
HAL Id: hal-00728621
https://hal.science/hal-00728621

Submitted on 30 Aug 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Approximation of stochastic processes with continuous
Petri nets and classification methods

Dimitri Lefebvre, Edouard Leclercq, Nabil El Akchioui, Eduardo Souza de
Cursis, Leila Khalij

To cite this version:
Dimitri Lefebvre, Edouard Leclercq, Nabil El Akchioui, Eduardo Souza de Cursis, Leila Khalij. Ap-
proximation of stochastic processes with continuous Petri nets and classification methods. 9th In-
ternational Conference on Modeling, Optimization & SIMulation, Jun 2012, Bordeaux, France. �hal-
00728621�

https://hal.science/hal-00728621
https://hal.archives-ouvertes.fr


9th International Conference of Modeling, Optimization and Simulation - MOSIM’12 
 June 06-08, 2012 – Bordeaux - France 

“Performance, interoperability and safety for sustainable development” 

1 
 

APPROXIMATION OF STOCHASTIC PROCESSES WITH CONTINUOUS 
PETRI NETS AND CLASSIFICATION METHODS 

 
 

D. Lefebvre, E. Leclercq, N. El Akchioui 
 

GREAH / University of Le Havre 
25, rue Philippe Lebon 

76058 Le Havre – France 
{dimitri.lefebvre, edouard.leclercq, 
nabil.elakchioui}@univ-lehavre.fr 

E. Souza de Cursis, L. Khalij 
 

LMR / INSA-University of Rouen 
Avenue de l’université- BP 08 76801 

SAINT ETIENNE DU ROUVRAYR-France 
{souza, lkhalij }@insa-rouen.fr} 

ABSTRACT: Reliability analysis is often based on stochastic discrete event models like stochastic Petri nets. For 
complex dynamical systems with numerous components, analytical expressions of the steady state are tedious to work 
out because of the combinatory explosion with discrete models. For this reason, fluidification is an interesting 
alternative to estimate the asymptotic behavior of stochastic processes with continuous Petri nets. Unfortunately, the 
asymptotic mean marking of stochastic and continuous Petri nets are mainly often different. This paper combines a 
geometric approach that leads to a homothetic approximation of the stochastic steady state in sub regions of the 
marking space with a classifier that selects the sub region of interest and maps the parameters of the stochastic model 
with the ones of the fluid model. 
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1 INTRODUCTION 

Reliability analysis is a major challenge to improve the 
safety of industrial processes. For complex dynamical 
systems with numerous interdependent components, 
such studies are mainly based on stochastic discrete 
event models like Markov models (Rausand, M. and A. 
Hoyland, 2004 ) or stochastic Petri nets (SPNs) (Molloy, 
M.K., 1982). Such models are mathematically well 
founded and lead either to analytical results or numerical 
simulations. But in case of large systems, the combinato-
ry explosion limits their use. In particular when high 
availability constraints are considered (high availability 
implies no human intervention to restore operation and 
refers to availability at less equal to 99%), the number of 
states becomes rapidly huge and state enumeration is no 
longer computable. 
 
In such cases, fluidification can be discussed as a relaxa-
tion method (Recalde L. and M. Silva, 2002), (Recalde 
L. and M. Silva, 2004). The main idea of Petri nets flui-
dification is to replace a discrete Petri net (PN) by a con-
tinuous one. An open issue is that numerous structural 
and behavioral properties are not preserved with standard 
fluidification (standard means that both models have the 
same structure, parameters and initial state) (Julvez J. et 
al., 2005). The standard fluidification of SPNs leads to 
continuous models so that the steady states of SPNs and 
contPNs do not coincide in many cases, particularly for 
non-ordinary PNs or non join-free PNs. Approximations 
provided by the steady state of contPNs are “acceptable” 
only if the net is heavy loaded and the marking vector 
does not leave the neighborhood of initial marking (Vaz-

quez R. et al., 2008). Markovian and Hybrid Markovian 
Continuous Petri Nets have been introduced to relax 
these conditions (Vazquez R. and M. Silva, 2009) but in 
the former works the continuous models are no longer 
deterministic. In (Lefebvre D. et al., 2009), (Lefebvre D. 
and E. Leclercq, 2011), piecewise constant timed conti-
nuous PNs have been proposed that are suitable to com-
pute the SPNs steady state in non critical regions (non 
critical means that each join is driven by a different 
place). Finally, a homothetic approach has been devel-
oped to provide an approximation of the SPNs steady 
state in critical region (Lefebvre D et al., 2010), (Lefeb-
vre D., 2011). The limitation of the previous works is 
that they are not constructive and provide only a global 
understanding of the SPNs and contPNs behaviors. 
 
This paper continues the investigation of this problem 
and proposes a parameter classification approach that is 
suitable to compute the transitions maximal firing speeds 
that lead to a good approximation of SPNs steady states. 
For this purpose, the state space is divided into polyhe-
dral cells, classifying the asymptotic mean markings of 
SPNs. A mapping is defined between these cells, the 
firing rates of the stochastic model and the parameters of 
the continuous model. This mapping is based on a homo-
thetic approximation of the stochastic steady state pre-
viously developed by the author (Lefebvre D. et al., 
2010), (Lefebvre D., 2011) and the classifier is trained 
with a set of arbitrary firing parameters. After training, it 
can be used in order to obtain proper parameters for 
contPNs that approximate the steady state of SPNs with 
arbitrary firing parameters. 
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2 PROBLEM STATEMENT 

2.1 Petri nets and reduced marking space 

A Petri net (PN) is defined as <P, T, WPR, WPO > where 
P = {Pi} is a set of n places and T = {Tj} is a set of q 
transitions, W = WPO – WPR  (Z)nq is the incidence 
matrix, M(t) is the PN marking vector and MI the PN 
initial marking (David et al., 1992) (David R., and H. 
Alla, 1992). X(t) stands for the PN transition through-
puts. Depending on the incidence matrix, PNs may have 
P-semiflows. A P-semiflows y  (Z+)n is a non-zero so-
lution of equation yT.W = 0. Let define Y = {y1,..., yhp} as 
a basis of WT kernel, composed of hp minimal P-
semiflows. For simplicity, the basis Y will be represented 
as a matrix Y  (Z+)n x hp that satisfies (1): 
 

T T
IY .M(t) =Y .M = C,  t 0 . (1) 

 
According to Y, let us define a regular permutation ma-
trix D, such that (Y1 | Y2) = YT.D-1 with Y1  (Z+)hp x (n-hp) 
and Y2  (Z+)hp x hp of full rank hp. The permutation ma-
trix D may be written as D = (DT

1 | D
T

2)
T with D1  {0, 

1}(n-hp) x n and D2  {0, 1}hp x n and similarly the matrix D-

1 satisfies D-1 = (D’1 | D’2) with D’1  {0, 1}n x (n-hp) and 
D’2  {0, 1}n x hp. Let us define the driven marking vec-
tor M2 = D2.M  (R+)hp that may be recovered with re-
spect to Y (P2  P is a places subset of dimension hp) 
and the reduced marking vector M1 = D1.M  (R+)n-hp as 
the marking of the places that do not belong to P2 (these 
places form a subset P1  P of dimension n - hp). 
It is possible to work out M2 from the reduced marking 
vector M1 and as a consequence to write the full marking 
vector M according to M1. The equation (1) can be re-
written as YT.D-1.D.M(t) =Y1.M1(t) + Y2.M2(t) = C that 
leads to (2): 
 

-1
2 2 1 1M (t) = (Y ) .(C - Y .M (t)) . (2) 

 
Then, M(t) = D’1.M1(t) + D’2 .M2(t) and (3) holds: 
 

1M(t) = F.M (t) + G.C . (3) 

 
with : 
 
F = D’1-D’2.(Y2)

-1.Y1 
-1

2G = D' .(Y2) . (4) 

 
2.2 Stochastic Petri nets 

A stochastic Petri net (SPN) is a timed PN whose transi-
tions firing periods are characterized a firing rate vector 
µ = (µj)  (R+)q ( Ajmone M. and G. Chiola, 1987.), 
(Molloy M. K., 1982). The marking vectors of a marked 
SPN at time t will be referred as Ms(t, MI). The SPNs 
considered in this paper are bounded, reinitialisable, with 
infinite server semantic, race policy and resampling 
memory. As a consequence, the considered SPNs have a 

reachability graph with a finite number N of states and 
their marking process is mapped into a Markov model 
with state space isomorphic to the reachability graph 
(Bobbio, A. et al., 1998). The Markov model has an 
asymptotic state propability vector ss = (ss k)  [0, 1]1 x 

N and the asymptotic mean marking Mmms = (mmms i)  
(R+)n of SPNs depends on ss: 

 

1

1mmsi ki ss k
k ,...,N

m m . ,i ,..,n


  . (5) 

 
2.3 An introductive example 

The system in figure 1 models a simple manufacturing 
system. The final product is composed of two different 
parts, A and B, that are processed in machines M1 and 
M2 (represented by transitions T1 and T2), and stored in 
buffers P4 and P6, respectively. Then, they are assembled 
by M3 (i.e. transition T3), and processed in M4 (i.e. tran-
sition T4). Finally, M5 (i.e. transition T5) packages them. 
During the processing of parts A and B, tool1 (tokens in 
place P5) and tool2 (tokens in place P7) are needed. Also 
tool3 (tokens in place P3) has to be used in the three final 
operations. The machines M1, M2, M4 and M5 are as-
sumed to be reliable and an active redundancy (n = 3) is 
considered for the assembly machine M3 that is assumed 
to have failure and repair rates  = 1.5e-2 TU-1 and  = 
1e-1 TU-1. To achieve high availability requirements 3 
active redundancies are considered for M3 (place P10) 
The productivity of the workshop is evaluated with the 
computation of the output flow X(t, T5) with respect to 
the number k of pallets and tools : MI = (2k 2k k 0 k 0 k 0 
0 3 0)T. 

P9T4 T5

P3

P6T2

P7

P4T1

T3

P5
P8

P1

P2

P10

P11

T6 : 

T7: 

 

Figure 1: Assembly workshop. 
 

The results obtained with Markov models and SPNs si-
mulation over a time interval of D = 1000 TU are 
summed up in tables 1 and 2. 
 

k N x5(t) 
Markov model 

Computational 
effort (TU) 

1 48 0.29 0.1 

2 216 0.61 0.9 

3 640 0.93 12 

4 1500 1.25 108 

… … … … 

Table 1: Performance evaluation with Markov models 
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For k > 4, the computational effort becomes heavy be-
cause of the large number N of states and the perfor-
mance evaluation with Markov model analysis is no 
longer computable. 
 

k x5(t) 
SPN 

Computational 
effort (TU) 

1 0.30 0.59 

2 0.61 2.0 

3 0.94 4.0 

4 1.24 6.8 

5 1.55 11 

10 2.41 30 

… … … 

Table 2: Performance evaluation with SPNs 
 

Simulation with SPNs can be used to overcome the 
computational limitation with Markov model. The simu-
lation error does not exceed 1%. One can also notice that 
the computational effort increases but remains accepta-
ble up to k =10. For k > 10, fluidification must be intro-
duced. 

3 FLUIDIFICATION OF SPNS 

3.1 Timed continuous Petri nets 

Timed continuous PNs under infinite server semantic 
(contPNs) have been developed in order to provide con-
tinuous approximations of the discrete behaviors of 
timed PNs (Recalde L. et al., 1999), (Recalde L. and M. 
Silva, 2002), (Recalde L. and M. Silva. 2004). The 
marking of each place is a continuous non negative real 
valued function of time and M(t, MI)  (R+)n, t  0 is the 
continuous marking trajectory that starts with MI at t = 0. 
Xmax = diag(xmax j)  (R+)qxq is the diagonal matrix of 
maximal firing speeds xmax j, j = 1,…q and X(t, MI) = 
(xj(t, MI))  (R+)q is the firing speeds vector at time t in 
free regime that depends continuously on the marking of 
the places. The flow through the transition Tj is defined 
by (6): 

 

j I maxj j Ix (t, M )= x . enab (M(t), M ) . (6) 

 

with: 

 
PR

j k kj k jenab (M) = min {m  / w  : P  °T } . (7) 

 
where °Tj stands for the set of Tj upstream places. 
Switches occur in contPNs according to the function 
“min(.)” in (7). Let us define the critical place(s) for 
transition Tj at time t as the place(s) Pi such that i = arg-
min {mk(t, MI) / w

PR
kj, Pk  °Tj}. For a contPN with P-

semiflows represented by matrix Y, any reachable mark-
ing M(t, MI)  (R+)n satisfies YT.M(t, MI) = C. So, linear 

dependencies between marking variables appear. The 
limit timed reachable set, LTR(contPN, MI)  (R+)n, is 
defined as the set of all reachable markings in finite or 
infinite time, from a given initial marking MI and for all 
constant matrices Xmax  (R+)q x q of maximal firing 
speeds. In comparison with the usual untimed reachable 
set, LTR(contPN, MI) concerns timed nets and includes 
also the limit reachable markings (i.e. the asymptotic 
mean markings) (Lefebvre D., 2011), (Mahulea C. et al., 
2008). 
 
LTR(contPN, MI) can be partitioned in K reachable re-
gions (r-regions) with K  {|°Tj|, j = 1,...,q}: 
LTR(contPN, MI) = A1…Ak. PN configurations (Ma-
hulea C. et al., 2006), (Zerhouni N. and H. Alla, 1990) 
are used to define the r-regions. A configuration is a 
cover of T by its input arcs and assigns to each transition 
a single input place: config(k) = {(Pi(k,j), Tj), j = 1,...q}, k 
= 1,...,{|°Tj|, j = 1,...,q}, where Pi(k,j)  °Tj is the single 
input place of transition Tj in configuration k. The r-
region Ak  LTR(contPN, MI), k = 1,…, K of a marked 
contPN, < PN, Xmax, MI >, is defined for a given configu-
ration config(k), and for all matrices Xmax  R+)qxq as the 
set of all reachable markings M(t, MI), t  0, that satisfy 
(1) YT.M(t, MI) = C, (2)  Tj  T, Pi(k,j) is the critical 
place of transition Tj for marking M(t, MI). 
 
Each r-region Ak is characterized by a constraint matrix 
Ak = (ak

ij)  (R+)q x n, k = 1,…,K, i = 1,..., q and j = 1,..., 
n: 

 ak
ji(k,j) = 1/wPR

i(k,j)j for all Tj  T, 
 ak

ji(k,j)=0 otherwise. 
 
The constraint matrices Ak lead to a linear matrix inequa-
lity (LMI) that characterizes the r-regions: 

 
Proposition 1 (Lefebvre D. et al., 2010), (Lefebvre D., 
2011): Let us consider a contPN with K r-regions Ak. 
Each r-region Ak is a polyhedral set characterized by the 
LMI Hk.M  hk with: 
 

1

1

1

0

0

k

n

k k
k kT

T
k k

k K

A A

-I ....

A(k) A A
H = , h , A( k )

C ....Y

C A A-Y

A A





 
                                    

 (8) 

 
and In is the identity matrix of size n. 
 
3.2 Fluidication of discrete model 

The main idea of PNs fluidification is to replace a dis-
crete PN by a continuous one with same structure, initial 
marking and parameter (i.e. standard fluidification). The 
origin of the approach is that continuous models have 
been intensively used from the 90th to approximate the 
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behavior of deterministic discrete event systems, in par-
ticular for control issues (Recalde L. et al., 1999), (Re-
calde L. and M. Silva, 2002), (Recalde L. and M. Silva, 
2004). The advantage of fluidification is that the enume-
ration of discrete states is no longer required with conti-
nuous models and that standard tools exist for such mod-
el. Unfortunately, numerous structural and behavioral 
properties are not preserved with fluidification. In par-
ticular, the throughput of a contPN is mainly not identic-
al to the throughput of a discrete PN. The example of 
figure 1 is considered again and simulated as a contPN. 
Standard fluidification is used and the results are re-
ported in table 3. 
 

k x5(t) 
contPN 

Computational 
effort (TU) 

1 0.33 0.25 

2 0.66 0.22 

3 1 0.22 

4 1.33 0.20 

5 1.66 0.22 

10 2.61 0.23 

20 2.61 0.25 

100 2.61 0.22 

200 2.61 0.23 

Table 3: Performance evaluation with contPNs 
 

One can notice that the computation effort does not de-
pend on the marking magnitude. So, fluidification can be 
used for rapid performance evaluation. But simulation 
with contPNs leads to biased results even if the magni-
tude of errors decreases as k increases. For this reason, 
alternative fluidification methods are introduced and 
discussed in the next section. 

4 HOMOTHETIC ESTIMATION OF SPNS 
ASYMPTOTIC MEAN MARKINGS 

In our preceding works, standard fluidification (models 
with same structure, initial state and xmaxj = j j = 1,...,q) 
has been discussed to approximate the steady states of 
SPNs (Lefebvre D. et al., 2009 ), (Lefebvre D. and E. 
Leclercq, 2011), (Lefebvre D et al., 2010), (Lefebvre D., 
2011). We have proposed a geometric approach to com-
pute contPNs with modified maximal firing speeds and 
initial markings that estimate the asymptotic stochastic 
mean marking in non critical and critical regions ( Le-
febvre D. et al., 2010), (Lefebvre D., 2011). The main 
results are summed up in the next sections. 
 
4.1 SPNs and contPNs local equivalence in long 

runs 

Proposition 2 provides sufficient conditions such that 
M(t, MI) reaches Mmms when M(t, MI) stays in a single 
non critical region Ak: 
 

Proposition 2: (Lefebvre D. et al., 2010) Let us consider 
SPN(WPR, WPO, , MI) with initial marking MI  Ak, 
asymptotic mean marking Mmms  Ak and Ak is non criti-
cal. ContPN(WPR, WPO, Xmax, MI) with same structure and 
initial marking has a marking vector M(t, MI) that tends 
asymptotically to Mmms if there exist Xmax such that M(t, 
MI) satisfies LMI Hk.M  hk for all t  0 and (9) holds: 
 

1 max crD .W.X .X  = 0 . (9) 

 
with Xcr = Ak.(F.D1.Mmms + G.C)  (R+)q. 
 
Critical regions are not concerned by proposition 2 be-
cause the set of solutions for equation (9) is mainly often 
empty in such regions. 
 
4.2  SPNs and contPNs global equivalence in long 

runs 

When the asymptotic mean marking Mmms and the initial 
marking MI are in different regions, a corrected contPN 
is defined with same structure but partial homothetic 
initial marking and modified transitions maximal firing 
speeds so that the continuous marking vector will con-
verge partially to Mmms. The considered problem is to 
reach Mmms when Mmms  Ai (Ai may be a critical region) 
and MI  Ak (Ak is a non critical region) with Ai  Ak. 
The proposition 3 provides conditions in reduced mark-
ing space to work out admissible homothetic transforma-
tions of ratio  such that (.(Mmms1)

T (M’mms2)
T)T  Ak, 

with Mmms1 = D1.Mmms and M’mms2 = (Y2)
-1.(C – 

.Y1.Mmms1). 
 
Proposition 3: (Lefebvre D. et al., 2011) A partial 
homothetic transformation of  ratio  exists such that 
(.(Mmms1)

T (M’mms2)
T)T  Ak with M’mms2 = (Y2)

-1.(C – 
.Y1.Mmms1) if  satisfies (10): 
 

n-hp

Tmms1T
nh

TT
hp

G-I

A( k ).GA(k)
.F.M . .C

I Y .GY

Y .G I-Y



    
                   
         

 (10) 

 
with matrices F and G defined by equation (4) and A(k) 
is defined by equation (8). 
 
A set of modified constant firing speeds is worked out 
with proposition 4. 
 
Proposition 4: (Lefebvre D., 2011), Consider SPN(WPR, 
WPO, , MI) with MI  Ak, asymptotic mean marking 
Mmms  Ai with Ai  Ak. ContPN(WPR, WPO, Xmax, MI) 
with same structure and initial marking has a marking 
M(t, MI) that tends asymptotically to Mmmc such that 
Mmmc1 = .Mmms1 if there exists  that satisfies proposi-
tion 3 and Xmax such that M(t, MI) satisfies LMI Hk.M  
hk for all t  0 and equation (11) holds: 
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1 maxD .W.X .Xcr( ) = 0. . (11) 

 
with : 
 
Xcr() = Ak.(.F.D1.Mmms + G.C)  (R+)q. 
 
Finally, proposition 5 uses the scaling properties of 
contPNs to provide sufficient conditions with respect to 
Xmax so that M(t, MI) converges partially to the asymptot-
ic mean marking Mmms. 
 
Proposition 5: (Lefebvre D., 2011) Consider SPN(WPR, 
WPO, , MI) with MI  Ak, asymptotic mean marking 
Mmms  Ai with Ai  Ak. ContPN(WPR, WPO, Xmax, MI/) 
with same structure and homothetic initial marking MI/ 
has a marking M(t, MI/) that tends asymptotically to 
Mmmc such that Mmmc1 = Mmms1 if there exists  that satis-
fies proposition 3 and Xmax such that M(t, MI/) satisfies 
LMI Hk.M  hk for all t  0 and equations (12) holds 
with: 
 

cr k 1 mmsX (  )= A .(F.D .M +(1/  ).G.C)  . (12) 

 
The proposition 5 leads to the following algorithm that 
transforms a considered SPN into a fluid model contPN 
that converges partially to Mmms: 

1. Work out permutation matrix D according to thecriti-
cal regions and P-semiflows, 

2. Select a parameter  so that the partial homothetic 
transformation of Mmms and MI are in same non criti-
cal region (proposition 3), 

3. Work out the modified constant firing speeds that 
drive M(t, MI/) to the steady state Mmmc with 
D1.Mmmc = Mmms1 (proposition 5), 

4. Recover the full asymptotic stochastic mean marking 
Mmms with Mmms = F. Mmms1 + G. YT.MI. 

5 APPROXIMATION BY MEANS OF 
CLASSIFICATION 

The partial homothetic estimation described in section 
III provides a global understanding of SPN steady states 
distribution. The main drawback of the proposed method 
is that it is not constructive. In this section, the geometric 
approach is combined with a classifier to provide an ac-
ceptable approximation of the SPN mean markings di-
rectly from the firing rates of SPN transitions. The geo-
metric approach is used to map the firing rates of SPNs 
with the modified maximal firing speeds and homothetic 
ratio of corrected contPNs. The mapping is computed 
from a training set of arbitrary firing rate vectors SET 
that are supposed to cover the domain of SPN parame-
ters. This domain is defined a priori according to the 
specifications of the system under consideration. If the 
firing parameters satisfy µj  [0, µMAX], j = 1,…, q a 
simple way to obtain SET is to mesh the domain [0, 
µMAX]q with a regular grid. For each vector   SET, 
the modified maximal firing speed vector Xmax() and 

homothetic ratio () are worked out so that the reduced 
marking of corrected contPNWPR, WPO, Xmax(), 
MI/()) tends to Mmms1(). Let us define SETXmax and 
SET as the sets of maximal firing speeds and homothet-
ic ratio obtained for all   SET. The resulting sets of 
asymptotic mean markings for SPNs and corrected 
contPNs worked out according to the algorithm in sec-
tion III are identical and named SETMmm. 
 
The limit timed reachable set is then divided into N po-
lyhedral cells. For each cell CELLMmm(k)  LTR(contPN, 
MI), k = 1,…,N, a polyhedral region CELL(k)  [0, 
µMAX]q is worked out in order to be an upper bound of the 
domain of firing rates that result in asymptotic mean 
markings Mmms CELLMmm(k) (figure 3). The gravity 
center of CELL(k) is defined as C(k) and the perimeter 
of CELL(k) are obtained according to 1-norm. CMmm(k) 
is the asymptotic stochastic mean marking corresponding 
to C(k) and Xmax(k) and (k) are the maximal firing 
rates and homothetic ratio that lead to the same asymp-
totic marking CMmm(k) with corrected contPN. 
Considering finally, any new firing rate vector , the 
mapping consists to find the cell CELL(k

*) whose center 
C(k*) is the nearest from  according to Euclidean dis-
tance (the cells in domain [0, µMAX]q are not disjoint and 
a single firing rate  may belong to several cells): 
 
k* = argmin{||C µ(k) - µ ||:k = 1,...,N} . (13) 

 
The modified contPN parameters are approximated by 
Xmax(k

*) and (k*) (figure 4) and the approximation error 
is defined as:  
 

T 1/2
mms mmc mms mm mms mmE(M ,M ) = ((M -CM (k*)) .(M -CM (k*))) (14) 

6 EXAMPLE 

PN1 described in figure 2 is has 2 P-semiflows: y11 = (1 
1 1 0)T, y12 = (1 0 4 1)T, and one can define Y = (y11 y12) 
 (Z+)5 x 2 and C = (17 19)T. Four regions A1 to A4 exist 
in reachable marking space of PN1. The regions are de-
fined by the constraint matrices A1 to A4: 

1

0 0 0 1/2

0 0 0 1

0 0 1 0

A

 
  
 
 


2

1/2 0 0 0

0 0 0 1

0 0 1 0

A

 
  
 
 


3

0 0 0 1/2

0 1 0 0

0 0 1 0

A

 
  
 
 


4

1/2 0 0 0

0 1 0 0

0 0 1 0

A

 
  
 
 

T3 T2

P4

3

P2

T1

16

P3

P1

10

3

2

2


Figure 2: Examples PN1 with MI = (16 1 0 3)T 
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ContPN1 has a single critical region A1 (rank A1 = 2) and 
the set of critical places for A1 is Pcr(A1) = {P3, P4}. The 
P-semiflows Y and Pcr(A1) are used to define the subsets 
of places P1 = Pcr(A1) and P2 = {P1, P2}. The marking M 
depends only on the reduced marking vector M1 = (m3, 
m4)

T and the matrices F and G are given by (15): 
 

4 1 1 0

3 1 1 1

1 0 0 0

0 1 0 0

F G

    
       
   
   
   

. (15) 
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Figure 3: Classifier learning 
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Figure 4: contPN parameters mapping 

 
The approximation algorithm proposed in preceding sec-
tion is applied to PN1. For this purpose, the asymptotic 
stochastic marking space is meshed with 3 x 3 x 3 x 3 = 
81 cells. In order to discuss the influence of the cells 
number, two additive meshes with respectively 6 x 6 x 6 
x 6 = 1296 cells and 12 x 12 x 12 x 12 = 20736 cells are 
also considered. These meshes are used to divide the 
domain of firing parameters into cells CELL(k) with 
centers C(k) (figure 5). The centers are mapped with 
maximal firing speeds Xmax(k) and homothetic ratio (k). 
Each new firing rate vector  is then associated to the 
more representative cell: CELL(k

*) (i.e. the cell with the 
nearest center C(k) according to Euclidean distance 
(14)) and the corresponding asymptotic mean marking 
vector is worked out according to the corrected contPN 
with modified firing speed Xmax(k

*) and homothetic ratio 
( k*). 
 
In order to evaluate the performances of the approxima-
tion a validation set of firing rate vectors is used (table 
4). For each sample the approximations resulting from 
the three meshes are worked out and compared with 
standard fluidification according to distance (14). Re-
sults depicted in table 5 illustrate the performance of the 
proposed method that lead improved approximations in 
most cases. For test 4 the best approximation is provided 
by standard fluidification, because in few regions of the 

CELLMmm(k) Mmm(k) 

CELL(k) C(k) 

CELL Xmax(k) Xmax(k) 

CELL(k
*)

C(k*) 

 

CMmm(k*) Mmms 
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marking space standard fluidification leads to exact es-
timation of the asymptotic stochastic mean marking. 
Another expected conclusion is that the approximation 
error decreases in the most cases with respect to the 
number of cells: class 12 provides better results than 
class 6 and class 3 classifiers. 
 

µ 1 2 3 
Test1 0.33 0.33 0.33 
Test2 0.8 0.1 0.1 
Test3 0.1 0.8 0.1 
Test4 0.1 0.1 0.8 
Test5 0.45 0.45 0.1 
Test6 0.45 0.1  0.45 
Test7 0.1 0.45 0.45 

Table 4: Set of validation firing rates 

 
Class 3 6 12 standard
Test1 0.11 0.02 0.07 1.23
Test2 4.05 13.74 0.15 2.64
Test3 0.46 0.74 0.04 0.69
Test4 215.8 87.1 1.79 0.01
Test5 0.97 0.23 0.06 2.22
Test6 15.24 0.60 0.63 1.38
Test7 1.57 0.03 0.004 0.10

Table 5: Performance evaluation (E(…))2 
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Figure 5: Different meshes for the firing rate space up) 

Class 3 classifier with 81 cells; middle) Class 6 classifier 
with 1296 cells; down) Class 12 classifier with 20736 

cells 

7 CONCLUSION 

SPNs and contPNs are mainly often not equivalent in 
long run when standard fluidification is used. The com-
bined used of corrected contPNs with modified maximal 
firing speeds and homothetic ratio and classification me-
thod with a partition of the reachable marking space has 
been developed. This method leads to better approxima-
tions of the asymptotic stochastic mean markings in 
comparison with standard fluidification. 
 
Several questions will attract our interest in the next fu-
ture. First at all, we will improve the estimation by using 
interpolation tools if the SPN firing rate vector belongs 
simultaneously to several cells. Computational com-
plexity will be also investigated according to the PN 
structure and to the number of cells. The determination 
of the number of cells will be studied to upper-bound the 
approximation error. Finally, we noticed that the perfor-
mance of the classifier is more sensitive to the dispersion 
of homothetic ratio than to the number of cells. 
 
Poor results have been observed for cells that are not 
included in a single r-region. As a consequence, we will 
investigate partitions of the reachable marking space that 
are driven by the r-regions definition and an alternative 
estimation for cells with large ratio dispersion will be 
developed. 
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