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ABSTRACT: In this paper, a new procedure for solving the multi-level lot sizing and scheduling problem in
an integrated manner is presented. A Lagrangian heuristic is used to generate feasible production plans for
a fixed sequence of operations, by solving the dual problem of production planning and applying a smoothing
procedure to repair production plans. Detailed capacity constraints are considered in the lot sizing mathematical
model to guarantee consistency between planning and scheduling decisions; and in order to consider multi-level
production requirements, nomenclature constraints are included, using echelon stock formulation.
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1 INTRODUCTION

Production planning and scheduling are ones of the
most important phases of production management.
However, decisions concerning these two activities are
generally taken in a sequential order. Thus, pro-
duction planning is first performed at the tactical
decision level and, the different jobs are then sup-
posed to be scheduled at the operational decision
level. The problem of this strategy is that at the tac-
tical level, one has no a detailed view about system
capacity in terms of scheduling. Therefore, the in-
formation about capacity becomes aggregated at the
tactical level, thus not guaranteeing that scheduling
constraints are respected. By consequence, the pro-
duction plans may be unfeasible. For many years,
this hierarchical approach was accepted and used.
Thus, methods like the well-known MRP (Material
Requirements Planning) approach (Vollman et al.,
2005), which considers an infinite system capacity,
were lagerly spread and included in several produc-
tion systems. Then, the inconsistency of decisions
was recognized and researchers put an effort on in-
tegrating production planning and scheduling. That
was how the approach MRP-II (Manufacturing Re-
sources Planning) was created. It improved the qual-
ity of solutions in terms of feasibility by consider-
ing aggregated capacity constraints. Nevertheless the
production plans could still be unfeasible, because
starting times of operations are not considered by this
kind of constraint. In fact, to include precedence in-
formation between operations and starting times, the
mathematical model must include detailed capacity

constraints, as mentioned in (Lasserre, 1992). This is
the only way that a lot sizing model guarantee fea-
sible production plans in a complex manufacturing
system.

In the last years, various works have been proposed
for solving the production planning and scheduling
problem in an integrated manner. The most part
of them are focused on solving small bucket prob-
lems like: the discret lot sizing and scheduling prob-
lem (DLSP), the continuous setup lot sizing problem
(CSLP) or the proportional lot sizing and scheduling
problem (PLSP), where the number of setups per pe-
riod is limited. For example, Gicquel et al. (2009)
use a multi-attribute product structure to model pro-
duction systems with the characteristics of a DLSP.
With respect to big bucket problems, the problems
usually treated are the capacitated lot sizing prob-
lem (CLSP) and the general lot sizing and scheduling
problem (GLSP). The mathematical models used to
solve these small and big bucket problems guarantee
feasible solutions for manufacturing systems where
the production of each item requires the completion of
only one operation, or in case of multiple operations
per product, each item can be treated on only one
resource. Therefore, in these cases, detailed capacity
constraints are not necessary to assure consistency
between tactical and operational level. Nevertheless,
some works include sequencing constraints in order
to consider sequence-dependent setup costs and times
(see for example Menezes et al., 2011).

On the other hand, when the production of an item
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requires the completion of several operations and each
item has to be produced on several resources (e.g.
job-shop configuration), the use of capacitated lot siz-
ing models does not guarantee feasible solutions at
the operational level. That is why additional con-
straints concerning precedence between operations
and starting times have to be considered. In the lit-
terature, few works deal with this kind of problem.
Dauzère-Pérès and Lasserre (1994) propose an itera-
tive approach for job-shop problems, which solves the
lot sizing problem for a given sequence of operations
and then the scheduling problem for the computed
production plan, Hasse and Kimms (2000) present
a tailor-made enumeration method for single-stage
single-machine production systems. Dauzère-Pérès
and Lasserre (2002) study the impact of sequenc-
ing decisions in lot sizing and scheduling problems.
Wolosewicz et al. (2006) present an integrated ap-
proach based on a Lagrangian heuristic for solving
the single-level lot sizing and scheduling problem for a
fixed sequence. Erdirik-Dogan and Grossmann (2008)
study the integrated problem for single-stage multi-
item continuous plants with parallel lines and propose
a bilevel decomposition algorithm to solve the plan-
ning problem (upper level) and the scheduling prob-
lem (lower level). Li and Ierapetritou (2010) present
an iterative rolling horizon method for chemichal in-
dustry environments, where at each iteration, the re-
spect of detailed capacity constraints is required only
for the current and previous planning periods. As
these works consider single-level problems, products
are independent between them from the point of view
of material requirements.

Very few works deal with multi-level problems in-
cluding scheduling decisions. Generally, the capac-
ity is respected by using the multi-level capacitated
lot sizing problem (MLCLSP) formulation which is
a variation of the CLSP. The difference is that in-
ventory balance constraints take into account bill-of-
material information. Similarly to capacitated single-
level problems, when there are precedence contraints
between operations belonging to the same product or
sharing the same resource, the MLCLSP formulation
does not guarantee feasible solutions. Buschkühl et
al. (2010) presents a litterature review of solution
approaches for capacitated lot sizing problems, with
special emphasis on the MLCLSP. Stadtler (2011)
studies the proportional lot sizing and scheduling
problem (PLSP) with zero lead times in a multi-
level single-machine manufacturing system. Wu et
al. (2011) present two MIP models for solving capac-
itated multi-level lot sizing problems with backlog-
ging. Sahling et al. (2009) propose a new algorithm
for solving the MLCLSP with setup carry-overs. In-
tegrated multi-level, multi-item, multi-resource prob-
lems have not been studied a lot. One of the few
works is the one proposed by Fandel and Stammen-
Hegene (2006), which study a multi-level general lot

sizing and scheduling problem (MLGLSP) with multi-
ple machines and consider sequence dependent setup
times and costs.

In this paper, we present an integrated approach for
solving multi-level big bucket problems with multi-
ple resources, multiple products and multiple oper-
ations per product, considering a fixed sequence of
operations. The configuration of the production sys-
tem corresponds to a job-shop. The solution method
is based on an extension of a previous work treat-
ing single-level problems. In that work, the difficulty
was to generate production plans respecting detailed
capacity constraints. In the current work, as there
is a bill-of-material relationship between products,
nomenclature constraints have to be also respected to
guarantee a feasible solution. With respect to com-
plexity, the CLSP is known to be NP-hard (Florian
et al., 1980). Then, the MLCLSP is also NP-hard.
Moreover, considering detailed capacity constraints
entails a difficulty increase. Therefore, the integrated
problem we consider is also NP-hard.

This paper is organized as follows. In section 2, we de-
scribe the nature and context of the kind of problems
we are considering and the mathematical model. In
section 3, we present the integrated approach. Then,
in section 4 some numerical tests are illustrated, and
finally in section 5 we give the conclusions about this
work.

2 PROBLEM DESCRIPTION

We consider manufacturing systems, where the pro-
duction of several products has to be planed and
scheduled over several periods, with the objective of
satisfying the clients demand at a minimum cost. Per-
forming the production planning corresponds to de-
cide appropriately production targets, i.e. lot sizes of
each item at each period, and solving the scheduling
problem corresponds to determine the best sequence
of operations for each resource and the starting time
of each operation.

This paper is particularly focused on multi-level prob-
lems. It means that it exists a nomenclature or bill-of-
material structure which defines the relationship (in
terms of material requirements) between the different
items to be produced. In other words, some items are
components or successors of other products, and ma-
terial requirements of successors entails also material
requirements for predecessors. The most basic items
(products without predecessors) of the nomenclature
integrate the first or lowest level of the production
structure, and the most sophisticated items (products
without successors) form the last or uppest level. An
assembly system is a typical exemple of a multi-level
problem.
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The difference between multi-level and single-level
problems is that, in the second case there is no re-
lationship of requirements between products. It al-
lows the production targets to be determined using
a dynamic lot sizing algorithm, where the lot sizing
problem is decomposed into several subproblems (a
subproblem per product). In multi-level cases, as not
only the external demand influences decisons about
production targets but also the internal demand, it is
not easy to divide the problem into a given number
of subproblems for independent products.

Therefore, the major difficulty of solving a lot sizing
problem is the impossibility to effectively apply a dy-
namic lot sizing algorithm, as the one proposed by
Wagner and Whitin (1958).

Furthermore, as we are integrating decisions concern-
ing the scheduling problem, detailed capacity con-
straints have to be also included in the mathematical
model. Then, in order to implement a dynamic lot
sizing procedure for solving a problem per product,
two constrainst (capacity and nomenclature) have to
be relaxed or not considered. Therefore, the slack
between the output of this kind of procedure and a
feasible solution might be considerably large.

Formulation

We take some notations introduced by Clark and Ar-
mentano (1993) to define a mathematical model for
solving a multi-level lot sizing problem, and we inte-
grate it in the model we used for single-level problems
(Wolosewicz et al., 2006).

Thus, the different variables and parameters of our
model are defined using the following notation.

Decision variables:

• Xil: quantity of product i available at the end of
period l (production target).

• Yil: setup variable (= 1 if product i is produced
at period l, 0 otherwise).

Other variables:

• Iil: inventory level of product i at the end of
period l.

• Eil: echelon stock of product i at period l.

Parameters:

• dil: external demand of product i at the end of
period l.

• Dil: internal demand of product i at the end of
period l.

• DS(i): set of direct successors of product i in the
gozinto tree.

• AS(i): set of all successors of product i.

• DP(i): set of direct predecessors of product i in
the gozinto tree.

• gij : gozinto factor, i.e. number of units of prod-
uct i required to produce one unit of product j
(gij = 0 if j /∈ DS(i)).

• nij : number of paths relating products i and j
in the nomenclature structure.

• pnij : total requirement of product i to produce
one unit of product j through path n

• Pn(i, j): nth path connecting product i and its
successor j.

• Li: lead time of product i.

• Kn(i, j) sum of lead times to obtain product j
from i by following the path n in the nomencla-
ture.

• M(i): maximum sum of lead times to obtain
product i.

• cpi : manufacturing cost per unit of product i.

• cinvi : inventory cost per unit of product i.

• ei: echelon stock cost per unit of product i

• csi : setup cost per unit of product i.

• puo : processing time of operation o per unit of
product i(o).

• sti: setup time of operation o per unit of product
i(o).

• cl: length of period l (available capacity).

• O: set of operations

• L: set of last operations in the routing.

• F : set of first operations in the routing.

• i(o): product associated to operation o.

• l(o): period associated to operation o.

• S(y): sequence of operations associated to se-
quence y. ((o, o′) ∈ S(y) means that operation
o precedes operation o′ in the sequence of a re-
source).

• N : number of products.

• T : number of periods of the planning horizon.
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Let us explain some concepts before presenting the
mathematical model. In multi-level lot sizing prob-
lems, the perception about demand and inventory
takes another dimension, because of the internal re-
lationship between products. Thus, balance material
equation is not represented in terms of inventory, but
in terms of echelon stock, and the demand acquires
internal needs. In what follows, these new character-
istics are introduced.

Echelon stock

The echelon stock of a given product at given mo-
ment, is defined in the litterature as the existing quan-
tity of material of this item in the system, as finished
product or as component, to satisfy the external and
internal demands. Contrary, the inventory level of a
given product at a given moment is its real available
quantity of material, i.e. it changes as a function of
production targets of successor products and not as
a function of the internal demand. In our model, the
echelon stock is considered at the end of the period.

There are two forms to define the echelon stock of a
product i at period l (Afentakis and Gavish, 1986).
Either as a function of the inventory level of all its
successors, or in a recursive manner as function of
the echelon stock of only its direct successors. The
first definition can be represented by equation (1).

Eil = Iil +
∑

j∈AS(i)

nij∑
n=1

pnijIj,l+Kn(i,j) (1)

In the above equation, the sum of lead times to obtain
product j from i by following the path n is calculated
using equation (2)

pnij =
∏

k∈Pn(i,j)−j

gk,sn(k) (2)

where sn(k) is a successor product of item k.

The recursive definition of the echelon stock is repre-
sented by equation (3).

Eil = Iil +
∑

j∈DS(i)

gijEj,l+L(i) (3)

On the other hand, the inventory level may be mod-
eled by equation (4).

Iil = Ii,l−1 +Xil − dil −
∑

j∈DS(i)

gijXj,l+L(i) (4)

The echelon stock cost per unit of product i can be
calculated through equation (5).

ei = cinvi −
∑

j∈DP(i)

cinvj gji (5)

Demand

The demand of product i at period l is equal to the
sum of its external demand (client demand) and its
internal demand (internal requirements). This defi-
nition can be represented by the recursive equation
(6)

Dil = dil +
∑

j∈DS(i)

gijDj,l+L(i) (6)

A non-recursive expression of the demand correspond
to equation (7).

Dil = dil +
∑

j∈AS(i)

nij∑
n=1

pnijDj,l+Kn(i,j) (7)

In what follows, we present the mathematical model
for multi-level lot sizing and scheduling problems. It
is an extension of the one proposed for single-level
problems, with the particularity that bill-of-material
constraints are taken into account and inventory vari-
ables are replaced by echelon stock variables.

Mathematical model

min

N∑
i=1

T∑
l=1

(csiYil + cpiXil + eiEil) (8)

Subject to

Ei,l−1 +Xil − Ei,l =
∑

j∈DS(i)

gijDj,l+L(i)

∀i = 1, ..., N ;∀l = 1, ..., T (9)∑
j∈DS(i)

gijEj,l+L(i) − Eil ≤ 0

∀i = 1, ..., N ;∀l = 1, ..., T (10)
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r
(
ofc
)

+
∑
o∈c

(
puoXi(o)l(o) + stoYi(o)l(o)

)
≤

l(olc)∑
l=1

cl

∀c ∈ C(y) (11)

Xil ≤

(
T∑

k=l

Dik

)
Yil ∀i = 1, ..., N ;∀l = 1, ..., T (12)

Xil ≥ 0, Eil ≥ 0 ∀i = 1, ..., N ;∀l = 1, ..., T (13)

Yil = {0; 1} ∀i = 1, ..., N ;∀l = 1, ..., T (14)

Xil = 0 ∀i = 1, ..., N ;∀l ≤M(i) (15)

The objective function of the model is represented
by equation (8), which corresponds to the minimiza-
tion of the total cost, i.e. the sum of manufactur-
ing, echelon stock and setup costs. Inventory balance
constraints are modeled by equation (9). Equation
(10) represents nomenclature or bill-of-material con-
straints. It forces the production of components to be
enough to satisfy requirements of successors. Equa-
tion (11) corresponds to detailed capacity constraints,
where variable r(o) can take different values accord-
ing to equations (16)–(18), which guarantee that first
operations can start at a period between 0 and l(o) if
Li(o) = 0 or between l(o)−Li(o) and l(o) if Li(o) > 0.
On the other hand, last operations start and finish
during their associated production period l(o). Con-
straints (12) relate the continuous production variable
X to the binary variable Y . Non-negative constraints
are represented by equation (13). Constraints (14)
correspond to the definition of the binary variable for
setup decision, and, by considering constraints (15),
the production of item i at period l is not possible if
l is not greater than the maximum sum of lead times
required to produce this item. This is true consider-
ing that Ei0 = 0 ∀i.

r(o) =


l(o)−Li(o)∑

l=1

cl, Li(o) < 0

0, otherwise

∀o ∈ F (16)

r(o) =

l(o)−1∑
l=1

cl, ∀o ∈ L (17)

r(o) =


max

l(o)−Li(o)∑
l=1

cl,

l(o)−1∑
l=1

cl

 , Li(o) < 0

l(o)−1∑
l=1

cl, otherwise

∀o ∈ F ∩ L(18)

3 INTEGRATED APPROACH

In Section 2, we mentioned that using a dynamic lot
sizing algorithm for solving multi-level problems was
difficult because this type of procedures considers un-
capacitated systems and independent products. In
single level cases, the challenge of solving in an inte-
grated manner the lot sizing and scheduling problem
is to satisfy capacity constraints, taking into account
that in dynamic lot sizing algorithms the capacity is
not respected. In multi-level cases, a new challenge is
incorporated: statisfying nomenclature constraints.

To solve the lot sizing problem we apply the La-
grangian relaxion (Lemaréchal, 2001) over capacity
and nomenclature constraints, as in (Tempelmeier
and Derstroff, 1996), and we use the subgradient mul-
tipliers method (Parker and Rardin, 1988) to update
Lagrangian multipliers. We combines the Lagrangian
relaxation with the dynamic lot sizing algorithm pro-
posed by Wagelmans et al. (1992). It allows the re-
sults to vary as a function of Lagrangian multipliers
values. However, as two constraints of the model are
relaxed, the proposed production plans do not corre-
spond to feasible solutions. The cost associated to a
production plan is in reality a lower bound.

For this reason, we integrate a smoothing procedure
to the solution method, in order to repair the violated
constraints, thus providing upper bounds, which cor-
respond to feasible solutions. In what follows, the
global method (Lagrangian relaxation + Smoothing
procedure) is called Lagrangian heuristic.

The Lagrangian heuristic algorithm is illustrated in
figure 1.

Determine optimal production plan 

with relaxed capacity and 

nomenclature constraints

Determine feasible 

production plan?

Apply smoothing 

procedure

yes

Update Lagrangian multipliers

no

Define Lagrangian 

relaxation parameters

Decision criterion

Wagelmans et 

al’s algorithm

Give best feasible production plan 

associated to Y

Other outputs :

-Set of violated paths

-Lagrangian multipliers

Other inputs :

-Problem data

-Fixed sequence Y

Lagrangian heuristic

Output: lower bound for Y

Output: upper bound

Figure 1: Lagrangian heuristic algorithm

In the rest of this section, the Lagrangian relaxation
and the smoothing procedure are explained in detail.
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3.1 Lagrangian relaxation

As mentioned above, the Lagrangian relaxation is
used to decompose the optimization problem into a
number of easy-to-solve subproblems dualizing capac-
ity and nomenclature constraints. The objective is
to find an optimal production plan without consid-
ering these two contraints, using the algorithm pro-
posed in (Wagelmans et al., 1992). Capacity and
nomenclature constraints are relaxed because of the
difficulty to integrate them in a lot sizing optimiza-
tion algorithm. Nevertheless, for the case of capac-
ity constraints, despite the fact that the difficulty
of the problem decreases (because it becomes unca-
pacitated), relaxing all capacity constraints is time-
consuming.

Therefore, the strategy is to relax only the most vi-
olated capacity constraints, and to update only the
Lagrangian multipliers associated to them. It allows
the Lagrangian heuristic to reduce the necessary time
to complete an iteration, without deteriorating the
lower bound quality.

Lagrangian multipliers associated to capacity con-
straints are updated according to the following steps.

First of all, let CH be the set of violated paths. Then,

• Set all the Lagrangian multipliers to 0 and CH =
∅.

• At each iteration:

1. Find the most violated path in the graph,
i.e. the path cv which maximizes the ex-
pression:

r(ofc )+
∑
o∈c

(puoXi(o)l(o) +stoYi(o)l(o))−
l(olc)∑
l=1

cl,

where c = cv.

2. If cv /∈ CH then CH = CH ∪ cv.

3. Update all the multipliers associated to the
paths of CH.

For the case of nomenclature constraints, a La-
grangian multiplier is defined for each product at each
period (set (i, l)), and the number of relaxed con-
straints is always the same. It corresponds to the
number of sets (i, l).

The cost associated to the production plan obtained
at the first iteration corresponds to the absolute lower
bound (ALB). As at the first iteration all Lagrangian
multipliers are set to zero, the proposed production
plan is optimal for the correspondent uncapacitated
single-level lot sizing problem. The greatest lower
bound obtained represents the lower bound (LB) of
the problem solved for a fixed sequence y. This lower
bound is supposed to be close to a feasible solution.

By relaxing capacity and nomenclature constraints,
the objective function of the dual problems is:

F = min

N∑
i=1

T∑
l=1


csi +

∑
c∈C(y)

βc
∑
o∈c

sto

Yil

+

cpi +

T∑
k=l

(ei + γik) +
∑

c∈C(y)

βc
∑
o∈c

puo

Xil


−

N∑
i=1

T∑
l=1

T∑
k=l

(ei − γik)Dik

+
∑

c∈C(y)

βc

r(ofc )−
l(olc)∑
l=1

cl


+

N∑
i=1

T∑
l=1

∑
j∈DS(i)

T∑
k=l

γikgijXj,l+L(i) (19)

Therefore, by using the lot sizing optimization algo-
rithm mentioned above, the decision of production
setup varies as a function of the following term:

csi +
∑

c∈C(y)

βc
∑
o∈c

sto (20)

and if we consider that each product is independent
of each other, optimal lot sizes varies as a function of:

cpi +

T∑
k=l

(ei + γik) +
∑

c∈C(y)

βc
∑
o∈c

puo (21)

Nevertheless, as it exists nomenclature constraints
relating the products, decisions about lot sizes of a
product cannot be taken in isolation. As shown in
equation (19), the production target of successors
products has an influency on the objective function
of the dual problem, so this information must not be
neglected. The problem is that lot sizing optimiza-
tion algorithm mentioned above, as well as the other
ones, is designed to optimize production targets of
independent products. For this reason, a transfor-
mation of equation (19) is realized, considering the
information about successor products requirements.
To perform this idea, direct successors requirements
have to be included in expression (21), by adding the
last variable part of equation (19) in terms of direct
predecessors, as follows:
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cpi +

T∑
k=l

(ei + γik) +
∑

c∈C(y)

βc
∑
o∈c

puo

+
∑

j∈DP (i)

T−L(i)∑
k=l−L(i)

γjkgji

Xil (22)

Thus, the relaxed objective function allows the lot
sizing optimization algorithm to provide different
production plans according to the evolution of La-
grangian multipliers. However, the feasibility is not
guaranteed. To satisfy the remaining violated capac-
ity and nomenclature constraints, a smoothing pro-
cedure is applied.

3.2 Smoothing procedure

This procedure aims at performing the necessary pro-
duction moves to repair violated capacity and nomen-
clature constraints. Thus, production targets are
modified, by moving production portions to previ-
ous and later periods, untill the production plan be-
comes feasible. The cost associated to the new pro-
duction plan corresponds to an upper bound (UB)
for the fixed sequence y. Two smoothing procedures
have been created, changing the priority order of con-
straints to be satisfied. Figures 2 and 3 illustrate the
general algorithm of these two procedures.

Are there violated 

capacity constraints ?

Apply procedure 

repairing capacity 

constraints

yes
no

Are there violated 

nomenclature constraints ?
yes

Apply procedure 

repairing nomenclature 

constraints

End

no

Begin

Figure 2: Procedure “Capacity-Nomenclature”

The first smoothing procedure, named “Capacity-
Nomenclature” aims at satisfying first capacity con-
straints and then nomenclature constraints. Con-
trary, by considering procedure “Nomenclature-
Capacity”, nomenclature constraints are first satis-
fied.

In the first setp of the algorithm, the idea is to satisfy
all constraints of one type (capacity or nomenclature)
without increassing the violation of the other type,
whereas in the second step, violated constraints of the

Are there violated 

nomenclature constraints ?

Apply procedure 

repairing nomenclature 

constraints

yes no

Are there violated capacity 

constraints ?
yes

Apply procedure 

repairing capacity 

constraints

End

no

Begin

Figure 3: Procedure “Nomenclature-Capacity”

second type are repaired without violating constraints
of the first type.

To complete the subprocedure that repaires capac-
ity constraints, the following principal steps are per-
formed:

• Select product to be moved and source period.

• Select target period and quantity to transfer.

• Realize production move.

To determine the product to transfer and the source
period, we consider all products containing operations
with no margin at each period and we take the job
with largest processing time. The margin of an oper-
ation is calculated using equation (23).

margino =


dlo − deo
Do

, Yi(o)l(o) = 1

dlo − deo − so
Do

, Yi(o)l(o) = 0

(23)

In the above equation, dlo and deo are the latest and
earliest starting times of operation o, respectively,
and Do is the total processing time of operation o.

The selection of the target period and the quantity to
transfer is performed at the same time. We consider
all periods without critical operations and we calcu-
late the maximum quantity that can be moved from
the source period, without creating backlogs. For
each possible move, we compute the unitary trans-
fer cost, and we select as target period the one with
smallest unitary transfer cost. This steps are re-
peated until all capacity constraints are satisfied or
until there are not more possible moves.

On the other hand, the procedure repairing nomen-
clature constraints follows the algorithm presented in
figure 4.
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Determine the most critical set 

(product, period)

Vary source period between 

period+1 and T

Vary destination period between 

1+M(product) and period

Determine the possible quantity to transfer 

from source period to destination period

Calculate unitary 

transfer cost

One tries to increase echelon 

stock level of critical product

Vary item among the set of 

successors of critical product

Vary source period between 1 

and period+L(product)

Vary destination period between 

period+L(product) and T

Determine the possible quantity to transfer 

from source period to destination period

Calculate unitary 

transfer cost

Realize move with 

smallest unitary cost

Are there still violated 

nomenclature constraints?

yes

no

End

One tries to reduce echelon stock 

level of successors of critical product

Figure 4: Procedure repairing nomenclature con-
straints

In this subprocedure, two kind of moves are pos-
sible. In fact, regarding equation (10), to satisfy
material requirements of a set (i, l) we can increase
the echelon stock level of product i at period l, by
transfering production quantities from later periods
(l + 1, ...T ) to earlier periods (1 + M(i), ..., l), or we
can reduce the echelon stock of successor products of
i, by moving production quantities from earlier peri-
ods (1, ..., l + L(i)) to later periods (l + L(i), ..., T ).
In both cases, the maximum quantity of transfer is
calculated. This quantity is restricted by the fact
that capacity of periods must not become violated,
and the violation degree of other nomenclature con-
straints must not increase. The move chosen to be
performed is the one wich generates the smallest uni-
tary transfer cost.

4 NUMERICAL TESTS

In this section, the performance of the approach is
analyzed by solving an example of a multi-level prob-
lem. Our approach was run on Microsoft Visual C++
2010 Express, and exact solutions were obtained using
CPLEX 12.3. The machine used to compute results
has an operating system of 64 bits (Microsoft Win-
dows 7), a processor Intel core i7 4Quad @2.0GHz
and 8 GB of RAM memory. The number of threads
was not limited for the execution. Then CPLEX was
able to perform parallel computation, thus reducing a
lot execution times. On the other hand, our program
uses only one thread.

The tested problem is presented in figure 5, where
each circle represents a product and each arc cor-
responds to the material relationship between two
products. The number writen on each arc is the goz-
into factor. Thus, we are considering a relative small
structure of 6 products. Additionaly, to complete the
production of a product, 6 operations have to be per-
formed on six different resources. The sequence is
fixed in advance, so the problem consists in finding
the best feasible production plan associated to the
given sequence, respecting all constraints.

1

2 3 6

2 2 1

4 5

1 1 2

Figure 5: Multi-level problem

Unitary costs and lead times are presented in table 1.
External demands vary between 5 and 15 units, and
echelon stock costs are calculated using equation (5).

Item cpi csi chi L(i)
1 4 60 15 1
2 4 60 4 1
3 4 60 2 1
4 4 60 1 1
5 4 60 1 1
6 4 60 2 1

Table 1: Problem data

Several instances were tested using planning horizon
lengths of 5, 10 and 20 periods. Additionaly, differ-
ent period capacities were considered, by modyfing
the capacity ratio capa and calculating the period ca-
pacity cl as follows:
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cl = capa
∑
o∈l

(
puoXi(o)l(o)Di(o)l(o) + stoYi(o)l(o)

)
∀l (24)

Exact solutions and absolute lower bounds are pre-
sented in table 2. As we can observe, the compu-
tational time increases when the number of periods
increases and even more when the capacity ratio is
tight. Instance 10 shows that time may increase con-
siderably when increassing T and reducing capa. Nev-
ertheless, in this case, as the nomenclature structure
is relatively small and the sequence of jobs is fixed,
the computational time remains short.

Instance T capa ALB Optimum time (s)
1 5 0.60 4474 4726 0.59
2 5 0.65 4474 4715 1.03
3 5 0.70 4474 4690 1.03
4 5 0.75 4474 4690 0.70
5 5 0.80 4474 4690 1.17
6 10 0.65 9965 10560 2.57
7 10 0.70 9965 10442 2.23
8 10 0.75 9965 10438 1.67
9 10 0.80 9965 10418 2.07
10 20 0.65 22796 24140 20.73
11 20 0.70 22796 23961 4.41
12 20 0.75 22796 23908 3.84
13 20 0.80 22796 23908 4.85

Table 2: Exact solutions and absolute lower bounds

Solutions provided by our approach are presented in
table 3.

Instance LB
Cap-Nom Nom-Cap

UB time(s) UB time(s)
1 4474.0 4747 0.98 4747 0.62
2 4661.2 4715 0.95 4715 0.83
3 4622.6 4692 0.72 4692 0.72
4 4604.2 4726 0.42 4726 0.44
5 4595.5 − 0.33 4732 0.36
6 10227.5 − 4.24 10798 4.09
7 9965.0 10547 2.00 10524 1.84
8 9965.0 10550 1.58 10550 1.33
9 9965.0 10533 1.96 10549 1.28
10 23280.6 24920 5.85 24885 2.73
11 23059.6 24398 3.37 24454 2.54
12 23777.6 24073 5.63 24073 1.70
13 23773.6 24114 1.82 24114 2.21

Table 3: Solutions provided by our approach

We note that using smoothing procedure
“Nomenclature-Capacity” is more effective than
using “Capacity-Nomenclature”, because the first
one always guarantees feasible solutions and gives
globaly better solutions in a shorter time. With
respect to the lack between upper bounds and
optimal solutions, the largest gap is of 3.09% and
it corresponds to instance 10. Even if gaps and
computational times using “Nomenclature-Capacity”
are considerably short, there is still a margin of
improvement in terms of solution quality. One
possibility to improve results consists in reducing
the restriction of smoothing procedure moves, by

allowing partial violation of one type of constraints
when searching for satisfying the other one.

5 CONCLUSIONS

A new method to solve the integrated problem of
multi-level production planning and scheduling in
multi-item multi-resource systems was presented. In
order to reduce the complexity of the problem and
facilitate the computation of lower bounds, the La-
grangian relaxation technique has been used relax-
ing detailed capacity constraints and nomenclature
constraints. This technique was combined with a lot
sizing optimization algorithm designed for uncapac-
itated independent products, by including a math-
ematical relationship between components and suc-
cessors in the relaxed objective function. A smooth-
ing procedure has been also created, generating up-
per bounds which represent costs of feasible solu-
tions. The performance of this integrated approach
was tested, and results prove that it is able to provide
feasible solutions.

As perspectives, we are considering adding more con-
straints to take into account more situations of com-
mon manufacturing problems in supply chains.

ACKNOWLEDGMENTS

This research has been supported by Fond National
de la Recherche (FNR) of Luxembourg.

REFERENCES

Afentakis, G. and B. Gavish, (1986). Optimal Lot
Sizing Algorithms for Complex Product Struc-
tures. Operations Research, vol. 34 (2), p. 237–
249.
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