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ABSTRACT: This paper tackles the question of the anticipation of the supply chain partner’s decisional behaviour 

under uncertain criteria. In other words, we propose a model to support sequential decisions under uncertainty where 

the decision maker has to make hypothesis about the decision criteria. For example, Hurwicz criterion weights extreme 

optimism and pessimism positions and a classic criticism of this criterion consisting in the difficulty of the weight 

assessment and the involving decision instability. To achieve this, we present a method based on fuzzy representation of 

weight vision. Finally, the model allows sequential decision of a Decision Tree to be compute thanks a pignistic 

probabilities treatment of the fuzzy representation of the decision maker optimism-pessimism index. This approach is 

illustrated through an industrial case study. 
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1 INTRODUCTION 

1.1 Industrial problem statement 

For an industrial Decision Maker (DM) in a supply 

chain, the anticipation of his partners’ decisional 

behavior faced to uncertainty is a current complex real 

life situation. Knowing that his decision will be followed 

by a sequence of partners’ decisions and other uncertain 

events, he has to anticipate and integrate the rational 

behavior of these partners during their own decision-

making processes. In this paper, we more specifically  

consider a Supplier-Customer relationship from a dyadic 

supply chain. The customer is a worldwide dermo-

cosmetic manufacturer and the supplier is a packaging 

product manufacturer. We adopt the point of view of an 

industrial manager of the customer who has to study the 

possibility to improve his supply chain performance in 

implementing new forms of collaboration. He has to 

choose between traditional and advanced ordering 

methods (decision also called here collaboration protocol 

choice). Furthermore, a second decision will concern the 

parameter setting of this protocol. But, the customer DM 

knows that the supplier will define his lot sizing strategy 

in response (third decision). This situation may be 

described as a multi-agent sequential decision problem. 

In addition to the “sequential” dimension, the DM is 

confronted to a multi-actor problem. So, decisions will 

not be made with the same performance objective. Each 

actor may seek to achieve his or her own performance 

criteria (inventory level, stock-out, order fulfillment…). 

 

Furthermore, these sequential and multi-actor decisions 

have to be taken on the basis of future uncertain events 

(scraps, breakdowns, delays…). Here, we will not focus 

on the detail of these events. We only consider a global 

event that influences the performance evaluation. In our 

example, the customer is a worldwide manufacturer who 

is able to build and to analyze a lot of historical data. He 

can therefore have a given behavior in front of 

uncertainty. The problem is the anticipation of the 

partner’s behavior: optimistic, pessimistic…? 

 

1.2 Research objective 

A decision problem can be defined as a situation where a 

Decision Maker (DM) has to choose between several 

possibilities. This decision is referred to as a decision 

under or with uncertainty, when, at the decision time, the 

DM is not able to perfectly anticipate the results of his 

choices. Furthermore, in a real dynamic situation, the 

DM does not make a single decision, but a sequence 

thereof, characterized by a sequential arrival of relevant 

pieces of information. Consequently, the decision 

depends on the information available at the decision time 

such as a supplier who is waiting for the details of the 

contract with his customer to fix his 

inventory/production strategy according to his 

perception of the future possible market behavior. For all 

that, the first decision (protocol) has to take into account 

the future decisions (supplier’s inventory strategy) and 

events (uncertain performance). This kind of problem is 

called uncertain dynamic (or sequential) decision and is 

supported by the use of Decision Trees (DT).  

 



MOSIM’12 - June 06-08, 2012 - Bordeaux - France 

Whether individual or collective, a decision problem can 

be defined as a situation where a DM has to choose a 

decision d* among a set of possibilities,  
pddD ;...;1 , 

which have assessable consequences (Bouyssou et al. 

2009). Let S be the set of possible states of the world that 

will be met after choosing d* D , and X the set of the 

potential consequences. The DM’s choice of d* could be 

defined as a function fd* from S to X that associates to 

each possibility s  S a precise consequence fd*(s)  X. 

 
)(

:

*

*

sfs

XSf

d

d



  
(1)  

The value (also called utility function) attached to each 

result can be represented as an application u from X to RI   

that associates for each fd(s)  X a value u(fd(s))  RI  

(Von Neumann and Morgenstern 1947). 

     sfusf

Xu

dd 

R:   
(2)  

 

The expression “decision under uncertainty” is often 

used to describe a decision situation with a lack of 

knowledge about S. This lack of knowledge could be 

detailed in two points: (i) different states of the word 

could be met (S could be composed by more than a 

single state: S={s1;…;sS}) and (ii) the level of knowledge 

about the likelihood of each of these states may be poor. 

The terms “risk” and “uncertainty” are currently and 

differently used in the literature to describe this second 

dimension. According to Knight’s distinction (Knight 

1921), decisions under risk refer to decision situations 

where the DM is able to describe S by means of a known 

or a knowable probability distribution. Otherwise, he 

speaks about decision under uncertainty. 

 

Confronted to the lack of knowledge, each possible 

choice of DM induces two potential consequences. The 

choice made by the DM depends on the assessment 

made to characterize the two possible situations. 

Different evaluation functions (V) have been proposed 

to characterize the DM’s behavior in the face of risk or 

uncertainty. Faced with uncertainty, models based on 

likelihood assessment of the situation have been 

developed (Expected (V  EU) and Subjective Utilities 

(V  SEU), (Von Neumann et Morgenstern 1947; 

Savage 1954)). DT computation is based on these 

models. However, whether objective or subjective, the 

use of probability distributions is confronted to two main 

difficulties: (i) the DM’s capacity to estimate the 

probability of each possible event (Moussa et al. 2006); 

(ii) the problem of the unique probability assumption. 

We refer to the Allais paradox (EU) (Allais 1953) or 

Ellsberg paradox (SEU) (Ellsberg 1961); they show that 

the risk perception depends on the context and the DM. 

Therefore, in some cases, EU or SEU cannot describe the 

DM’s behavior and the decision theory proposes 

different criteria. If a uniform probability distribution on 

possible states is used, Laplace criterion  LV   is a 

probabilistic way to model the DM behavior faced to the 

lack of information. The Wald criterion, also called 

maximin  WV  and maximax  WV  is an 

approach based on a qualitative representation of the 

DM’s attraction to respectively the worst or the best 

situation (Wald 1950). Hurwitz (1951) proposes to 

weigh these two extreme behaviors with a parameter  

in order to reflect the DM’s pessimism degree (or 

optimism degree).  This criterion  HV   allows the 

DM’s optimism degree to be more precisely described. 

The Savage regret-based decision model (1951) (also 

called minmax regret  SV  ) proposes to make 

decisions based on the extent to which a decision-maker 

could have done better ex-post. 

 

Faced to this diversity of criteria, a lot of authors have 

studied the capability of each of them to model the 

behavior of the DM facing a lack of knowledge. The 

present paper is focused on the complete ignorance 

situation (no information about a probability 

distribution). Seale et al. (1995) underline the inability of 

SWWL ,,,   “to account for individual differences” 

between DMs. “Aside from differences in the utility for 

outcomes, all the DMs are supposed to behave 

identically. The only exception is Hurwicz model”. The 

differential subjective weighting factors allow variability 

in behavior across individuals to be represented (eq. 3). 

            sfusfufH d
Ss

d
Ss

du


 max1min   
(3)  

   du
Dd

fHd


 maxarg*  
(4)  

 

However, this coefficient (also called optimism-

pessimism (o-p) index) is also the weak point of the 

criterion (Seale et al. 1995, Ballestero 2002) :  (i) 

implicit is the assumption that each DM has a unique and 

stable o-p index; (ii) as shown by the multitude of 

questionnaires or other scales purporting to measure the 

o-p index, this evaluation is a hard task whose propensity 

to capture the actual o-p index is disputed; (iii) it is 

difficult to estimate the o-p index with precision from 

experimental protocols (an interval is easier); (iv) 

decision may be very unstable in the vicinity of 

particular value(s) of the o-p index (noted α* in the 

Figure 1) where the evaluations of each decision 

consequence may be close. 

 

Figure 1 illustrates the sensitivity of the evaluation 

function to the value of  where a DM has to choose 

between 2 decisions a1 and a2. In this example, a1 has to 

be preferred if  < * and a2 if  > *. 
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Figure 1 : Decision using Hurwicz coefficient 

The purpose of this paper is to tackle these weaknesses 

through the proposition of a model allowing a stable 

decision to be extracted from a fuzzy knowledge of a 

partner’s optimism-pessimism index.  

 

We propose the use of both Hurwicz criterion and 

pignistic probabilities (Smets, 2005) to compute decision 

trees. To achieve this, we provide some background on 

possibility theory, pignistic probability and decision 

trees. Then, we present our proposition to model and 

support the decision-making process. Finally, we 

illustrate this proposition through our industrial case 

study before concluding and proposing future research 

works. 

2 BACKGROUND 

2.1 Representation of imprecision 

In this section, we present a model to represent the 

imprecision on the information (possibility distribution) 

and a measure that evaluates the stability of the decision 

(pignistic probability).  

2.1.1 Possibility distribution  

Imprecise information is modeled by expressions of the 

form Av  where A is a subset of S that contains more 

than one element. Imprecision is always expressed by a 

disjunction of values (Dubois and Prade, 2009) defined 

by a possibility distribution on S. Av  means that all 

values from v outside A are supposed to be impossible.  

 

A possibility distribution v  attached to an ill-known 

quantity v quantifies the plausibility of values taken by v. 

v  is a function of S into the scale of plausibility L 

([0,1] for numerical possibility). 

 

A numerical possibility distribution defines a random set 

(m,F)π , having, for i=1,…,M, the following focal sets Ei 

with masses m(Ei) (Dubois and Prade 1982) : 

 

 










1)(

)(

iii

ii

Em

xSxE




 (5) 

 

2.1.2 Pignistic probability distribution  

The pignistic probability is based on the Laplace 

principle, it consists in supposing an equal repartition of 

masses m(E) over each element of focal set E for a 

random set (m,F) (eq.6). It has been proposed by (Smets, 

2005) and is equivalent to the Shapley value (Shapley 

1953) in game theory. 

 

Sx
E

Em
xPg

FxSE

S  
 ,

)(
)( . (6) 

The pignistic probability distribution is used in 

simulation of “fuzzy variables” (Chanas and 

Nowakowski, 1988). It can be viewed as the subjective 

probability the decision-maker would provide, had his 

knowledge be faithfully represented by the possibility 

distribution v . 

For example, we have possibility distribution over two 

possible criteria: 1)( 1  c  8.0)( 2  c . To compute 

the pignistic probability of each criterion 

 Let us first compute the masses )( iEm  of the criterion.  

In this case, the values of i  are linked to the possibility 

degree of the choice of the different criteria: thus they 

are discrete values: 00  ; 8.01  ; 12  . 

–  211 ;ccE   with 08.0)( 1 Em  

–  12 cE   with 8.01)( 2 Em  

From equation 6 we have 4.0
2

8.0

2

)(
)( 1

1 
Em

cPg  

and 6.02.0
2

8.0

1

)(

2

)(
)( 21

1 
EmEm

cPg   

 

Motivation: While in a finite case providing subjective 

probability degrees makes sense, it is too difficult for a 

DM to provide precise continuous subjective probability. 

In that case it is more user-friendly to ask for weak 

information (like support and mode), represent it 

faithfully in possibility theory, and extract the pignistic 

probability from it.  

 

2.2 Sequential decision  

In a real dynamic situation, the DM does not make a 

single decision, but a sequence of decisions 

characterized by a sequential arrival of relevant pieces 

information. This type of problem is called uncertain 

dynamic decision. The decision made at time t depends 

on the information available at t. By hypothesis, the 

information known at t is still known at t+t . The 

incoming information is currently presented as “events. 

They are the results of an external independent entity, for 

example nature. In such conditions, we can call 

 m

ttt ee ;...;1  and  n

ttt ee 1

1

11 ;...;    the sets of known 

events at time t and t+1. t+1 defines a partition of the 

set t . We call  T

T

DDD ,...,1  the set of decisions that 

have been made at times (D1) < time(D2) < … < 

time(DT) respectively. 
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This kind of problem has induced many research works 

and specifically in the Artificial Intelligence literature. 

They are relevant in situations where a DM has a 

sequence of decisions (at prescribed times) to make. In 

this context, a strategy, called , is defined as a 

particular sequence of choices among the decisions (one 

choice per decision). The set of all strategies is denoted 

by 
T

 . The target is therefore to support the DM who 

must choose the best strategy, 


T
max* . All decisions 

are fixed when the strategy is applied. 

 

A Decision Tree (DT) is often used to represent this kind 

of decisions. A DT may be defined as a directed graph T 

= (Ɲ,Ɛ) with Ɲ the set of nodes and Ɛ the set of arcs 

inside which there exists a unique node (root node), from 

which there is a single path between each node. The set 

of nodes is made of (Nielsen and Jaffray 2006): 

– ƝD : the set of decision nodes (represented by 

squares). They characterize states where the DM 

has to decide and to choose one alternative among 

several ones. Each output arc of a decision node 

represents an alternative (some d  
i

D ) ; 

– ƝC : the set of chance (or event) nodes (represented 

by circles). Event nodes represent the sources of 

uncertainty in the problem, i.e. nature states. Each 

output arc of an event node shows a possible state 

of the world after the event occurred (some s  S); 

– C : the set of terminal nodes (leaves). A leaf is 

defined as a node without children (child(N)=, 

with NC) and represents a terminal state of the 

sequential decision problem (a final consequence). 

A utility value is associated to each node (u(N), N 
 C). 

In a DT, a strategy  is therefore defined as a set of arcs: 

 = {(N, N’) : N  ƝD

, N’ Ɲ


}  Ɛ where ƝD


 = ƝD  

Ɲ

 and Ɲ


  Ɲ is the set of nodes involved in the 

strategy , i.e. the set of nodes made of : 

– The root node : Nr (a decision by hypothesis); 

– A unique child for each decision of the strategy, i.e. 

N  ƝD

 
; 

– All the children of an event node met in the 

strategy, i.e. N  ƝC


 = ƝC  Ɲ


. 

We call 
T

 , the set of strategies in a given DT, T. An 

example of DT is given on Figure 2. It represents a 

decision situation where a DM has to decide D1, then the 

event E1 will occur, after what a second decision D2 will 

be made followed by a last event E2. Formally: 

– ƝD ={D1; D2}, with  2

1

1

1

1

;ddD    and  2

2

1

2

2

;ddD   ; 

– ƝC ={E1; E2}, with 
 2

1

1

1 ;
1

eeSE 
 and 

 2

2

1

2;
2

eeSE  ; 

–  2

1

1

11 ;ee  and 

 1

2

2

1

1

2

2

1

2

2

1

1

1

2

1

12 ;;; eeeeeeee   
 

 
Figure 2 : Example of Decision Tree 

Table 1 provides the list of strategies induced by this 

tree. The strategy illustrated on Figure 2 (in bold) 

appears in grey in the Table 1. Enumerating the 

strategies may become a very hard computational 

problem because of the complexity of the decision 

situation (the number of strategies increases 

exponentially). Different methods have been proposed to 

find the best strategy. 

Table 1: Enumeration of strategies 

The main method is based on the backward induction 

principle (or dynamic programming).  The DT is visited 

from the leaves to the root by reasoning on subtrees. It is 

based on the consequentialism concept, proposed by 

Hammond (1988) then discussed by Machina (1989). To 

summarize, a consequentialist DM does not take into 

account past events and is focused only on the future 

choices and events. It is now demonstrated that this 

sophisticated behavior is efficient for probabilistic 

models. However, with non-probabilistic models, it may 

fail to extract the best strategy from 
T

 . Therefore, 

alternative approaches have been developed such as 

Resolute Choice by (McClennen (1990), or Veto-Process 

by Jaffray  (1999) and Nielsen and Jaffray (2006). The 

first one enforces, by definition, the dynamic consistency 

of the DM. The second one allows dynamic 

programming advantages to be preserved by extending 

the spectrum of strategies considered by each node. 

 

Strategy Description Consequences 

    2 cardcard
i


 
Eval. 

1  2

1

1

2

1

1

1

2

1

1 ;; eifdeifdd   6521 ;;;
1

uuuu   
1

V  

2  2

1

2

2

1

1

2

2

1

1 ;; eifdeifdd   8743 ;;;
2

uuuu   
2

V  

3  2

1

2

2

1

1

1

2

1

1 ;; eifdeifdd   8721 ;;;
3

uuuu   
3

V  

4  2

1

1

2

1

1

2

2

1

1 ;; eifdeifdd   6543 ;;;
4

uuuu   
4

V  

5  2

1

1

2

1

1

1

2

2

1 ;; eifdeifdd   1413109 ;;;
5

uuuu   
5

V  

6  2

1

2

2

1

1

2

2

2

1 ;; eifdeifdd   16151211 ;;;
6

uuuu   
6

V  

7  2

1

2

2

1

1

1

2

2

1 ;; eifdeifdd   1615109 ;;;
7

uuuu   
7

V  

8  2

1

1

2

1

1

2

2

2

1 ;; eifdeifdd   14131211 ;;;
8

uuuu   
8

V  
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2.3 Game theory 

The previous part has presented research work about 

dynamic decision from the Artificial Intelligence 

literature point of view. Associated methods are based 

on a common hypothesis: all decisions of the dynamic 

decision problem have to be made by the same DM. 

However, many real-life situations, such as met in SCM, 

involve multi-actor confrontation and collaboration 

levels. Consequently, the optimal choice for a DM 

depends on the others DM. DMs are described as in 

strategic interaction. It clearly defines a game theory 

context where each DM may be seen as a player that 

seeks to maximize his own profit. A game could be 

cooperative or non cooperative. In the first class of 

games, all players are linked with restrictive 

agreement(s). They define a coalition. In the second 

class of games, it is not possible to organize coalitions. 

This kind of game could be described in two different 

ways: 

– Strategic form game: collection of strategies 

defining all the possible actions of each player in 

all possible situations with associated profits (also 

called payoffs). 

– Extensive form game: tree that describes how the 

game is played. It is a dynamic description of the 

game because it specifies the sequence of decisions 

made by players. An event may be considered in a 

node, where “nature” will choose randomly a 

situation at different times of the game. Each 

decision node represents a player who has to decide 

and information available at a prescribed time. 

Payoffs (potential consequences for each player) 

associated to each scenario (a particular sequence 

of decisions and events) are represented by the 

leaves. 

 

According to the interactions occurring between SC 

partners, SCM has become a natural application area for 

of game-theory. These game-theoretical applications in 

SCM have been differently surveyed: from a game-

theoretical point of view (Cachon and Netessine 2006) or 

from SCM attributes point of view (Cachon 2003; Leng 

and Parlar 2005). These surveys show that a lot of 

models have been proposed in order to study the impact 

of given SCM decision levels (inventory-related 

decisions, decision in production/pricing, revenue 

sharing, quantity flexibility contract…). Here, we 

address the specific question of non-zero sum non-

cooperative dynamic games with perfect (no 

simultaneous decision) symmetric (the same knowledge 

for all players) and complete (each player knows all 

strategies and associated payoffs) information. 

Furthermore, this game is not repeated. Therefore, 

algorithms based on the Dynamic Programming 

principle, i.e., backward induction, have to be preferred 

to search and find (if they exist) equilibria in this kind of 

game (Cachon and Netessine 2006). 

3 DEFINITION OF PROBLEM WITH PERFECT 

KNOWLEDGE ON CRITERIA 

In this paper we address a particular problem of 

sequential decision involving two decision makers (DM1 

and DM2). Moreover, we consider that DM1 takes 

his/her decision before DM2 ignoring the behavior of 

DM2 and of nature that plays just once. Both DMs can 

use different criteria to make the decision. This problem 

can be modeled by a decision tree (Figure 3).  

 

If we consider that DM1 perfectly knows the criterion of 

DM2 (and his/her own), the problem can easily be 

solved by dynamic programming: 

– For each node j of decision of DM2, choice of the 

optimal decision *2
jd  using the criteria of DM2.  

– Then, choice of the optimal decision 1*d  of DM1 

using the criteria of DM1 and taking into account 

the decision of DM2. 

In real context, DM1 and DM2 have limited knowledge 

of their own decision criterion (their precise degree of 

optimism for example) with precision. Furthermore 

DM1 does not know with precision the decision criterion 

of DM2. In this context, a stable decision has to be made 

in front of uncertainty regarding these criteria.  

 

 

Figure 3 : Decision tree of problem considered 

Thus, in the next section, we propose to solve the 

previous problem in the context of imperfect knowledge 

on criteria considering that this imperfect knowledge is 

modeled with possibility distributions on o-p indices. 

4 RESOLUTION OF PROBLEM UNDER 

IMPRECISION ON CRITERIA 

In this section, we first introduce the main principles of 

our method of choosing a stable decision in a game with 

two players when (i) DM1 makes his decision before 

DM2 and (ii) DM1 knows with imperfection both DM1 

and DM2 criteria. Then, we detail some steps of this 

method when (i) both DM1 and DM2 criteria are 
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Hurwicz criteria and (ii) the optimism degree of this 

criterion is known with imprecision.  

 

4.1 Approach overview 

To evaluate the stability of decisions in front of the 

possible criteria, we choose to use the concept of 

pignistic probabilities (i.e. §2.1.2). Indeed the decision 

that has the maximal pignistic probability to be optimal 

is the one that is optimal for most criteria, taking into 

account the uncertainty on the criterion.  

In order to compute the pignistic probability of each 

decision (stability degree), we have to know for which 

criteria this decision is optimal and then to sum the 

pignistic probabilities of these criteria. 

 

In the considered problem the decision of DM1 depends 

on the criteria of DM1 and DM2. To solve this problem 

we have to solve a decision tree for each combination of 

criteria ( 21 CC  ). In the context of imprecise on o-p 

indices for Hurwicz criterion, an efficient method is 

proposed to compute the set of criteria for which a given 

decision is optimal (§4.2.2).  

4.1.1 Method 

We adopt the following notations:  

– 
iC  : set of criteria of ic  of DMi with i=1 to 2 

– 1D  : set of decisions 1d  of DM1 

– 2
jD : set of decisions 2

jd  of DM2    

– j : index of decision node of DM2 with j=1 to 1D   

– 
22

1 ... JDDD  : set of decision vectors 

),...,( 22
1

2
Jddd 


 of DM2 

–  optimalisdcdC 22
22 )(


 : set of criteria 22 Cc   

for which decision vector 2d


 is optimal. 

–  optimalareddccddC 21212112 &),(),(


 : set of 

pairs of criteria ),( 21 cc  for which 1d  is optimal 

for 11 Cc   and 2d


 is optimal for 22 Cc  . 

–  optimalisdccdC 12111 ),()(  : set of pairs of 

criteria ),( 21 cc  for which decision 1d  is optimal 




Dd

ddCdC




2

),()( 21

1211  

– )(Pg ic  : Pignistic probability of criteria 
ic  

– )(Pg 1d  is the pignistic probability that 
1d  is an 

optimal decision. The optimality of the decision 

depends on the criterion 
1c of DM1 and the criteria 

2c  of DM2. It depends on the probability to have 
1c  and

2c . So )(Pg 1d  is the sum of the 

probabilities of pairs ),( 21 cc for which
1d  is 

optimal. 

 

Thus, the problem of stability maximization can be 

written as follows (eq. 7): 

   



 












)(

21

),(

21

1

1

11

2112 2

11

11

)Pg()(Pgmax

)Pg()(Pgmax

)(Pgmax

dC
Dd

ddC Dd
Dd

Dd

cc

cc

d

 

. (7) 

 

Method to choose the most opti-stable decision 
11 Dd   : 

 

– Step 1. Computation of )( 2
2 dC


 for each vector 

Dd 2


 (cf §4.3) 

– Step 2. Computation of ),( 21
12 ddC


 for each 

vector 2d


 such that )( 2
2 dC


 and each 11 Dd   

(cf §4.4) 

– Step 3. Computation of 




Dd

ddCdC

2

),()( 21
12

1
1 


 

for each 11 Dd   

– Step 4. Selection of the decision 11 Dd   such that 

 

)(

21

1

)Pg()(Pg

dC

cc  is maximal 

 

4.1.2 Example 

We illustrate the method in a general context, where 

DM1 does not know if DM2 will use the minmax criteria 

(with probability 0.6) or Laplace (with probability 0.4) 

and DM1 doesn’t know if he/she will use the indicator 

),,( 21 nddg (with probability 0.7) ),,( 21 nddh (with 

probability 0.3) within the criteria minmax :   

– 












 
n

n N

ndf
ndfC

),(
;),(max 2

2
2  

–  ),,(max;),,(max 2121
1 nddhnddgC

nn
  

 

DM1 has 2 possible decisions {1;2} and DM2 has two 

possible decisions {one, two} and the nature three 

possible realisations {a, b, c}. The evaluation of decision 

strategies is represented on Table 2 and Figure 4.  

 

  f(d,n) g(d,n) h(d,n) 

DM1 DM2 max Laplace max max 

1 one 10 8 10 12 

 two 14 7 11 10 

2 one 20 10 14 11 

 two 15 12 9 15 

Table 2: Evaluation of the decision strategies 
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Figure 4 : DT of the example 

To solve this problem, we have to compute the possible 

optimal solution for the 4 combinations of the criteria 

(Table 3) in order to compute the stability degree of each 

decision.  

 

To identify the decision that has the highest degree of 

stability, we compute the optimal solutions and they 

probabilities and the stability degrees of the decision of 

DM1. Results are detailed in Table 3 and illustrated on 

Figure 5 (optimal decisions in each case appear in 

boldface). 

 

Combination 

Optimal 

decision 

: DM1 

Optimal 

decision 

: DM2 

Pg 

a) 
),(max ndf  

),(max ndg  
2 

one  if 1 

two if 2 
0.6*0.7=0.42 

b) 
),(max ndf  

),(max ndh  
1 

one  if 1 

two if 2 
0.6*0.3=0.18 

c) 
),( ndfLaplace  

),(max ndg  
1 

two if 1 

one if 2 
0.4*0.7=0.28 

d) 
),( ndfLaplace  

),(max ndh  
1 

two if 1 

one if 2 
0.4*0.3=0.12 

Table 3: Results of problem 

The stability degrees of decision 1 and 2 can thus be 

computed )1(1C = 0.18+0.28+0.12=0.58 ; )2(1C =0.42. 

It can be concluded that decision 1 of DM1 is the most 

stable with a degree of stability = 0.58. 

 
Figure 5 : Result of the DT computation 

4.2 Problem with imprecise optimism degree 

In the considered problem, the possible criteria are the 

Hurwicz criterion with imprecise value of optimism 

degree α. In this section, we describe how to compute the 

sets )( 2
2 dC


 and ),( 21
12 ddC


, in this imprecise 

optimism degree context.  

 

4.2.1 Model of imprecise degree of optimism 

The model is based on the hypothesis that DM1 is able 

to give two possibility distributions on the value of α: 

possibility distribution 1~  on his/her degree of optimism 

and possibility distribution 
2

1
~  on the possible degree of 

optimism of DM2.  To evaluate the stability of decision 

(pignistic probability to be optimal), we must know the 

pignistic probability of each criteria. So, first we build 

pignistic probability distribution from possibility 

distribution (cf §2.1.2). 

4.2.2 Determination of )( 2
2 dC


  

In this section we give the framework of the algorithm to 

compute )( 2
2 dC


: 

– Step 1. Computation, of the value of 2  for which 

decision 2
jd  changes, denoted by 2

change , for each 

node of decision of DM2, (cf: Figure 1) 

– Step 2. Computation of the set of 2  such that 

vector 2d


 is optimal for DM 2: )( 2
2 dC


 

The maximal cardinality of )( 2
2 dC


 appears when all 

decisions are optimal for a given 
2  and each 2

change  

are different for each decision nodes of DM 2. Thus, in 

the worst case, we have 21 DD   set )( 2
2 dC


.  

4.2.3 Determination of ),( 21
12 ddC


 

After determining all )( 2
2 dC


, we compute the set 

),( 21
12 ddC


 for each 

11 Dd  . The framework of the 

algorithm is: 
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– Step 1. Compute the value of 1  for which 

decision 1
1d  changes, denoted by 1

change , for each 

2d


 such that )( 2
2 dC


, (cf Figure 1) 

– Step 2. Build the set of 1  such that 2d


 is optimal 

vector of DM 2 and 1
1d  is optimal d: ),( 21

12 ddC


 

In the worst case we must compute 1D × 1
change  for 

each )( 2
2 dC


 so at most 2

2

1 DD   ),( 21
12 ddC


.  

5 APPLICATION OF THE METHOD 

In this section, we apply the method on the case study 

context that has been described in the introduction: a 

dyadic supply chain where the customer, a worldwide 

dermo-cosmetic maker, has to choose a collaboration 

protocol (2 possibilities) with its packaging product 

supplier. According to the traditional collaboration 

protocol the customer has to release orders (a product, a 

quantity) and the supplier responds. A DM decision 

variable is the order lead time (here 12, 8 or 6 weeks). 

With the advanced collaboration protocol the customer 

commits on purchases associated to a family of products 

8 weeks in advance (family aggregation is related to 

supplier’s set up considerations). Then, the customer 

releases delivery needs expressed in product 1 week in 

advance. A DM decision lever is the minimal volume 

associated to the family engagement (here 50000, 

100000 or 150000 products).  

 

5.1 Problem modeling 

According to the notation defined in previous parts, we 

denote by DM1 the customer and by DM2 the supplier. 

Three sequential decisions have to be made.  

– DM1 has to define the decision protocol (2 

possibilities), 

– Then, its parameter (3 possibilities).  

– Then, DM 2 will define his lot sizing strategy (3 

possibilities).  

In addition, the performance of the supply chain will be 

subject to a global uncertain event that models the 

uncertainty of the performance due to different risk 

sources (scrap, production/transport delay, 

breakdowns…) (7 possible situations).  

DM1 has to choose one decision: the decision protocol 

with its parameter (Table 4) before DM2 chooses the lot 

sizing strategy.  

Notation Protocol decision Parameter decision 

1 Advanced collaboration Low volume (50000) 

2 Advanced collaboration Medium volume (100000) 

3 Advanced collaboration High volume (150000) 

4 Basic order Little order lead time (6w) 

5 Basic order Medium order lead time (8w) 

6 Basic order Big order lead time (12w) 

Table 4 : Notations for DM1’s decisions 

The Table 5 summarizes the problem according to the 

notations introduced in the previous part: 

Description Notation Observation 

Protocol decision within its 

parameter (DM 1) 
1d  11 Dd   

Lot sizing strategy (DM 2) 
2d  22 Dd   

Uncertain Event n Nn  

DM 1’s Hurwicz coefficient 1  11 ~   

DM 2’s Hurwicz coefficient 2  22 ~   

Table 5 : Global notations used 

According to the quantity of scenarios that have to be 

evaluated, we use a simulation tool called LogiRisk for 

the evaluation of each scenario (each leaf of the tree). 

Developed in Perl language, it is dedicated to tactic and 

mostly strategic SC planning processes. This simulator is 

based on a discrete event simulation modeling approach. 

Authors have established a generic representation of the 

different planning processes for each SC actor based on 

the MRPII (Manufacturing Resource Planning) 

processes. An upstream planning process is used 

between partners: plans are made by the customer and 

passed to its suppliers. The procedure is repeated all over 

the chain in the upstream direction. No information 

circulates downstream (Lamothe et al, 2007, Marques et 

al. 2009). 

The customer’s cost function is 2/3 average customer’s 

stock-out 1/3 average customer’s stock and supplier’s 

cost function is 1/2 average supplier’s stock-out 1/2 

average supplier’s inventory level. 

 

From those simulations we build the decision tree 

(Figure 6). 

 
Figure 6 : DT of the study 

5.2 Problem Solving 

The customer gives the two possibility distributions on 

the optimism degree of himself/herself and on the 

supplier. The optimism degrees are represented in Figure 

7. The DM1 is pessimistic (black line) and the DM2 is 

known as optimistic (grey line) by DM1. 
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Figure 7 : optimism degree (alfa) of DM 1 and DM 2 

From the simulation we build the decision tree (table 3) 

with 6 decisions for DM 1 and 3 decisions for DM 2 and 

the cost function for each DM (DM1: customer’s cost 

and DM2: supplier’s cost). 

DM1 has six possible decisions {1;2;3;4;5;6} and DM2 

three possible decision {1;2;3}. Table 6 represents the 

DT with the cost value of the study problem. 

  

  Supplier’s cost Customer’s cost 

DM1 DM2 min max min max 

1 1 7.175 7.696 0.471* 0.537* 

 2 14.516 17.563 0.415 0.475 

 3 20.436 25.396 0.411 0.453 

2 1 6.022 6.907 0.422 0.462 

 2 13.078 14.34 0.380 0.425 

 3 18.92 21.57 0.375 0.414 

3 1 5.905 6.956 0.414 0.468 

 2 12.975 14.734 0.382 0.420 

 3 18.267 21.257 0.374 0.412 

4 1 6.177 7.272 0.547 0.656 

 2 11.862 14.444 0.505 0.605 

 3 17.268 20.824 0.478* 0.554* 

5 1 6.427 6.946 0.571 0.622 

 2 12.131 13.985 0.567 0.624 

 3 17.540 20.445 0.542 0.639 

6 1 7.307 7.549 0.765 1.009 

 2 13.010 14.628 0.763 1.009 

 3 18.968 21.294 0.765 1.008 

Table 6: Data of problem 

Decision 1 of DM2 is Pareto-optimal for all decisions of 

DM1. In other worlds, decision 1 has the minimal “min” 

and minimal “max” for each decision of DM1. So, 

whatever the optimism degree of DM2, DM2 chooses 

decision 1 for each node.  

 1;5.0))1,1,1,1,1,1((2 C   )()1,1,1,1,1,1( 2
2

2 dCd


 

 

Then we compute the set ))1,1,1,1,1,1(,( 112 dC  for each 

11 Dd  . Whatever the optimism degree of DM1 

decision 1,4,5,6 can be chosen: 

 ))1,1,1,1,1,1(,(3,2 1
12

1 dCd  

 

DM1 has two possible optimal solutions: solution 2 and 

3. To compute ))1,1,1,1,1,1(,( 1
12 dC  we compute the 

1
change  (Figure 8): ]429.0;0[))1,1,1,1,1,1(,2(12 C  and 

]5.0;429.0[))1,1,1,1,1,1(,3(12 C  

0,41

0,42

0,43

0,44

0,45

0,46

0,47

0,48

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

2

3

~0,429~0,429
 

Figure 8 : Analysis of decision 2 and 3 

In this example ))1,1,1,1,1,1(,()( 1
12

1
1 dCdC   :  

]429.0;0[))1,1,1,1,1,1(,2()2( 121 CC  

]5.0;429.0[))1,1,1,1,1,1(,3()3( 121 CC  

 

To choose between decisions 2 and 3 we compute the 

pignistic probability that decision 2 is optimal: 

  992.0]429.0;0[1 Pg  and the pignistic probability 

that decision 3 is optimal:   008.0]5.0;429.0[1 Pg . 

So, DM1 chooses decision 2. 

 

From an industrial point of view, the approach presented 

in this paper could be used with two main objectives. For 

an “optimality” seeking objective, this approach allows 

imprecise information about the optimism-pessimism 

index to be used to identify the most plausible decision, 

in other words the most stable decision if the latter will 

be made numerous times. In the example presented in 

the last case study, the customer (DM1) is able to 

conclude that, according to the context defined in the 

problem, he has to prefer the advanced form of 

collaboration with a medium volume of engagement 

(family). 

 

However, the model proposed may be applied to 

emphasize and identify “risky” situations. In the 

example, a customer (DM1) confronted to supplier 

(DM2) characterized by a poor capacity to deal with high 

family volume engagement (few possibilities of family 

aggregation for example) has to give priority to the 

improvement of the basic ordering form (through order 

lead time decreasing, i.e. DM1 decision 4) compared to 

imposing an advanced ordering form with a low volume 

of engagement (DM1 decision 1). This situation 

(distinguished with * in Table 6) illustrates the necessity 

for the DM to be supported in order to rank improvement 

schemes. In the example the advanced ordering form 

may not be “the” best solution according to the context. 

6 CONCLUSION 

In this paper we focused on a decision problem in a 

dyadic collaborative supply chain. More precisely we 

addressed the problem of decision making for a 

customer, taking into account the future decision of his 

supplier under imprecise information on the criteria of 

the two SC partners. We proposed a decision method for 

the criterion ensuring optimal stability. In other words 
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we focus on the decision that has the best chance to be 

optimal under an imprecise criterion.  

 

Industrial DMs are daily confronted to the problematics 

of exploiting their empirical knowledge of their partners’ 

decisional behavior. This knowledge is rarely precise 

and quantified. Being able to exploit this knowledge may 

be a strategic advantage in term of value creation and 

conservation. The model presented in this paper and the 

associated case study illustrates the advantage to identify 

the most stable decision under imprecise knowledge, i.e. 

the most probable decision, even if research efforts have 

to be made to improve the robustness of the results 

(sensitivity analysis) and to use real life collaboration 

experience in order to express imprecise vision of 

partners’ decisional behaviors. 
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