
HAL Id: hal-00728646
https://hal.science/hal-00728646

Submitted on 30 Aug 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Tabu search for a single machine scheduling problem
with rejected jobs, setups and deadlines

Simon Thevenin, Nicolas Zufferey, Marino Widmer

To cite this version:
Simon Thevenin, Nicolas Zufferey, Marino Widmer. Tabu search for a single machine scheduling prob-
lem with rejected jobs, setups and deadlines. 9th International Conference on Modeling, Optimization
& SIMulation, Jun 2012, Bordeaux, France. �hal-00728646�

https://hal.science/hal-00728646
https://hal.archives-ouvertes.fr

9th International Conference of Modeling, Optimization and Simulation - MOSIM’12
June 6-8, 2012 - Bordeaux - France

”Performance, interoperability and safety for sustainable development”

Tabu search for a single machine scheduling problem with rejected

jobs, setups and deadlines

Simon Thevenin, Nicolas Zufferey Marino Widmer

Faculty of Economics and Social Sciences University of Fribourg - DIUF

HEC - University of Geneva Decision Support & Operations Research

1211 Geneva 4, Switzerland 1700 Fribourg, Switzerland

simon.thevenin@unige.ch, nicolas.zufferey-hec@unige.ch marino.widmer@unifr.ch

ABSTRACT: This paper addresses a single machine scheduling problem with release dates, deadlines, setup
costs and times, and the possibility to reject some jobs while encountering an abandon cost. The objective
function to minimize is a sum of regular functions depending on the completion time of the jobs. The problem
is inspired by a manufacturing scheduling problem. We design a greedy algorithm and a tabu search approach
for the problem. We studied several restriction procedures. Realistic instances with up to 500 jobs are tackled.

KEYWORDS: Tabu search, single machine scheduling

1 Introduction and literature review

In this paper, we consider the problem of schedul-
ing n jobs on a single machine in order to mini-
mize regular (i.e. non decreasing) objective func-
tions. We take into account setup costs (cij) and
setup times (sij). There is the possibility to reject
some jobs, they are then said unperformed and a
penalty cost (uj) must be paid. For each job, a re-
lease date (rj) and a deadline (d̄j) are given. Us-
ing the three field notation the problem can be de-
noted (1|rj , si,j , d̄j |

∑
fj(Cj),

∑
uj ,

∑
ci,j). For sake

of simplicity, we call this problem (P) in the reminder
of this paper. We design a greedy algorithm and a
tabu search for (P).

In the literature, the two most popular regular ob-
jective functions are the sum of completion times
(
∑

Cj), the sum of tardiness (
∑

Tj) and their
weighted versions (

∑
wj ·Tj and

∑
wj ·Cj). (Du and

Leung, 1990) showed that the single machine schedul-
ing problem where the objective function is to min-
imize the sum of weighted tardiness (1||

∑
wjTj) is

NP-hard. As it is a particular case of (P), (P) is
NP-hard too. The one machine scheduling problem
which aims to minimize the sum of completion time
with release dates (1|rj |

∑
Cj) is NP-hard, unless the

release dates are all equal, while the same problem
without release date (1||

∑
Cj) and its weighted ver-

sion (1||
∑

wjCj) are solvable in polynomial time.

(Baptiste and Le Pape, 2005) designed a branch and
bound algorithm in a constraint programming frame-
work to solve (P). They proposed a lower bound and
a dominance rule. Their branch and bound was able

to solve instances with up to 30 jobs, even if some in-
stances with 24 jobs are still open. To our knowledge,
it is the only paper addressing such a problem.

Some related problems have been studied and are de-
scribed in the following literature review. In (Oğuz
et al., 2010), the authors studied the one machine
scheduling problem with release dates, deadlines, the
possibility to reject some jobs, and sequence depen-
dant setup times. The objective is to maximize the
revenue, which is the sum of the gains associated
with each performed job minus a weighted tardiness
penalty. This problem differs from (P) by the fact
that setup costs are not taken into account, and in
(P) we consider general cost functions. The authors
propose a MILP (mixed integer linear programming)
formulation for the problem, which is able to solve in-
stances with up to 15 jobs, as well as different heuris-
tics.

For scheduling problems, we often encounter dis-
patching rules. It permits to define a priority or-
der for the jobs. In some particular cases, dispatch-
ing rules give an optimal sequence of jobs, while in
other cases they are greedy heuristics and permit to
rapidly obtain relatively good solutions. For the one
machine scheduling problem which aims to minimize
the weighted tardiness where each job is subject to a
release date (1|rj , sij |

∑
(wjTj)), the ATCS (apparent

tardiness cost with setups) dispatching rule was de-
fined in (Chang et al., 2004). (Shin et al., 2002) made
an adaptation of the rule for the case where the objec-
tive function is the maximum lateness (1|rj , sij |Lmax)
called MATCS (modified apparent tardiness cost with
setups). In (Oğuz et al., 2010), MATCS for a prob-

MOSIM’12 - June 06-08, 2012 - Bordeaux - France

lem related to (P) is proposed as well as a dynamic
dispatching rule.

(Yang and Geunes, 2007) were interested in the single
machine scheduling problem, with the possibility of
not performing some jobs. A global deadline is given
and jobs cannot be scheduled after it. Moreover, the
processing time of each job can be reduced by a com-
pression. The objective function to maximize is the
profit of each performed job minus compression costs
and tardiness costs. After having introduced a timing
algorithm for the problem permitting to find, given a
sequence of jobs, the optimal processing time of each
job, they introduced two heuristics for the problem.
The first heuristic is a GRASP algorithm where a
schedule is built by a randomized dispatching rule,
then the compression level of each job is obtained by
applying the timing algorithm. The second heuris-
tic is an approximation algorithm obtained by the
adaptation of an algorithm for the intervals selection
problem.

Local search methods are often effective for schedul-
ing problems. (Laguna et al., 1991) studied several
neighborhood structures to solve the single machine
scheduling problem to minimize the sum of delay and
setup costs. The neighborhood Reinsert consists in
taking a job in the schedule and moving it to another
position. The neighborhood Swap consists of swap-
ping two jobs in the schedule. They conclude that
Reinsert is better than Swap, but that using an Hy-
brid neighborhood yields better results. Hybrid is the
union of Swap and Reinsert.
(Jouglet et al., 2008) studied the single machine prob-
lem with release date and several objective functions.
They compared different greedy heuristics, and de-
signed an effective tabu search by using dominance
rules. They showed that using dominance rules can
improve tabu search.
(Bożejko, 2010) used a distributed scatter search al-
gorithm to solve the one machine scheduling problem
with setup times to minimize the weighted tardiness
(1|sij |

∑
wjTj). At each step, path relinking is used

to select the next solution in the neighborhood of the
current solution. He obtained good results.
(Shin et al., 2002) were interested in the one machine
scheduling problem with setup times and release date
to minimize the maximum lateness (1|rj , sij |Lmax).
They introduced a tabu search algorithm using Rein-
sert, Swap, Hybrid, and used a restriction: only the
jobs scheduled before the job responsible of Lmax can
be moved. This is justified by the fact that moving
others jobs will not decrease Lmax. Moreover only
the jobs contained in a subsequence of the schedule
are allowed to move. The first job of this subsequence
is called search line, and the size of the subsequence is
fixed. At each iteration the current search line moves.
(Liao and Juan, 2007) designed an ant colony algo-
rithm for the single machine problem with sequence

dependent setups to minimize the weighted tardiness.
(Zufferey et al., 2008) proposed a tabu search algo-
rithm and an adaptive memory algorithm for a satel-
lite range scheduling problem with time windows,
were the number of unperformed jobs has to be min-
imized. They took advantage of the graph coloring
literature to solve their problem.

The readers interested in an overview of scheduling
problem are referred to (Pinedo, 2008). The reminder
of the paper is organized as follows: in Section 2, a
formal description and an integer linear programming
formulation of (P) are given. In Section 3, a greedy
algorithm is introduced, while Section 4 describes a
tabu search approach for (P). Results are given in
Section 5. A conclusion ends up the paper.

2 Formal description of problem (P)

We are interested in a one machine scheduling prob-
lem in which n jobs have to be scheduled. For each
job a release date rj is given: it is the time from which
it is possible to start processing job j. In manufac-
turing, it can be the time at which the raw material
is expected to be delivered. Deadlines d̄j are given: a
job cannot end after its deadline. The deadline d̄j is
different from the due date dj . Scheduling a job after
its deadline is not possible. It may for instance be the
time after which the penalty cost of scheduling late
is higher than the cost of not performing the job, or
the time after which the customer does not want to
be served. Thus each job must be performed within
a time window [rj ; d̄j]. Jobs are allowed to be unper-
formed: in this case a fixed penalty uj is paid.
Jobs belong to different families. When the machine
successively processes two jobs of different families, a
setup must be performed. This implies a setup time
sij , which is the time to tune the machine, and a setup
cost cij (to pay employees which setup the machine
and the needed material). At the beginning, the ma-
chine is in an initial state, which we represent by a
dummy job 0 such that p0 = 0. s0j (resp. c0j) is the
necessary setup time (resp. cost) between the initial
state and job j, which must be taken into account if j
is scheduled in first position. The objective function∑

j fj(Cj) is a sum, over all the jobs, of regular (i.e.
non decreasing) functions depending on the comple-
tion times Cj . We consider general cost functions,
allowing our algorithm to solve different problems, or
even to use different cost functions for the different
jobs.

We present now an integer linear formulation for (P),
for which we assume that:

• xjk = 1 if job k follows job j, 0 otherwise;

• zj = 1 if j is unperformed, 0 otherwise;

• tj is the starting time of job j.

MOSIM’12 - June 06-08, 2012 - Bordeaux - France

For the need of the formulation, we artificially add
a last job n + 1. We have pn+1 = 0, s(j)(n+1) =
0, c(j)(n+1) = 0, ∀ j.

min

 n∑
j=0

n+1∑
k=1

xjkcjk+
n∑

j=1

[fj(Cj) + zj(uj−f(rj))]

(1)
s.t.

Cj = tj + pj ∀j (2)

tj ≥ Ck + skj xkj + (xkj − 1) d̄k ∀j, k (3)

tj ≥ rj and Cj ≤ d̄j + zj (rj − d̄j) ∀j (4)

zj +
n+1∑
k=1

xjk = 1 ∀j ̸= n+ 1 (5)

zj +

n∑
k=0

xkj = 1 ∀j ̸= 0 (6)

n+1∑
j=0

xj0 = 0 and
n+1∑
j=0

x(n+1)j = 0 and t0 = 0 (7)

xjk ∈ {0, 1} zj ∈ {0, 1} ∀j (8)

Equation (1) gives the objective function: it is the
sum of setup costs, and, for each job, its cost fj(Cj)
if it is performed, and its unperformed penalty uj oth-
erwise. The completion time of each unperformed job
is virtually set to its release date rj by equation (4).
For this reason in equation (1), for each unperformed
job, we add its unperformed cost uj and remove the
cost f(rj) associated with its release date. (2) gives
the completion time. (3) is used to compute the start-
ing time of each job. If j follows k, j must start after
the end of k plus the required setup time, otherwise
(xkj − 1) is equal to −1, and the resulting constraint
is less restrictive than Cj ≥ 0, as d̄k ≥ Ck. (4) en-
forces each performed job to be scheduled within its
time window, and each unperformed job to be sched-
uled at rj . (5) and (6) specify that each job must
have a successor and a predecessor or being unper-
formed. (7) constraints job 0 to have no predecessor,
job n+ 1 to have no successor, and the starting time
of the schedule is 0.

In our model, a solution is represented by an ordered
list Π of jobs and a set Ω of unperformed jobs. Let
π(p) be the index of job scheduled at position p. Thus,
a sequence Π with n′ ≤ n elements can be denoted
by Π = [π(1), π(2), . . . , π(n′)]. Since the objective
functions are regular, we can easily build the schedule
from Π by setting the starting time of a job to the
earliest feasible time as follows:

tπ(p) = max{Cπ(p−1) + pπ(p) + sπ(p−1)π(p), rπ(p)} (9)

Assuming π(0) = 0, the cost function can then be
computed by:

∑
j∈Ω

uj +
n′∑
p=1

fπ(p)(Cπ(p)) +
n′−1∑
p=0

cπ(p)π(p+1) (10)

3 Greedy algorithm for (P)

A combinatorial optimization problem is defined by
a set of admissible solutions S and an objective func-
tion f . A solution is called admissible if it satisfies
all the constraints. The goal is to minimize (or max-
imize) f over S.
For some problems, there exists no algorithm able to
find an optimal solution in a polynomial time. Heuris-
tics permit to find satisfying solutions to the prob-
lem in a reasonable amount of time. There are three
main kinds of heuristics: constructive heuristics, local
search methods, and evolutionary algorithms. Meta-
heuristics are higher level approaches, which try to
combine problem specifics methods in order to ob-
tain better solutions. (Blum and Roli, 2003) provide
an overview on metaheuristics. For sake of simplicity,
we will only use the word heuristic in the reminder of
the paper.
A constructive heuristic builds a solution by starting
from scratch. It adds elements step by step to the
solution until it reaches a complete solution.

In the following, a greedy heuristic for (P) is intro-
duced. It will then be used to generate initial solu-
tions for tabu search, which is a local search method.

The algorithm begins with an empty schedule. Jobs
are then taken one by one and placed in the sched-
ule. Each step consists in finding the best place for
the considered job j by taking into account only jobs
which have already been scheduled. Job j can be in-
serted between all already scheduled jobs, and at the
extremities of the sequence. For every possible place,
the cost function is computed, and there is also the
possibility of letting the job unperformed. The posi-
tion which minimizes the cost is chosen. As the jobs
are scheduled as early as possible with respect to the
sequence, inserting a job before another can shift the
entire schedule, thus it is necessary to be careful when
computing the cost function at each step. By shifting
a part of the schedule to the right, some jobs may
end after their deadlines: they will then enter in the
unperformed set. Note that the cost function is com-
puted after having shifted and removed the jobs, thus
jobs become unperformed only if it is better to do it.

We have to compute the cost function for each job
and each possible position, thus the cost function is
computed approximately n2 times. Computing the
cost function can be done in O(n) in the worst case.
Thus this algorithm runs in O(n3)

MOSIM’12 - June 06-08, 2012 - Bordeaux - France

The order in which jobs are inserted into the schedule
has an influence on the results. After having tested
several possibilities to sort the jobs, we decided to
sort the jobs by:

• increasing slack times (d̄j − rj − pj);

• ties are broken by decreasing uj ;

• if there remain ties, they are broken randomly.

In order to reduce the time spent to reconstruct the
schedule and to compute the cost function each time
a job is added, we use an incremental cost function. If
we add job j at position p, the incremental cost func-
tion aims at computing the difference in cost between
the old schedule and the new one.

The cost due to the insertion of job j comprises the
cost of the job itself (i.e. fj(Cj)), the setup cost and
the cost associated with the shifting process. It is
straightforward to obtain the difference in setup cost
if j is inserted at position p: cπ(p−1)j + cjπ(p+1) −
cπ(p−1)(p+1).

We have now to compute the augmentation of the
cost ∆ due to the shifting process, which we seek to
minimize. If Cj denotes the completion time of job
j before the insertion, and C ′

j the completion time of

j after the move, then ∆ =
∑n

j=1(fj(C
′
j) − fj(Cj)).

By inserting a job j at position p, the completion
times of the jobs before position p do not change (i.e.
Cπ(x) = C ′

π(x)∀x < p). The jobs after position p
are shifted to the right. If there is idle time in the
schedule, not all jobs are going to be shifted.

Figure 1 gives an example where adding a job shifts
only one job. We assume that job 4 is scheduled at
its release date, and there is some idle time between
job 3 and 4. Inserting job 6 between jobs 2 and 3 will
thus shift job 3 but not job 4. And all the reminder
of the schedule keeps the same starting time.

Figure 1: Insertion without an entire shifting

Note that the same thing can happen if a job is
dropped during the shifting process. Hence, to com-
pute the incremental cost, we start after the just in-
serted job, and compute all the completion times of
the following jobs. We stop as soon as the starting
time of a job remains unchanged. Assuming a job j

is inserted at position p, an algorithm is given in Fig-
ure 2, which computes the cost associated with the
shifting process.

set x = p.
compute the completion time of job π(x)
while the completion time of π(x) changes, do

if π(x) ends after its dead line, then
add the unperformed cost uπ(x)

subtract fπ(x)(Cπ(x))
update the setup cost:
−cπ(x−1)π(x) − cπ(x)π(x+1) + cπ(x−1)π(x+1)

else
add fπ(x)(C

′
π(x)) and subtract fπ(x)(Cπ(x))

end if
set x = x+ 1
compute the completion time of π(x).

end while

Figure 2: Incremental cost function

The greedy algorithm still runs in O(n3) in the worst
case, but on the considered manufacturing bench-
mark instances, the algorithm is in average 20 times
faster with the incremental cost function than with-
out.

4 Local search methods for (P)

4.1 Overall consideration

Local search methods need an initial solution, and
then explore the solution space by going from the
current solution s to a neighbor solution s′, which
is often obtained by making a slight modification on
s. The modification is called a move, and the neigh-
borhood N(s) of a solution s is the set of solutions
obtained by applying to s all possible moves.

A simple local search is the descent algorithm. Start-
ing from a solution s, the descent algorithm explores
all neighbors of s, and set as next current solution
the solution in N(s) which minimizes the objective
function. The main issue with this method is that it
is very likely to bring the search in a local optimum.
To overcome this issue, tabu search makes use of re-
cent memory, with a so called tabu list. It forbids
to perform the reverse of the moves done during the
last t iterations, where t is called tabu tenure. Read-
ers interested by more information on tabu search are
referred to (Glover and Laguna, 1999).

To have a good control on the search, the structure
of a neighbor solution of s must be close to s, which
means that each move should perform a slight modi-
fication of the solution. In other words, two neighbor
solutions should have a relatively common structure.
In addition, the neighborhood structure must allow to
reach the optimal solution from any solution s. An

MOSIM’12 - June 06-08, 2012 - Bordeaux - France

easy way to achieve this goal is to be able to reach
any solution from any other solution by performing a
sequence of moves.

For some problems and some move definitions, it can
take a long time to visit all neighbors at each iter-
ation. To tackle this issue, we can make use of the
first improving move strategy: it consists in stopping
exploring the neighborhood of the current solution as
soon as a solution having a better cost than the cur-
rent solution is found. Another way is to use restric-
tions: instead of browsing the whole neighborhood of
a solution, a subset is used. The idea is to select, at
each iteration, the best solution into the subset. An-
other aim of using such restrictions is to have a less
aggressive and deterministic strategy and avoiding to
be quickly trapped in a local optimum.

4.2 Neighborhood structures

We propose to use the following neighborhoods:

• Neighborhood 1 (Reinsert and shift and
drop) moves a job from a position p to any other
position p′. Once the move is done, jobs are
shifted to be scheduled as early as possible. Jobs
can be dropped if they end after their deadlines.

• Neighborhood 2 (Swap and shift and drop)
swaps two jobs. Once the move is done, the
schedule is shifted and jobs can be dropped if
they end after their deadlines. If Swap is jointly
used with Reinsert, swapping two consecutive
jobs is forbidden, because adjacent pairwise in-
terchange is included in Reinsert.

• Neighborhood 3 (Add and shift and drop)
adds a job from the unscheduled set at a posi-
tion p and the schedule is shifted. Jobs can be
dropped if they end after their deadlines.

• Neighborhood 4 (Drop and shift) drops a
job and shift the right part of the schedule to
the left. Due to the shifting process, dropping a
job can reduce the value of the cost function.

None of these neighborhoods can be used alone be-
cause a single one does not allow to reach all possible
solutions (which means that the search space is not
connected). Add must be present: it allows, once a
job has been dropped, to again visit solutions con-
taining the deleted job. Several papers (e.g. (Laguna
et al., 1991) and (Shin et al., 2002)) showed that us-
ing hybrid moves (i.e. union of several moves) leads
to better results: we will also do it. At each iter-
ation, we apply to the current solution all possible
moves (namely Reinsert, Swap, Add, and Drop) and
we chose the neighbor solution which minimizes the
cost.

On the one hand, we develop a descent algorithm us-
ing the four neighborhoods. It starts from an initial
solution generated by the greedy algorithm. At each
iteration, it generates the neighborhood of a solution
and takes as next solution the best of them.

On the other hand, we propose a tabu search by
adding tabu structures to the above descent algo-
rithm. We design four tabu structures: (1) when
a job has been added into the schedule, it cannot be
dropped during t1 iterations, and it cannot be moved
(by any of the moves) during t2 iterations; (2) when
a job has been dropped, it cannot be added during
t3 iterations. Note that, for this tabu structure, the
job is considered dropped only by Neighborhood 4
and not by the shift and drop procedure; (3) when a
job has been reinserted, it cannot be moved during t2
iterations and it cannot return between its two pre-
vious adjacent jobs during t4 iterations; (4) when a
job has been swapped, it cannot be moved during t2
iterations and it cannot return between its two previ-
ous neighboring jobs during t4 iterations. t1, t2, t3, t4
are parameters of the algorithm. We propose t2 < t4
because the tabu structure associated with t2 is more
restrictive than the one associated with t4.

4.3 Other ingredients

In this subsection, we present other ingredients which
are useful within the proposed local search methods:
a way to quickly evaluate a neighbor solution (incre-
mental cost), a way to reduce the size of the generated
neighborhood at each iteration (restrictions), and a
powerful tabu tenure which forbids solution values
(and not solution attributes).

Incremental cost. The incremental cost function
defined in Figure 2 can be adapted to the moves de-
fined above. For instance, if we consider Reinsert,
it is straightforward to obtain the difference in setup
cost due to the move of a job j scheduled from po-
sition p to p′. We denote π(p) the job at position
p in the schedule before Reinsert. The setup cost is
updated as follows, where the first line is the cost
due to removing job j, and the second one is the cost
imputable to the insertion of job j at position p′.

cπ(p−1)π(p+1) − cjπ(p+1) − cπ(p−1)j

+ cjπ(p′) + cπ(p′−1)j − cπ(p′−1)π(p′)

The algorithm depicted in Figure 2, which computes
the difference due to the shifting of the job, must be
applied twice. One time by starting at the position
where the job has been removed (position p), and an-
other time by starting where it has been added (po-
sition p′). Assuming without loss of generality that

MOSIM’12 - June 06-08, 2012 - Bordeaux - France

p′ > p, we must be careful of not computing twice the
incremental cost of a job after p′.

Restrictions. The following restriction is applied.
We do not schedule a job j at position p if the job
currently scheduled at this position ends before the
release date of j (i.e. rj > Cπ(p)). If such a move is
performed, j is going to be shifted to its release date,
bringing with it all jobs scheduled between p and the
job being processed at rj . This leads to useless idle
time, and thus higher cost.

We implement a tabu search which uses such restric-
tions. In addition two other restrictions have been
tested: Random subset reduces the neighborhood
size by using a random subset made of q1% (param-
eter) of the entire neighborhood of the current so-
lution; First improving move stops exploring the
neighborhood of a solution as soon as an improving
move is found (in order to avoid any bias, we ran-
domly scan the neighbor solutions).

TabuCost. Preliminary experiments showed that
there exist many solutions in the neighborhood with
the same value.

Figure 3: Example of equivalent solution

In the example depicted in Figure 3, we assume that
jobs 1, 2, 3 and 4 belong to the same family, thus
there is no setup cost between them. We also as-
sume that all jobs have the same release date a, and
that the cost function of all jobs (fj) is constant over
[a, b]. Jobs 1 to 4 might be positioned in any order
before b, the cost remains the same as the beginning
of job 5 remains the same, and the reminder of the
schedule is unchanged. Note that this situation is
specific to the case where the fj ’s are constant over
some intervals. This has the effect to bring the search
into a local optimum. Once the solution cannot be
improved, only moves leading to an equivalent solu-
tion are performed. To tackle this problem, (Jouglet
et al., 2008) propose to associate a tabu status with
the value of the recently visited solutions: the solu-
tions which lead to such costs are tabu. This tabu
structure has been implemented and is called Tabu-
Cost in the reminder of the document. We denote
the tabu tenure of TabuCost by t5.

5 Experiments

In this section, we first present the way to read the
considered benchmark instances, and then describe
and discuss the performed experiments.

5.1 Way to read the benchmark instances

The used test bed is called Manufacturing Schedul-
ing Library (Le Pape, 2007, Nuijten et al., 2004) and
denoted MaScLib in this paper. It is a library con-
taining instances of scheduling problems which are
inspired from real manufacturing cases. Such bench-
mark instances have been made available to the re-
search community by ILOG. Each instance contains
between 8 and 500 jobs. Thirty of them do not con-
sider setup costs or times (category NCOS), while
fourteen assume setup costs and times (STC NCOS).
Note that instances STC NCOS are not obtained by
simply adding setup cost on NCOS instances: the
data are very different. In order to facilitate the
work of researchers who might want to tackle the
same instances, we describe below the way we read
the data. We also provide, for instances NCOS 02
and NCOS 01, the associated data and the best so-
lution found by one of the proposed algorithms.

Each MaScLib instance is represented by a set of
tables (e.g., ACTIVITY , MODE , DUE DATE , and
SETUP MATRIX). We give below, for each compo-
nent of the problem, the column where the associ-
ated value can be found. If COLUMN [j] denotes the
value of the attribute COLUMN at the row having
ACTIVITY ID = j, we have from table MODE : pj =
PROCESSING TIME [j], rj = START MIN [j], d̄j =
END MAX [j], and uj = UNPERFORMED COST [j].
From table DUE DATE , we have dj = DUE TIME [j]
and wj = TARDINESS VARIABLE COST [j]. The
family of job j is given in table ACTIVITY , in col-
umn SETUP STATE [j]. The setup times (resp. costs)
can be found in table SETUP MATRIX , in column
SETUP TIME (resp. SETUP COST). A MODE COST

is given in table MODE . Looking at the MaScLib
tables definition (which were provided with the in-
stances), the mode cost is the ”cost associated with
the activity when processed in this mode”. Thus
we add this cost to each performed job, assuming
it models a fixed cost which has to be paid in or-
der to process the jobs. Therefore, we have fj(Cj) =
MODE COST [j] + wj ·max(0, Cj − dj).

By using the above way of reading the data, it may
happen that, in the initial problem (denoted P1), the
cost associated with job j if scheduled at its deadline
is lower than the unperformed cost (i.e., fj(d̄j) > uj).
In other words, it is preferable to reject j rather than
to schedule it late. In such a case, a preprocessing
procedure is used to create a new problem (denoted
P2) by changing the value of d̄j such that fj(d̄j) = uj .
Obviously, any feasible solution of (P2) is feasible for
(P1), and all optimal solutions of (P2) are optimal
solutions for (P1). The data associated with instance
NCOS 01 (resp. NCOS 02) are given in Table 3
(resp. Table 1). Table 4 gives a feasible solution for
instance NCOS 01, and its total cost is 800. Table 2

MOSIM’12 - June 06-08, 2012 - Bordeaux - France

gives a feasible solution for NCOS 02, and its total
cost is 2570.

Table 1: Data read from NCOS 02

j pj rj d̄j uj fj(Cj)

0 70 0 20000 950 100 + max{0, 3 · (Cj − 680)}
1 70 0 20000 950 100 + max{0, 3 · (Cj − 720)}
2 90 0 20000 1250 100 + max{0, 7 · (Cj − 640)}
3 90 0 20000 1250 100 + max{0, 7 · (Cj − 560)}
4 90 0 20000 1250 100 + max{0, 7 · (Cj − 800)}
5 70 0 20000 950 100 + max{0, 3 · (Cj − 160)}
6 90 0 20000 1250 100 + max{0, 7 · (Cj − 80) }
7 90 0 20000 1250 100 + max{0, 7 · (Cj − 120)}
8 90 0 20000 1250 100 + max{0, 7 · (Cj − 280)}
9 90 0 20000 1250 100 + max{0, 7 · (Cj − 280)}

Table 2: A feasible solution for NCOS 02

Performed j 7 5 9 8 3 1 2 0 4
tj 0 90 160 250 340 430 500 590 660
Cj 90 160 250 340 430 500 590 660 750

fj(Cj) 100 100 100 520 100 100 100 100 100

Rejected j 6
uj 1250

Table 3: Data read from NCOS 01

j pj rj d̄j uj fj(Cj)

0 10 0 1000 100 100 + max{0, 2 · (Cj − 395)}
1 30 30 1000 100 100 + max{0, 2 · (Cj − 105)}
2 135 315 1000 100 100 + max{0, 2 · (Cj − 840)}
3 170 155 1000 300 100 + max{0, 2 · (Cj − 680)}
4 45 40 1000 100 100 + max{0, 2 · (Cj − 105)}
5 45 40 1000 100 100 + max{0, 2 · (Cj − 900)}
6 30 30 1000 100 100 + max{0, 2 · (Cj − 635)}
7 170 165 1000 300 100 + max{0, 2 · (Cj − 495)}

Table 4: A feasible solution for NCOS 01

Performed j 6 0 5 3 7
tj 30 60 70 155 325
Cj 60 70 115 325 495

fj(Cj) 100 100 100 100 100

Rejected j 4 1 2
uj 100 100 100

5.2 Results

We now present the tested algorithms, each of them
aims in underlying the contribution of an ingredient.

Greedy is the algorithm presented in Section 3. In
the purpose of comparing Greedy with other algo-
rithms, we restart Greedy during 10 minutes. The
algorithm returns the best encountered value. For all
local search algorithms, we used a time limit of 10
minutes (preliminary tests showed that running the
algorithms more than 10 minutes does not improve
the results).

Descent is implemented as described in Section 4.

Tabu1 is the tabu search obtained by adding tabu
lists to the descent algorithm. The used tabu tenures

are: t1 = 15, t2 = 120, t3 = 12, t4 = 40, for the
large instances (more than 75 jobs), and t1 = 1, t2 =
3, t3 = 1, t4 = 2 for the small ones. Informal tests
showed that using more refined tabu tenures did not
improve the results.

Tabu2 adds restrictions to Tabu1, its purpose is to
show the effect of the defined restrictions. We used
the first improving move strategy in a random subset
of neighbors. The size of the subset is q1 = 15%.

Tabu3 is an extension of Tabu2 by adding TabuCost
to it. We used t5 = 40 for the large instances, and
t5 = 3 for the small ones.

The algorithms were implemented in C++ and ran
on a computer with processor Intel i7 Quandcore
(2.93 GHz RAM 8 Go DDR3). In order to compare
our results with (Baptiste and Le Pape, 2005),
the cost function is: fj = wj · Tj , where Tj is the
tardiness cost. If we call dj the due date and Cj

the completion time, we have Tj = max{0;Cj − dj}.
For each algorithm, we compute the average of the
results obtained over 10 runs.

Table 5 contains the results for the instance hav-
ing setup times and costs. For instances without
setups, results can be found in Table 6. The tables
contain, in column Best, the best result found by a
single run of one of our algorithms. Then, for each
algorithm, the percentage gap between the average
result over the 10 runs and Best can be found:
Gap = 100 · Average−Best

Best . The column Baptiste
designates upper bound results found in (Baptiste
and Le Pape, 2005).

Results show that the most refined version of tabu
search is competitive: in average, it improves by ap-
proximately 20% the results found in (Baptiste and
Le Pape, 2005). The improvements are larger when
considering setups. Results also allow to highlight
the impact of each proposed ingredient. Descent was
about 9% better than Greedy. Tabu1 slightly im-
proves Descent : the gap is around 0.1% between
those methods (such a small gap is probably due
to the equivalent solutions issue described when pre-
senting TabuCost). Using restrictions, Tabu2 allows
tabu search to perform more iterations, but in coun-
terpart fewer neighbors are evaluated at each itera-
tion. While adjusting the neighborhood restriction
process, a balance between intensification (i.e., ex-
amination of all the neighbor solutions at each itera-
tion) and diversification (i.e., a significant reduction
of the explored neighborhood) must be found: the
gap between Tabu2 and Tabu1 is around 1.3%. The
TabuCost ingredient belongs to Tabu3 : it leads to an
improvement of 0.3% over Tabu2.

MOSIM’12 - June 06-08, 2012 - Bordeaux - France

Table 5: Results for instances with setups

Instance Size Best Baptiste Greedy Descent Tabu1 Tabu2 Tabu3

STC NCOS 01 8 700 31.43 41.43 0.00 0.00 0.00 0.00

STC NCOS 01a 8 610 65.57 70.49 0.00 0.00 0.00 0.00

STC NCOS 15 30 17,611 26.74 0.22 0.00 0.00 0.00 0.00

STC NCOS 15a 30 5,584 15.49 0.05 0.00 0.00 0.00 0.00

STC NCOS 31 75 6,615 0.00 15.42 3.79 3.36 9.35 4.20

STC NCOS 31a 75 7,590 0.00 26.10 3.67 2.93 6.85 4.62

STC NCOS 32 75 24,048 7.18 4.75 2.82 2.65 2.01 0.90

STC NCOS 32a 75 16,798 0.65 3.92 0.00 0.00 0.00 0.29

STC NCOS 41 90 44,641 91.25 9.24 0.04 0.04 0.03 0.05

STC NCOS 41a 90 19,092 40.52 4.30 0.02 0.03 0.03 0.03

STC NCOS 51 200 139,675 121.06 78.25 54.64 54.64 0.00 0.00

STC NCOS 51a 200 210,970 51.08 19.57 0.00 0.00 0.00 0.00

STC NCOS 61 500 1,495,045 0.00 0.00 0.00 0.00 0.00 0.00

STC NCOS 61a 500 1,814,605 0.36 0.09 0.00 0.00 0.00 0.00

AVERAGE 32.24 19.56 4.64 4.55 1.30 0.72

Table 6: Results for instances without setup

Instance Size Best Baptiste Greedy Descent Tabu1 Tabu2 Tabu3

NCOS 01 8 800 0.00 0.00 0.00 0.00 0.00 0.00

NCOS 01a 8 800 0.00 0.00 0.00 0.00 0.00 0.00

NCOS 02 10 2,570 6.61 12.84 12.84 10.27 0.00 0.00

NCOS 02a 10 1,210 9.09 0.83 0.83 0.74 0.83 0.00

NCOS 03 10 6,460 0.77 11.15 0.00 0.00 0.00 0.00

NCOS 03a 10 1,690 5.33 14.20 0.00 0.00 0.00 0.00

NCOS 04 10 1,011 0.00 0.00 0.00 0.00 0.00 0.00

NCOS 04a 10 1,008 0.00 0.00 0.00 0.00 0.00 0.00

NCOS 05 15 1,500 0.00 0.00 0.00 0.00 0.00 0.00

NCOS 05a 15 1,500 0.00 0.00 0.00 0.00 0.00 0.00

NCOS 11 20 2,022 0.00 6.08 0.00 0.00 0.00 0.00

NCOS 11a 20 2,006 0.00 0.00 0.00 0.00 0.00 0.00

NCOS 12 24 6,844 23.09 9.96 0.00 0.00 0.00 0.00

NCOS 12a 24 4,270 26.74 11.08 0.00 0.00 0.00 0.00

NCOS 13 24 3,912 30.93 19.33 3.94 3.15 0.92 0.00

NCOS 13a 24 3,441 18.83 13.25 0.00 0.00 0.29 0.00

NCOS 14 25 6,990 6.58 0.00 0.00 0.00 0.00 0.00

NCOS 14a 25 3,195 1.10 10.64 0.00 0.00 0.00 0.00

NCOS 15 30 3,052 0.00 0.00 0.00 0.00 0.00 0.00

NCOS 15a 30 3,035 0.00 0.49 0.00 0.00 0.00 0.00

NCOS 31 75 9,550 92.04 7.43 0.52 0.94 2.31 1.43

NCOS 31a 75 8,740 106.35 7.84 0.13 0.00 0.00 2.32

NCOS 32 75 17,310 8.84 4.22 2.20 2.20 1.72 0.00

NCOS 32a 75 14,720 2.11 1.36 0.00 0.00 0.00 0.65

NCOS 41 90 13,483 131.09 34.93 0.35 0.35 0.28 0.11

NCOS 41a 90 10,546 20.03 14.14 0.64 0.58 0.26 0.03

NCOS 51 200 36,170 6.25 5.67 0.08 0.07 0.19 0.00

NCOS 51a 200 36,170 6.25 5.67 0.08 0.07 0.08 0.00

NCOS 61 500 1,269,365 0.27 0.19 0.00 0.00 0.00 0.00

NCOS 61a 500 1,485,232 0.53 0.10 0.00 0.00 0.00 0.00

AVERAGE 16.76 6.38 0.72 0.61 0.23 0.15

MOSIM’12 - June 06-08, 2012 - Bordeaux - France

6 Conclusion

In this paper, we consider a one machine scheduling
problem with release dates, setups, deadlines, and the
possibility of leaving jobs unperformed. This is a new
problem, which is relevant in practice. It was intro-
duced by Baptiste and Le Pape (2005) and there is no
existing heuristic for it. We introduce a integer linear
formulation for the problem, a greedy heuristic, and
we design a tabu search which is efficient compared
to the solution proposed by Baptiste and Le Pape
(2005). We proposed and tested different ingredients
for tabu search, and demonstrate their efficiency in
solving manufacturing case instances.

Future work consists in the development of hybrid
metaheuristics for the same problem, and to study
some extensions of the problem (e.g. several ma-
chines, non regular cost functions).

References

Baptiste, P. and Le Pape, C. (2005). Scheduling a sin-
gle machine to minimize a regular objective func-
tion under setup constraints, Discrete Optimization
2(1): 83–99.

Blum, C. and Roli, A. (2003). Metaheuristics in
Combinatorial Optimization: Overview and Con-
ceptual Comparison, ACM Computing Surveys 35
(3): 268–308.

Bożejko, W. (2010). Parallel path relinking method
for the single machine total weighted tardiness
problem with sequence-dependent setups, Journal
of Intelligent Manufacturing 21: 777–785.

Chang, T.-Y., Chou, F.-D. and Lee, C.-E. (2004).
A heuristic algorithm to minimize total weighted
tardiness on a single machine with release dates
and sequence-dependent setup times, Journal
of the Chinese Institute of Industrial Engineers
21(3): 289–300.

Du, J. . and Leung, J. Y. (1990). Minimizing total
tardiness on one machine is NP-hard, Mathematics
of Operations Research 15: 483–495.

Glover, F. and Laguna, M. (1999). Tabu search,
Kluwer.

Jouglet, A., Savourey, D., Carlier, J. and Baptiste,
P. (2008). Dominance-based heuristics for one-
machine total cost scheduling problems, European
Journal of Operational Research 184(3): 879–899.

Laguna, M., Barnes, J. W. and Glover, F. (1991).
Tabu search methods for a single machine schedul-
ing problem, Journal of Intelligent Manufacturing
2: 63–73. 10.1007/BF01471219.

Le Pape, C. (2007). A Test Bed for Manufactur-
ing Planning and Scheduling Discussion of Design
Principles, International Workshop on Scheduling a
Scheduling Competition, Providence Rhode Island
USA.

Liao, C.-J. and Juan, H.-C. (2007). An ant colony
optimization for single-machine tardiness schedul-
ing with sequence-dependent setups, Computers &
Operations Research 34(7): 1899–1909.

Nuijten, W., Bousonville, T., Focacci, F., Godard,
D. and Pape, C. L. (2004). Towards an industrial
manufacturing scheduling problem and test bed, In
Proceedings Project Management and Scheduling,
Nancy, pp. 162–165.

Oğuz, C., Sibel Salman, F. and Bilgintürk Yalçın, Z.
(2010). Order acceptance and scheduling decisions
in make-to-order systems, International Journal of
Production Economics 125(1): 200–211.

Pinedo, M. (2008). Scheduling: Theory, Algorithms,
and Systems, Springer.

Shin, H. J., Kim, C.-O. and Kim, S.-S. (2002). A
tabu search algorithm for single machine schedul-
ing with release times, due dates, and sequence-
dependent set-up times, The International Journal
of Advanced Manufacturing Technology 19: 859–
866.

Yang, B. and Geunes, J. (2007). A single resource
scheduling problem with job-selection flexibility,
tardiness costs and controllable processing times,
Computers & Industrial Engineering 53(3): 420 –
432.

Zufferey, N., Amstutz, P. and Giaccari, P. (2008).
Graph Colouring Approaches for a Satellite Range
Scheduling Problem, Journal of Scheduling 11
(4): 263 – 277.

