
HAL Id: hal-00728620
https://hal.science/hal-00728620

Submitted on 30 Aug 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A CONSTRAINT PROGRAMMING MODEL FOR
SOLVING REACHABILITY PROBLEM IN TIMED

PETRI NETS
Yongliang Huang, Thomas Bourdeaud’Huy, Pierre-Alain Yvars, Armand

Toguyeni

To cite this version:
Yongliang Huang, Thomas Bourdeaud’Huy, Pierre-Alain Yvars, Armand Toguyeni. A CONSTRAINT
PROGRAMMING MODEL FOR SOLVING REACHABILITY PROBLEM IN TIMED PETRI
NETS. 9th International Conference on Modeling, Optimization & SIMulation, Jun 2012, Bordeaux,
France. �hal-00728620�

https://hal.science/hal-00728620
https://hal.archives-ouvertes.fr

9th International Conference of Modeling, Optimization and Simulation - MOSIM’12

June 6-8, 2012 - Bordeaux - France

”Performance, interoperability and safety for sustainable development”

A CONSTRAINT PROGRAMMING MODEL FOR SOLVING

REACHABILITY PROBLEM IN TIMED PETRI NETS

Yongliang HUANG†, Thomas BOURDEAUD’HUY†

Pierre-Alain YVARS‡, Armand TOGUYENI†

† LAGIS, Ecole Centrale de Lille ‡ LISMA, Supmeca

Avenue Paul Langevin

59650 Villeneuve d’Ascq - France Saint Ouen - France

{yongliang.huang, thomas.bourdeaud huy, armand.toguyeni}@ec-lille.fr payvars@supmeca.fr

ABSTRACT: In this paper, we propose to use a constraint programming approach to address the reachability
problem in Timed Petri Nets (TPNs). TPNs can be used to model a wide class of systems, from manufacturing
issues to formal verification of embedded systems. Many of the considered problems can be modeled as
reachability problems in TPNs. To reduce the space state explosion brought by the exploration of the TPN
behaviour, we propose to follow the incremental methodoly proposed by (Bourdeaud’huy & Hanafi 2006), who
translate the reachability graph of Timed PNs into a mathematical programming model using linearization
techniques. We show how to adapt this model to the constraint programming paradigm by using reified contraints
and compare the respective efficiency of the two models.

KEYWORDS: Timed Petri Nets, Reachability Problem, Constraint Programming, Reified Constraints.

1 INTRODUCTION

Petri Nets (PNs) have been well used for modeling,
analyzing, synthesizing and implementating Manu-
facturing systems for decades, see (Recalde, Silva,
Ezpeleta & Teruel 2004), (Zhou & Venkatesh 1999).
The modeling problem in manufacturing systems is
usually characterized by concurrent and synchronous
discrete events. PNs are well suited for this type
of modeling because they capture the precedence re-
lations and interactions among these events. Since
PNs have a strong mathematical foundation, they al-
low both qualitative and quantitative analysis of the
properties of such systems.

Using PNs, many problems in manufacturing systems
can be expressed as reachability problems, which con-
sist in finding transition firing sequences leading from
the initial state to a given target state. When consid-
ering time delays for operations or events is needed,
several classes of PNs can be proposed, like Timed
PNs which are considered in this paper.

We consider the reachability problems in TPNs for
two contexts: task scheduling or reconfiguring a sys-
tem. The scheduling problem can be reduced to find-
ing an optimal sequence of transitions leading from
an initial marking to a final marking. This problem
can be solved by integer linear programming. How-
ever, in the case of reconfiguration, two issues must

be considered:

• Dynamic reconfiguration (on line) requires to
find quickly a possible sequence;

• Off-line analysis of the possibilities of reconfigu-
ration requires to enumerate all the sequences.

The latter is inadequately addressed in linear pro-
gramming. This is why we choose to evaluate the ca-
pacity of constraint programming to solve these prob-
lems.

Practically, it is not possible to explore the reach-
ability graph exhaustively due to the well known
problem of combinatorial explosion. Many methods
have been studied to limit this explosion (Michel &
Vernadat 1998). Here, we follow the approach given
by (Bourdeaud’huy & Hanafi 2006), who use a unique
sequence of steps to capture all the behaviors of the
system of a given size, avoiding to build the whole
reachability graph.

In this study we focus specifically on the use of rei-
fied constraints, a way to add constraints dynamically
during the search space exploration. Such constraints
act as a substitute for the linearization techniques
used before and allow to reduce the number of vari-
ables needed to express the TPN behaviour.

MOSIM’12 - June 06-08, 2012 - Bordeaux - France

The previous mathematical model is improved and
adapted to constraint programming paradigm. A
practical study is made using Ilog Solver, and several
case studies.

The paper is organized as follows. In section 2, we
give the definition of Timed PNs and its reachability
problem. In section 3, we introduce the mathemat-
ical programming model given in (Bourdeaud’huy &
Hanafi 2006). In section 4, we adapt it using rei-
fied constraints as an alternative to the linearization
technique used before, and propose additional im-
provements allowing to reduce the search space. In
section 5, we assess the respective efficiency of both
models by giving some numerical experiments. Fi-
nally, we conclude by giving a few promising research
perspectives.

2 TIMED PETRI NETS

2.1 Petri Nets

Petri Nets were first proposed by (Petri 1962), they
are a graphical and mathematical modeling tool used
for many classes of systems. They are a promis-
ing tool for describing and studying systems char-
acterized as being concurrent, asynchronous, dis-
tributed, parallel, nondeterministic, and/or stochas-
tic (Murata 1989).

2.1.1 Definition

A Places/Transitions Petri net (R = (P,T, C),m0),
see (Murata 1989), is a bipartite directed graph
where:

• P and T are two finite sets of nodes denoted re-
spectively places and transitions with |P| = m

and |T| = n. Places generally represent condi-
tions, and transitions represent events (Murata
1989).

• C is the incidence matrix which is defined as:
∀p ∈ P, ∀t ∈ T, C(p, t) = C+(p, t) − C−(p, t), in
which C−(p, t) and C+(p, t) respectively repre-
sent the weight of arcs from places to transitions
and from transitions to places.

• m0 : P → N associates to each place p ∈ P an
integer m0(p) called the marking of the place p.

2.1.2 Graphic and Matrix representation

In the graphic representation of a Petri Net, places are
represented as circles and transitions as rectangles.
Each place p of the net is associated with the number
of tokens corresponding to its marking m(p). Tokens
are represented as full disks inside places, or simply
by an integer label.

In the following, we will use linear algebra formula-
tions to make the presentation more concise:

• The vector −→etk will denote the Parikh vector as-
sociated to the transition tk, the kth component
of which takes the value 1 and others zero;

• The vector −→m0 will denote the mark-
ing vector of the net, defined by −→m0 =
(m(p1),m(p2), . . . ,m(pm))

⊺ ∈ N
m.

2.1.3 State equation

A transition tk is said to be fireable from a
given marking m0 (denoted by m0[tk〉), if and
only if its upstream places have enough tokens:
m0[tk〉 ⇔ −→m0 ≥ C− · −→etk .

The firing of tk from m0 produces a new marking m1

(denoted by m0[tk〉m1) such that:

m0[tk〉m1 ⇔ m0[tk〉 ∧
−→m1 = −→m0 + C · −→etk

The Parikh vector −→σ associated to the sequence σ =
tσ1

tσ2
. . . tσr

is defined as the vector from N
n the jth

component of which takes a value equal to the number

of occurences of the transition tj in σ: −→σ =
r
∑

j=1

−−→etσj
.

A fireable transition sequence (aka. firing sequence)
σ leading from m0 to mf is denoted m0[σ〉mf . Us-
ing its Parikh vector and the previous linear algebra
notations, one can get a classical property of PNs:

m0[σ〉mf ⇒ −→mf = −→m0 + C.−→σ .

This equation is known as the state equation of PNs.
The reverse implication (which is not true in general)
allows to formulate the well known PNs reachability
problem in the following way:

“Given an initial marking m0 and a final marking mf ,
find a firing sequence σ such that m0[σ〉mf”.

Note that in the general case, several transitions may
be fired simultaneously. Such a multiset of transi-
tions is called a step, and denoted also by −→σ here-
after. Steps firings and fireable steps sequences can
be defined in the same way as above.

2.2 Timed Petri Nets

Many PNs classes have been proposed to handle time
extensions. For adding time extensions to the PNs,
time can be associated with transitions, places and
arcs, and time annotations can correspond to du-
rations (Timed PNs) or time intervals (Time PNs),
see (Wang 1998). The following definition of Timed
PNs is derived from (Chretienne 1984).

MOSIM’12 - June 06-08, 2012 - Bordeaux - France

p3p2p1

p6p5p4

r1 r2

t1(3) t2(4)

t3(5) t4(2)

Date Marking
Initial date 0 (1, 0, 0, 0, 1, 0, 1, 1)⊺

Firing of t1 → 1 (0, 0, 0, 0, 1, 0, 0, 1)⊺

2 (0, 0, 0, 0, 1, 0, 0, 1)⊺

3 (0, 0, 0, 0, 1, 0, 0, 1)⊺

End of t1 → 4 (0, 1, 0, 0, 1, 0, 1, 1)⊺

Firing of t4 → 5 (0, 1, 0, 0, 0, 0, 0, 1)⊺

6 (0, 1, 0, 0, 0, 0, 0, 1)⊺

End of t4 → 7 (0, 1, 0, 0, 0, 1, 1, 1)⊺

8 (0, 1, 0, 0, 0, 1, 1, 1)⊺

Figure 1: Timed Petri net and its firings

2.2.1 Timed PNs

A Timed Petri Net (R = (P,T, C, d),m0) is a PN
where a duration d(t) ∈ N

∗ is associated to each tran-

sition t. The vector
−→
d =

∑

t∈T

d(t) · −→et is called the

duration vector of the Timed PN.

To simplify the study, we restrict ourselves to TPNs
without immediate transitions (transitions where
d(t) = 0), which is not so restrictive in real world
practice.

TPNs have the same representation as classical PNs,
to which is added a labeling on transitions. An ex-
ample of Timed PN is given in (Fig. 1). We have:
d(t1) = 3, d(t2) = 4, d(t3) = 5, d(t4) = 2.

2.2.2 Firing Policy

The firing durations associated to transitions modify
the marking validity conditions. Since durations are
associated to transitions, the TPN acts as if tokens
“disappeared” at the time the transition is fired, and
then “reappeared” after a delay corresponding to the
duration of the fired transition. Thus, the marking of
a Timed Petri net evolves with the occurences of an
external timer.

For instance, let’s consider the Timed Petri net of
(Fig. 1). At date 1, the transition t1 (duration: 3 t.u.

(time units)) is fired. Then the transition t4 (du-
ration: 2 t.u.) is fired at date 5. The evolution of
marking with time is given in Fig. 1.

Note that one could have fired transition t4 at date
4, since the resource r1 had been released at the end
of the firing of transition t1. However, the same tran-

sition was not fireable at date 3, since the firing of t1
was not finished.

Finally, the firing and ending dates of transitions play
a fundamental role in the behaviour of the Timed
Petri net. It is thus necessary to adapt the firing
equations according to these firing dates.

2.3 Timed Petri Nets Reachability Problem

Using the previous notations, the TPNs reachability
problem consists of searching for a feasible controlled
execution allowing to reach a final state −→mf from an
initial state −→m0.

It is quite simple to see a parallelism between a
scheduling problem and a TPN reachability prob-
lem. Indeed, let’s consider for instance the Timed
Petri net of (Fig. 2). One remarks obviously
that solving a reachability problem between mark-
ings m0 = {p1, p2, p3,m1,m2,m3} and mf =
{p4, p5, p6,m1,m2,m3} means exactly finding the
scheduling of the production.

Figure 2: Timed PNs modeling a job shop.

Practically, it is not possible to explore the reachabil-
ity graph exhaustively due to the well known problem
of combinatorial explosion.

Several approaches have been proposed to solve the
Timed Petri net reachability problem, or by re-
stricting their study to a subclass of Time PNs,
like Timed Event Graphs, either by using dedicated
heuristics. A complete bibliography can be found
in (Richard 1997).

Note the approach proposed by (Carlier & Chretienne
1988) using earliest firing dates cannot handle the
general Timed Reachability Problem since firing tran-
sitions as soon as they are enabled may lead to miss
some optimal firing sequences. For instance, let’s con-
sider the TPN of (Fig. 3). The earliest firing sequence
(t1t4, t5, t2t6, t3) takes 22 t.u. However, the opti-
mal solution is given by the sequence (t1t4, t2, t3t5, t6)
which needs 14 t.u.

MOSIM’12 - June 06-08, 2012 - Bordeaux - France

Figure 3: Earliest firing date doesn’t mean optimality.

More general solutions can be found in (Driss, Yim,
Korbaa & Ghedira 2004), where untimed firing se-
quences are generated first, and then dates are as-
sociated to firings by propagating time constraints.
Unfortunately, such method requires to enumerate
all firing sequences first, which leads to combinato-
rial explosion, and it may exist an infinite number of
associations of dates to firings (if a transition can be
fired at date d, it is still fireable any moment later) .

In this paper, we propose to use a direct approach
proposed by (Bourdeaud’huy & Hanafi 2006) who
capture the timed behavior using a mathematical
model allowing its exact resolution.

3 INTEGER LINEAR PROGRAMMING

MODEL

3.1 Incremental Model

In (Bourdeaud’huy & Hanafi 2006), the model is
based on an incremental propagation of constraints
corresponding to an increasing number of firing dates
in “Controlled Executions” which have been intro-
duced by (Carlier & Chretienne 1988) to represent
the history of the transition firings. It allows to ex-
press the PNs state reached at any date.

The state of a Timed PNs behaving under a controlled
execution is given at any time v by its classical mark-
ing vector −→em(v) ∈ Z

m and a residual durations vector
−→er(v) ∈ N

n associating to each active transition its re-
maining duration. Obviously, such representation of
the vector of residual durations is based on the as-
sumption that reentrance is forbidden: a transition
that is currently firing cannot start another firing.

Let V be the set of firing dates vi of the considered
controlled execution, with |V| = V. We express at any
firing date vi ∈ V (denoted by the time ∆vi−1

elapsed
from the previous firing) the induced modifications
on the vectors −→em(vi) and

−→er(vi) by the firing of step
−→σ (vi).

A synoptic of notations is given in Table 1.

Following the behaviour given in section 2.2, the state
vectors −→em(vi) and −→er (vi) must be updated in the
following way when the step −→σi is fired at date vi:

Table 1: Synoptic table of notations.

em0
−→ em1

. . . emk
−→ emk+1

. . . em
V−1

−→ em
V

σ1 σk+1 σ
V

v0 = 0 v1 = vk+1 = v
V

=

v0 + ∆v0
vk + ∆vk

v
V−1 + ∆

V−1
er0

−→ er1
. . . erk

−→ erk+1
. . . er

V−1
−→ er

V

• The residual duration vector −→er(vi) contains the
durations of new transitions fired by step −→σi ;

• The residual duration vector at date −→er (vi) con-
tains also the durations of transitions that were
active at the previous date vi−1 and are still fir-
ing;

• Tokens consumed by −→σi disappear from the
marking vector −→em(vi);

• The marking vector −→em(vi) contains also the to-
kens produced by transitions that were active at
the previous date vi−1 and are no more firing at
date vi.

Note that we do not consider intermediate states be-
tween two firings, even if a transition started at date
vi−1 has finished its firing at a date strictly lower
than vi. This is not needeed to check if the sequence
of steps σi,i∈[[1,V]] is fireable, since tokens are only con-
sumed at firing dates. Moreover, it allows to reduce
the number of states to consider, thus reducing the
combinatorial explosion.

To express the update of state vectors in a linear
way, compatible with using integer linear program-
ming solvers, (Bourdeaud’huy & Hanafi 2006) use the
following conventions. If −→x is a vector from Z

k, they
denote by:

• −→x + ∈ N
k the vector of its positive components,

such that −→x +(i) = −→x (i) if −→x (i) > 0 and 0 oth-
erwise;

• −→x s ∈ B
k the vector representing its sign, such

that: ∀c ∈ [[1, k]],−→x s(c) = 0 if −→x (c) ≤ 0 and
−→x s(c) = 1 otherwise.

The previous notations leads to:

−→er (v +∆v) =
∑

t∈T

d(t) · −−−−→σv+∆v (t) ·
−→et

+
(

−→er (v)−∆v ·
−→
Id

)+

(22)

−→em(v +∆v) =
−→em(v)− C

− · −−−−→σv+∆v

+ C
+ ·

(

−→er (v)
s −

(

−→er(v)−∆v ·
−→
Id

)s
)

(23)

Obviously, the same equations remain valid if no tran-

sition is fired at the date v + ∆v (i.e. −−−−→σv+∆v
=

−→
0),

and allow to evaluate the instantaneous state at this
date.

MOSIM’12 - June 06-08, 2012 - Bordeaux - France

Let (R,−→m0,
−→r0 ,

−→
d) be a Timed Petri Net with P = {p1, . . . , pm}, T = {t1, . . . , tn}. Let C

+ ∈ N
P×T and C− ∈ N

P×T be its
incidence matrices. Let −→mf be the target marking vector, and −→rf be the target residual durations vector. The integer

linear programming model IP (V) is defined by:

∀k ∈ [[0,m− 1]], em0k=
−→m0(k) (1)

∀k ∈ [[0,m− 1]], emVk=
−→mf (k) (2)

∀j ∈ [[0,n− 1]], er0j=
−→r0(j) (3)

∀j ∈ [[0,n− 1]], erVj=
−→rf (j) (4)

∀i ∈ [[0,V− 1]], ∀j ∈ [[0,n− 1]], B · aij − erij≤B − 1 (5)
∀i ∈ [[0,V− 1]], ∀j ∈ [[0,n− 1]], erij −B · aij≤0 (6)
∀i ∈ [[0,V− 1]], ∀j ∈ [[0,n− 1]], B · αij − erij +∆vi≤B − 1 (7)
∀i ∈ [[0,V− 1]], ∀j ∈ [[0,n− 1]], erij −∆vi −B · αij≤0 (8)
∀i ∈ [[0,V− 1]], ∀j ∈ [[0,n− 1]], erij −∆vi − βij≤0 (9)
∀i ∈ [[0,V− 1]], ∀j ∈ [[0,n− 1]], βij −B · αij≤0 (10)
∀i ∈ [[0,V− 1]], ∀j ∈ [[0,n− 1]], βij +B · αij − erij +∆vi≤B (11)

∀i ∈ [[1,V]],∀k ∈ [[0,m− 1]],emik − em(i−1)k +
n−1
∑

c=0

C
−

kc · σic −
n−1
∑

c=0

C
+
kc · (a(i−1)c − α(i−1)c)=0 (12)

∀i ∈ [[1,V]], ∀j ∈ [[0,n− 1]], erij − β(i−1)j −
−→
d (j) · σij=0 (13)

∀i ∈ [[1,V]], ∀j ∈ [[0,n− 1]], σij + α(i−1)j≤1 (14)

∀i ∈ [[1,V]], ∀j ∈ [[0,n− 1]], σij∈{0, 1} (15)
∀i ∈ [[0,V− 1]], ∀j ∈ [[0,n− 1]], aij∈{0, 1} (16)
∀i ∈ [[0,V− 1]], ∀j ∈ [[0,n− 1]], αij∈{0, 1} (17)
∀i ∈ [[0,V− 1]], ∀j ∈ [[0,n− 1]], βij∈N (18)

∀i ∈ [[0,V]], ∀j ∈ [[0,n− 1]], erij∈N (19)
∀i ∈ [[0,V]],∀k ∈ [[0,m− 1]], emik∈N (20)

∀i ∈ [[0,V− 1]], ∆vi∈N (21)

Figure 4: Integer linear programming model

The physical sense of the equations is explained be-
low:

• The quantity
∑

t∈T

d(t) · −−−−→σv+∆v
(t) · −→et represents

the new residual durations coming from the ex-
ecution of the step σv+∆v

at the date v + ∆v

;

• The quantity
(

−→er(v) −∆v ·
−→
Id

)+

represents the

update of the residual durations vector at the
date v + ∆v, from its value −→er(v) at the date
v. The “+” operator allows to take into account
only positive values;

• The quantity C− · −−−−→σv+∆v
represents the number

of tokens removed from places upstream to the
transitions of the step σv+∆v

, the execution of
which starts at the date v +∆v ;

• Finally, the quantity −→er(v)
s −

(

−→er(v)−∆v ·
−→
Id

)s

represents the Parikh vector of the transitions,
the firing of which ends at the date v+∆v. This
expression is made from the comparison between
the Parikh vector of the transitions that were
pending at the date v (vector −→er(v)

s), and the

Parikh vector of the transitions that will be active

at the date v +∆v (vector
(

−→er(v)−∆v ·
−→
Id

)s

).

3.2 Formulation of “+” and “s” operators

The operators“+” and “s” introduced in the previous
section acts on vectors objects. However, they acts
uniformly on each component of the input vector, and
can be defined in a natural way using the correspond-
ing scalar operators. (Bourdeaud’huy & Hanafi 2006)
propose to address the calculation of values Xs and
X+ associated to an integer X ∈ Z, such that:
{

X > 0 ⇒ Xs = 1 and X+ = X

X ≤ 0 ⇒ Xs = 0 and X+ = 0

The linearization is based on the use of 2 additional
discrimination variables (α and β) and 5 additional
equations. Let X ∈ Z and B ∈ N

∗ be “sufficiently
large”. Let α ∈ {0, 1} and β ∈ N such that:

B · α−X ≤ B − 1
X − B · α ≤ 0

X − β ≤ 0
β − B · α ≤ 0

β +B · α−X ≤ B

MOSIM’12 - June 06-08, 2012 - Bordeaux - France

Then:

X > 0 ⇔ α = 1
and β = X

X ≤ 0 ⇔ α = 0
and β = 0

Using additional variables and constraints, it is thus
possible to propose a general linear mathematical
model to solve the Timed PNs reachability problem.

The full model denoted as IP (V) is given in fig-
ure 4. Equations (1) to (4) correspond to conditions
over initial and final states. Equations (5) to (11)
express the constraints over discrimination variables
used to compute the “+”and “s”operators. Variables
(ai), (αi) and (βi) denote respectively the values of
−→er(vi)

s,
(−→er (v)−∆v ·

−→
Id

)s
and

(−→er(v)−∆v ·
−→
Id

)+
from

equations (22) and (23). Equations (12) and (13)
correspond to intermediate state computation equa-
tions (22) and (23). . Equation (14) is used to forbid
reentrant steps: if transition j is already active at
date vi (ie. α(i−1)j = 1), it cannot be fired again at
the same date (ie. σij cannot be equal to 1). Finally,
equations (15) to (21) define the domain of variables.

The above model has been solved by its authors using
integer linear programming with promising results, to
handle scheduling problems searching to obtain the
final marking while minimizing the total duration of
the firing sequence. In our work, we are more partic-
ularly interested in safety issues:

• Finding as soon as possible a firing sequence rep-
resenting a counter example to a safety specifi-
cation;

• Enumerating all paths between two markings, in
order to verify a safety property is always true.

Thus, we propose to use constraint programming to
solve the previous model. Of course, one could use
constraint programming solvers to solve the linear
model given in Fig. 4 directly. However, constraint
programming allows to use reification techniques in
order to avoid the use of linearization variables. In
the next section, we show how to use such reified con-
straints and give some improvements allowing to re-
duce the search space.

4 TOWARDS A CONSTRAINT PRO-

GRAMMING MODEL

4.1 Reified Model

In (Bourdeaud’huy & Hanafi 2006) authors proposed
to add some intermediate variables to express the
impact of “finishing transitions” on the state vectors
−→em(v) and −→er(v) in a linear way, using + and s oper-
ators in equations (22) and (23).

In this section, we propose to express the non-linear
parts directly, by reifing the constraints correspond-
ing to these equations.

Since reentrance is forbidden, a transition tj which
was already firing at date vi cannot start a new fire
at step vi+1 if it has not finished its previous firing
before. Thus, at date vi+1, the corresponding com-
ponent of the residual durations vector, er(i+1)j , can
have two values:

erij−∆vi > 0 ⇒

{

er(i+1)j = erij −∆vi

σ(i+1)j = 0
(41)

erij −∆vi ≤ 0 ⇒ er(i+1)j = d(j) · σ(i+1)j (42)

Equation (41) means that tj is still firing and can’t be
fired anymore, so er(i+1)j is equal to the residual time
to elapse. Following equation (42), if tj is not firing
(or has finished) at date vi+1, er(i+1)j is decided by
the new step σ(i+1)j .

In our reified model, the set of equations (41) and
(42) replace equation (22).

To express the quantity of tokens added to to em(i+1)

by transitions that have finished between date vi and
vi+1, we add intermediate variables TF(i+1)j to de-
note these transitions, using the following set of rei-
fied constraints:

∀j ∈ [[1,n]],
{

erij > 0
and erij −∆vi ≤ 0

⇒ TF(i+1)j = 1 (43)

{

erij ≤ 0
or erij −∆vi > 0

⇒ TF(i+1)j = 0 (44)

Equations (43) denote transitions j that were firing
at date vi and have finished at date vi+1. Conversely,
equations (44) denote transitions that were not firing
at date vi or that have finished at date vi+1

Equation (23) is then replaced in the previsous math-
ematical programming model by the new equation:

−→em(v +∆v) =
−→em(v)− C− · −−−−→σv+∆v

+ C+ ·
−−−−−→
TFv+∆v

(45)

4.2 Improvements of Model

In order to reduce the search space and improve the
efficiency of our CP model, we reduce the domain
of variables and add more constraints, according to
some observations made on the considered TPNs.

Firing Policy Since all transitions have a finite du-
ration, to fire the next step σi+1, it is not neces-
sary to wait after the firing of σi at date vi more

MOSIM’12 - June 06-08, 2012 - Bordeaux - France

Let (R,−→m0,
−→r0 ,

−→
d) be a Timed Petri Net with P = {p1, . . . , pm}, T = {t1, . . . , tn}. Let C

+ ∈ N
P×T and C− ∈ N

P×T be its
incidence matrices. Let −→mf be the target marking vector, and −→rf be the target residual durations vector. The

constraint programming model CP (V) is defined by:

∀k ∈ [[0,m− 1]], em0k = −→m0(k) (24)
∀k ∈ [[0,m− 1]], emVk = −→mf (k) (25)
∀j ∈ [[0,n− 1]], er0j = −→r0(j) (26)
∀j ∈ [[0,n− 1]], erVj = −→rf (j) (27)

∀i ∈ [[0,V − 1]], ∀j ∈ [[0,n− 1]], erij −∆vi > 0 ⇒ er(i+1)j = erij −∆vi , σ(i+1)j = 0 (28)

∀i ∈ [[0,V − 1]], ∀j ∈ [[0,n− 1]], erij −∆vi ≤ 0 ⇒ er(i+1)j =
−→
d (j) · σ(i+1)j (29)

∀i ∈ [[0,V − 1]], ∀j ∈ [[0,n− 1]], erij > 0 and erij −∆vi ≤ 0 ⇒ TF(i+1)j = 1 (30)

∀i ∈ [[0,V − 1]], ∀j ∈ [[0,n− 1]], erij ≤ 0 or erij −∆vi > 0 ⇒ TF(i+1)j = 0 (31)

∀i ∈ [[0,V − 1]],∀k ∈ [[0,m− 1]], em(i+1)k − emik =

n−1
∑

c=0

C
+
kc · TF(i+1)c −

n−1
∑

c=0

C
−

kc · σ(i+1)c (32)

∀i ∈ [[1,V − 1]],

n−1
∑

j=0

σij 6= 0 (33)

∀i ∈ [[0,V − 1]], ∆vi ≤ max
j∈[[1,n]]

erij (34)

∀i ∈ [[1,V − 1]], ∆vi 6= 0 (35)

∀i ∈ [[1,V]], ∀j ∈ [[0,n− 1]], σij ∈ {0, 1} (36)
∀i ∈ [[1,V]], ∀j ∈ [[0,n− 1]], TFij ∈ {0, 1} (37)
∀i ∈ [[0,V]], ∀j ∈ [[0,n− 1]], erij ∈ {0, Dmax} (38)
∀i ∈ [[0,V]],∀k ∈ [[0,m− 1]], emik ∈ {0,Mmax} (39)

∀i ∈ [[0,V − 1]], ∆vi ∈ {0, Dmax} (40)

Figure 5: Constraint programming model

than the time needed to finish all currently fir-
ing transitions, i.e. the maximum component of
the residual duration eri, denoted as max

j∈[[1,n]]
(−−→erij).

Indeed: we are sure that all transitions previ-
ously active at date vi have finished, thus all
tokens needed to fire σi+1 are available at date
vi + max

j∈[[1,n]]
(−→eri).

Using the same considerations, variables ∆vi and
erij will never be greater than Dmax, denoting
the longest duration. Such considerations lead
to the following additional constraints:

∀i ∈ [[0,V]], ∀j ∈ [[0, n− 1]], erij∈ {0, Dmax} (46)
∀i ∈ [[0,V − 1]], ∆vi∈ {0, Dmax} (47)
∀i ∈ [[0,V − 1]], ∆vi≤ max

j∈[[1,n]]
(−→eri) (48)

In order to reduce the search space, we forbid
the firing of empty steps, i.e. steps containing
no transition firing, which were allowed in the
previous work. This avoid to find solution built
from another one by simply adding an empty
step. Only the last steps σV is allowed to be
empty, in order to be able to consider the date V

for which the final marking is reached but no
transition is still active. Note this implies to
choose the total number of steps accurately since
if one choose more steps than the number needed
to reach the final marking, no solution can be
found. To the contrary, empty steps allow to use
dichotomic search to find the minimal number of
steps needed to reach the final marking.

In order to avoid solutions built one from another
by splitting steps into individual transition fir-
ings, we forbid the elapsed time ∆i between steps
σi and σi+1 to be equal to 0, except from first
firing date ∆0. Thus, if a solution exists where
two transitions ti, tj must be fired simultaneously
at date vi, they will be fired in an unique step
−→σi =

−→
tj +

−→
tk and not using two steps −→σi =

−→
tj

and −−→σi+1 =
−→
tk with ∆i = 0.

Such improvements reduce the search space by
deleting solutions that will be found anyway.
The corresponding constraints are given in Equa-
tions (49) and (50).

∀i ∈ [[1,V− 1]],

n−1
∑

j=0

σij 6=0 (49)

MOSIM’12 - June 06-08, 2012 - Bordeaux - France

∀i ∈ [[1,V − 1]],∆vi 6=0 (50)

Structural Properties Since PNs express the be-
haviour of physical systems, they have gener-
ally an infinite behaviour, made of cyclic exe-
cutions, but their number of states is bounded.
Thus, it is possible to compute an upper bound
of the marking of each place, allowing to reduce
the domain of variables emik in the considered
model, as shown in equation (51). Such bounds
can be computed using P-flows of the net, see
(Krukeberg & Jaxy 1987). For instance, the
number of tokens in each place of the TPNs of
(Fig. 2) is bounded by 1, which is the max num-
ber in initial marking.

∀i ∈ [[0,V]], ∀k ∈ [[0,m− 1]], emik∈{0,Mmax} (51)

The full model denoted as CP (V) is given in figure 5.
Equations (24) to (27) correspond to conditions over
initial and final states. Equations (28) to (31) cor-
respond to the reified constraints introduced above.
Equation (32) is used to get the marking at each step.
Equations (33) to (35) are used to reduce the search
space: avoid empty steps, forbid redundant solutions
with empty wait and split steps. Finally, equations
(36) to (40) define the domains of variables.

In the next section, we give numerical experiments
in order to compare our new model to the integer
programming model mentioned in (Bourdeaud’huy &
Hanafi 2006).

5 NUMERICAL EXPERIMENTS

Experiments were carried out using a 2.93 Ghz Pen-
tium with 4 Gb of RAM, using the constraint pro-
gramming tool Ilog Solver. We have used two Timed
PNs reachability problems to verify the efficiency and
the robustness of the CP model with comparison to
the IP model, which had been improved following sec-
tion 4.2.

The first TPN corresponds to the scheduling prob-
lem given in Fig. 2. The goal was to to get solu-
tions leading first from m1

0 = {p1, p2, p3,m1,m2,m3}
to m1

f = {p4, p5, p6,m1,m2,m3}, then from m2
0 =

{2 · p1, 2 · p2, 2 · p3,m1,m2,m3} to m2
f = {2 · p4, 2 ·

p5, 2 · p6,m1,m2,m3}.

The second one is given in Fig. 6. It represents
philosophers around a table, who spend time eating
spaghettis and thinking. To eat, each one needs two
forks, but there is only one available for two people.
Each philosopher is provided with a control place, al-
lowing us to quantify how many times it has been
active. The presence of this unbounded place makes
the corresponding reachability graph unbounded.

Figure 6: Dining philosophers problem

The corresponding reachability problem was to find
firing sequences allowing to make each philosopher eat
a given number of times (2 then 4). Such problem is
characterized by the existence of deadlocks, i.e. states
from where no transition is fireable. Such situation
can be obtained if each philosopher decide to take
the fork on his left, for example. The presence of
deadlocks make the problem harder to solve.

The results are given in tables 2 to 5. We give the time
to obtain all solutions and first feasible solution, the
number of inconsistent choices (fails), the number of
solutions, variables and constraints for each problem.

As can be seen in tables 2 and 3, our reified model
behaves better than the IP one for the first exam-
ple, particularly when the search space is larger. CP
model is more efficient than IP model although they
are meeting the same number of fails when searching
with the same number of firing dates.

In tables 4 and 5, the philosophers problem shows
that CP model search for solutions a little bit slower
than IP model, although it meets far more fails dur-
ing search. More experiments must be done to un-
derstand the reason why the reified model doest not
behave better. This could be due to the existence of
deadlocks.

The use of reifed constraints allows us to reduce the
number of variables and constraints of the model.
One should note that the first solution given by
each model using the default labeling strategy is
the same: linearization variables were not choosen
to be labeled in the search tree, they have been
instanciated thanks to the enumeration of other
variables. The default strategy was to label vari-
ables in the order they occur in the sequence
σ1∆v0em1

er1σ2∆v1em2
er2 . . . σV∆vV−1

emV
erV .

MOSIM’12 - June 06-08, 2012 - Bordeaux - France

Table 2: Scheduling problem - finding all solutions
(m1

0 to m1
f)

CP model

V Time Fails variables constraints Nb of solutions

6 0 s 36 333 0 33
7 0.094 s 567 381 0 1479
8 0.702 s 3884 429 0 23280
9 4.337 s 17525 477 0 165088
10 14.227 s 72673 525 0 538288
11 22.105 s 238690 573 0 656524
12 15.85 s 447419 621 0 0

IP model

6 0 s 36 503 0 33
7 0.125 s 567 581 0 1479
8 1.060 s 3884 659 0 23280
9 6.536 s 17525 737 0 165088
10 21.918 s 72673 815 0 538288
11 33.977 s 238690 893 0 656524
12 21.934 s 447419 971 0 0

Table 3: Scheduling problem - finding first feasible
solution (m2

0 to m2
f)

CP model

V Time Fails variables constraints makespan

9 27.160 s 545210 477 no solution
10 8.486 s 171494 525 885 30
11 1.950 s 39341 573 974 30
12 0.577 s 10817 621 1057 34
13 0.172 s 1944 669 1147 34
14 0.125 s 1076 717 1235 38
15 0.047 s 77 765 1317 40
16 0.078 s 31 813 1408 41
17 0.031 s 26 861 1500 41

IP model

9 33.821 s 532375 737 no solution
10 10.483 s 167508 815 1179 30
11 2.465 s 38646 893 1297 30
12 0.686 s 10650 971 1415 34
13 0.156 s 1919 1049 1533 34
14 0.094 s 1062 1127 1651 38
15 0.109 s 78 1205 1769 40
16 0.031 s 28 1283 1887 41
17 0.062 s 20 1361 2005 41

Table 4: Dining philosophers problem - finding all
solutions (target counter =2)

CP model

V Time Fails variables constraints Nb of solutions

13 1.856 s 22084 907 0 0
14 6.224 s 76286 972 0 2880
15 19.797 s 222456 1037 0 47328
16 55.458 s 435438 1102 0 291552

IP model

13 1.716 s 17054 1477 0 0
14 6.006 s 56522 1587 0 2880
15 20.374 s 165514 1697 0 47328
16 61.808 s 356742 1807 0 291552

Table 5: Dining philosophers problem - finding first
feasible solution (target counter =4)

CP model

V Time Fails variables constraints makespan

29 15.351 s 216325 1947 3610 40
30 3.136 s 42257 2012 3735 41
31 2.434 s 30001 2077 3860 42
32 1.170 s 13671 2142 3985 43

IP model

29 14.399 s 175378 3237 4929 40
30 2.964 s 35238 3347 5099 41
31 2.152 s 24086 3457 5269 42
32 1.061 s 10519 3567 5439 43

6 CONCLUSION AND FUTURE WORK

In this paper, we are interested in solving the Timed
Petri Nets Reachability Problem using Constraint
Programming Approach.

Our goal is to develop efficient methodologies allowing
to address safety issues in manufacturing and trans-
port systems by enumerating firing sequences. This
work is the first step towards this direction.

We propose to use an incremental model allowing to
capture the timed behaviour of the TPN in a linear
system of equations. A dedicated constraint program-
ming model is proposed, using reified constraints, to
find solutions efficiently. This model is evaluated on
academic examples with promising results and be-
haves better than the original one.

In the future, we propose to follow interesting direc-
tions raised by this first work:

• Complete numerical experiments to understand
for which classes of problems each model is better
fitted;

• Improve the obtained model adding bounds,
valid inequalities, global constraints traducing
structural properties of the PN;

• Adapt CP exploration techniques to the speci-
ficities of the considered problem by designing fil-
tering algorithms, improving labeling techniques.
One idea could be to search only for one solution
in each equivalence class defined by a preliminary
analysis of the underlying PN, without consider-
ing times, thus reducing the search space.

Finally, it must be said that the mathematical model
described in (Fig. 5) leads only to a semi-decision al-
gorithm. Indeed, in the context of unbounded TPNs,
the number of firing dates V is set arbitrarily, as we
do not know any information on the number of steps
needed to find a possible solution. Thus, if no solution

MOSIM’12 - June 06-08, 2012 - Bordeaux - France

is obtained using this value V, one cannot conclude
on the reachability property. To the contrary, when
dealing with bounded TPNs, it is possible to set V to
the value of the“sequential depth”of the net, a param-
eter defined in (Bourdeaud’huy, Hanafi & Yim 2004)
and which guarantee the complete exploration of the
reachability graph. Using this parameter as search
depth, it is always possible to conclude when the al-
gorithm stops. A promising research track could be
to define efficient procedures to evaluate the value of
this parameter.

References

Bourdeaud’huy, T. & Hanafi, S. (2006). Scheduling of
flexible manufacturing systems using timed petri
nets and mathematical programming, Proceed-
ings of the 8th International Workshop on Dis-
crete Event Systems 3: 94–99.

Bourdeaud’huy, T., Hanafi, S. & Yim, P. (2004). Effi-
cient reachability analysis of bounded petri nets
using constraint programming, SMC’04, Inter-
national Conference on Systems, Man and Cy-
bernetics, La Hague, Hollande.

Carlier, J. & Chretienne, P. (1988). Timed petri net
schedules, Advances in Petri Nets 1988 pp. 62–
84.

Chretienne, P. (1984). Executions controls dans les
reseaux de petri temporises, T.S.I. 3.

Driss, O., Yim, P., Korbaa, O. & Ghedira, K. (2004).
Reachability search in limed petri nets using con-
straint programming, pp. 4923–4928.

Krukeberg, F. & Jaxy, M. (1987). Mathematical
methods for calculating invariants in petri nets,
in G. Rozenberg (ed.), Advances in Petri Nets
1987, Vol. 266 of Lecture Notes in Computer Sci-
ence, Springer Berlin / Heidelberg, pp. 104–131.

Michel, F. & Vernadat, F. (1998). Maitrise de
l’explosion combinatoire. reduction du graphe de
comportement, RAIRO Technique et Science In-
formatiques 17(7): 805–837.

Murata, T. (1989). Petri nets: Properties, analy-
sis and applications, Proceedings of the IEEE
77(4): 541–580.

Petri, C. (1962). Kommunikation mit Automaten,
PhD thesis, University of Bonn, Bonn, West
Germany.

Recalde, L., Silva, M., Ezpeleta, J. & Teruel, E.
(2004). Petri nets and manufacturing systems:
An examples-driven tour, Lectures on Concur-
rency and Petri Nets pp. 71–89.

Richard, P. (1997). Contribution des reseaux de
Petri a l’etude de problemes de recherche opera-
tionnelle, PhD thesis, Universit?de Tours.

Wang, J. (1998). Timed Petri Nets, Theory and Ap-
plication, Kluwer Academic Publishers.

Zhou, M. & Venkatesh, K. (1999). Modeling, Sim-
ulation, and Control of Flexible Manufacturing
Systems: A Petri Net Approach.

