provided
solution will be the less costly solution among the
different considered k values (k can augment if cars
are purchased).

MOSIM’12 - June 06-08, 2012 - Bordeaux - France

CNS is also a flexible method for at least two reasons.
Firstly, it can consider various types of constraints.
It is particularly well adapted for constraints linking
two or three variables together, because the repairing
phase is usually straightforward in such situations.
Secondly, it is also well adapted for some problems
where the unassigned variables actually correspond
to an expensive assignment for the considered prob-
lem (e.g., a non assigned variable corresponds to a
subcontracted request for the car rental company).

References

Barbulescu, L., Watson, J.-P., Whitley, L. D., &
Howe, A. E. 2004. Scheduling space-ground com-
munications for the air force satellite control net-
work. Journal of Scheduling, 7(1), 7–34.

Bloechliger, I., & Zufferey, N. 2008. A graph coloring
heuristic using partial solutions and a reactive
tabu scheme. Computers & Operations Research,
35, 960 – 975.

Charon, I., & Hudry, O. 1993. The noising method: a
new method for combinatorial optimization. Op-
erations Research Letters, 14, 133–137.

Dupont, A., Alverhne, E., & Vasquez, M. 2004. Ef-
ficient Filtering and Tabu Search on a Consis-
tent Neighbouhood for the Frequency Assign-
ment Problem with Polarisation. Annals of Op-
erations Research, 130, 179 – 198.

Dupont, A., Carneiro-Linhares, A., Artigues, Ch.,
Feillet, D., Michelon, Ph., & Vasquez, M. 2009.
The dynamic frequency assignment problem. Eu-
ropean Journal of Operational Research, 195
(1), 75 – 88.

Galinier, P., & Hao, J.K. 1999. Hybrid evolutionary
algorithms for graph coloring. Journal of Com-
binatorial Optimization, 3 (4), 379 – 397.

Garey, M., & Johnson, D.S. 1979. Computer and
Intractability: a Guide to the Theory of NP-
Completeness. San Francisco: Freeman.

Globus, A., Crawford, J., Lohn, J., & Pryor, A. 2004.
A comparison of techniques for scheduling earth
observing satellites. In: Proceedings of the Six-
teenth Innovative Applications of Artificial Intel-
ligence Conference (iaai-04).

Glover, F. 1989. Tabu search - part I. ORSA Journal
on Computing, 1, 190–205.

Glover, F., & Laguna, M. 1997. Tabu Search. Boston:
Kluwer Academic Publishers.

Herrmann, F., & Hertz, A. 2002. Finding the chro-
matic number by means of critical graphs. ACM
Journal of Experimental Algorithmics, 7 (10), 1
– 9.

Hertz, A., & de Werra, D. 1987. Using tabu search
techniques for graph coloring. Computing, 39,
345 – 351.

Hertz, A., Schindl, D., & Zufferey, N. 2009. A solution
method for a car fleet management problem with
maintenance constraints. Journal of Heuristics,
15 (5), 425 – 450.

Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. 1983.
Optimization by simulated annealing. Science,
220 (5498), 671–680.

Malaguti, E., & Toth, P. 2010. A survey on vertex
coloring problems. International Transactions in
Operational Research, 17 (1), 1 – 34.

Malaguti, E., Monaci, M., & Toth, P. 2008. A meta-
heuristic approach for the vertex coloring prob-
lem. INFORMS Journal on Computing, 20 (2),
302 – 316.

Mladenovic, N., & Hansen, P. 1997. Variable neigh-
borhood search. Computers & Operations Re-
search, 24, 1097–1100.

Morgenstern, C. 1996. Distributed coloration neigh-
borhood search. DIMACS Series in Discrete
Mathematics and Theoretical Computer Science,
26, 335 – 357.

Parish, D. A. 1994. A genetic algorithm approach
to automating satellite range scheduling. M.Phil.
thesis, Air Force Institute of Technology, USA.

Vasquez, M., & Hao, J.-K. 2001a. A heuristic ap-
proach for antenna positioning in cellular net-
works. Journal of Heuristics, 7(5), 443 – 472.

Vasquez, M., & Hao, J.-K. 2001b. A Logic-
Constrained Knapsack Formulation and a Tabu
Algorithm for the Daily Photograph Scheduling
of an Earth Observation Satellite. Computational
Optimization and Applications, 20(2), 137 – 157.

Voudouris, C., & Tsang, E. 1999. Guided local search.
European Journal of Operational Research, 113
(2), 469Ű–499.

Zufferey, N., Amstutz, P., & Giaccari, P. 2008.
Graph colouring approaches for a satellite range
scheduling problem. Journal of Scheduling, 11
(4), 263 – 277.

